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Far-field matrix
Generalized discrepancy principle

1. Introduction

In this work, we will deal with reconstructions of acoustically penetrable objects from 
far-field measurements. This problem was originally investigated by Anagnostopoulos 
et al. [1] within the framework of the factorization method. Our goal will be to construct 
a robust and effective algorithm that will be able to handle acoustically penetrable 
objects that exhibit large linear systems of equations via the linear sampling method 
originally developed by Colton and Kirsch [11].

It is widely known that the linear sampling method does not require a priori in-
formation about either the boundary condition or the connectivity of the scatterer, 
however requires knowledge of the far-field pattern for all incident and observation direc-
tions. Hence, the cost of reconstructing three dimensional objects via the linear sampling 
method (LSM) could be prohibitively expensive if the discretization involves the con-
struction of large systems of equations. In addition, due to the ill-posedness of the inverse 
problem, the linear sampling method yields an ill-conditioned system of linear equations 
whose solution requires a regularization method in order to handle correctly the pres-
ence of noise in the data. Moreover, the noise level in the data should be known a priori, 
something that in real life applications is not the case in general.

In our approach we will use an appropriate projection method that through the 
LSM will construct stable approximations to the far-field equation. Due to noise in the 
data however, it is necessary to combine our projection method with a regularization 
method like Tikhonov’s regularization equipped with Morozov’s generalized discrep-
ancy principle as parameter choice rule which generally involves the computation of 
the zeros of the discrepancy function at each point of the grid. For large systems how-
ever, SVD-based methods, like the latter may be prohibitive due to the huge amount of 
data.

In the sequel, we will introduce two methods whose main idea will be to approxi-
mate the regularized solution by using a sequence of regularized solutions in appropriate 
Krylov subspaces of increasing dimension generated by projection methods such as 
Golub–Kahan bidiagonalization (GKB) [18, Section 8.6.2] and Lanczos tridiagonaliza-
tion methods [18, Chapter 9]. Therefore, we will be taking advantage of the fact that 
the regularization parameter for the projected problem, which involves a small number 
of variables, can be determined efficiently and at low computational cost using a direct 
method such as the SVD of a small matrix. The first parameter estimation method will 
be called PGDP-FP (Projected Generalized Discrepancy Principle Fixed Point method) 
and will enable the widely used Morozov’s discrepancy principle method to effectively 
provide regularization parameters, for problems that involve large linear systems of equa-
tions, as roots of a projected discrepancy function. Taking into account that GDP can 
fail when the noise level is not accurately estimated, we developed a second method that 
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does not rely on this estimate called PIMPC-FP (Projected Improved Maximum Product 
Criterion Fixed Point method). PIMPC-FP is an improved version of the IMPC (Im-
proved Maximum Product Criterion) for large-scale problems, that has been developed 
by Bazán et al. [5] and has been proven to provide reliable reconstructions of medium 
size objects without a priori knowledge of the noise level.

We organize our paper as follows. In section 2, we formulate the direct and inverse 
scattering problems and introduce the far-field operator. Section 3 describes the main 
idea of the projection approach within the framework of the LSM, and the selection 
of the regularization parameter as a sequence of regularized solutions in appropriate 
Krylov subspaces is discussed in section 4. In sections 5 and 6 the authors apply the 
idea of projections on GDP and IMPC by generating appropriate subspaces via the 
Golub–Kahan bidiagonalization algorithm. As a result two new and efficient methods 
are generated for the reconstruction of acoustically penetrable objects that exhibit large 
scale far-field matrices, the PGDP-FP and the PIMPC-FC. Section 7 repeats the anal-
ysis presented in the previous two sections, but now focusing on a projection approach 
for Kirsch’s method based on the Krylov subspace generated by the Lanczos tridiago-
nalization method. Moreover, an extended discussion of the numerical implementation 
of our methods, along with various three dimensional reconstructions of objects will be 
included in section 8. Finally, conclusions will be presented in section 9 as well as possible 
future research.

2. Formulation of the direct and inverse scattering problem

In this section, we briefly formulate the direct and inverse acoustic scattering problem. 
We closely follow the description of [1] and refer the reader to [1] for more details.

First, we let D ⊂ R
3 be a bounded domain with sufficiently smooth boundary ∂D. We 

denote by ν̂ the unit normal vector to the boundary ∂D which is assumed to be directed 
into the exterior of D. The exterior R3\D of the scatterer is assumed to be connected. 
It is an infinite homogeneous isotropic non-absorbing acoustic medium characterized by 
mass density ρe, mean compressibility κe, and sound speed ce = 1/√κeρe. The medium 
occupying the interior of the scatterer D is characterized similarly by the parameters 
ρi, κi, and ci = 1/√κiρi. The scatterer is excited by a time-harmonic acoustic plane wave

uinc(x; d̂) = eikex·d̂ , x ∈ R
3 , (1)

propagating in the direction d̂ ∈ S
2 of unit length, where S2 := {x ∈ R

3: |x| = 1} denotes 
the unit sphere, and where ke = ω/ce is the wave number of the acoustic waves in the 
host medium.

The interference of the incident wave (1) with the penetrable scatterer leads to the 
creation of two secondary fields. The first is the scattered field usct(x), which is defined 
in the exterior and it propagates outwards. The second is the transmitted field uint(x), 
which is defined in the interior of the scattering obstacle. The total acoustic field in the 



292 F.S.V. Bazán et al. / Linear Algebra and its Applications 495 (2016) 289–323
exterior of the scatterer is given by the superposition of the scattered and the incident 
field.

Now, we briefly describe the direct acoustic transmission scattering problem, trans-
mission problem (TP) for short. Find the two functions uint ∈ C2(D) ∩ C1(D) and 
usct ∈ C2(R3\D) ∩ C1(R3\D) satisfying the two Helmholtz equations

Δuint(x) + k2
i u

int(x) = 0 , x ∈ D , (2)

Δusct(x) + k2
eu

sct(x) = 0 , x ∈ R
3\D , (3)

with the two transmission boundary conditions

uint(x) − usct(x) = uinc(x) , x ∈ ∂D , (4)

τ−1 ∂u
int

∂ν̂
(x) − ∂usct

∂ν̂
(x) = (∂uinc/∂ν̂)(x) , x ∈ ∂D , (5)

and the Sommerfeld radiation condition

lim
r→∞

r

(
∂usct(x)

∂r
− ikeu

sct(x)
)

= 0 , r = |x| , (6)

where ki = ω/ci and ke = ω/ce are the wave numbers of the acoustic medium filling 
the interior of D and of the host medium, respectively. Here, τ := ρi/ρe ∈ R

+ is the 
mass density ratio of the two media. It is well known that problem (2)–(6) constitutes a 
well-posed BVP [13,15,26].

The problem at hand can be solved by using Green’s representation formula, since 
any radiating solution v ∈ C2(R3\D) ∩ C1(R3\D) to the Helmholtz equation can be 
represented by (see [14, Theorem 2.4])

v(x) =
∫
∂D

[
v(y)∂Φa(x,y)

∂ν̂(y) − ∂v

∂ν̂
(y) Φa(x,y)

]
ds(y) , x ∈ R

3\D , (7)

where Φa(x, y), a = {e, i} denotes the fundamental solution of the Helmholtz equation 
with wavenumber ka. It is given by

Φa(x,y) = eika|x−y|

4π |x− y| , x,y ∈ R
3 , x �= y . (8)

The far-field pattern of Φe(x, y) is given by (see [14, Theorem 2.5])

Φ∞
e (x̂,y) := 1

4π exp{−ikex̂ · y} . (9)

Hence, the far-field pattern u∞: S2 × S
2 → C is calculated by (see [14, Theorem 2.5])

u∞(x̂; d̂) = 1
4π

∫ [
usct(y; d̂)∂e−ikex̂·y

∂ν̂(y) − ∂usct(y; d̂)
∂ν̂(y) e−ikex̂·y

]
ds(y) , x̂ ∈ S

2. (10)

∂D
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Next, we briefly describe the inverse acoustic transmission scattering problem as 
follows. Given the far-field patterns u∞(x̂; ̂d) for scattering from an isotropic and homo-
geneous penetrable scatterer for all directions of observation x̂ ∈ S

2 and all directions of 
incidence d̂ ∈ S

2, the purpose is to reconstruct the shape of the unknown scatterer D. 
Note that from the theoretical point of view this inverse problem is uniquely solvable 
(see [25]).

A key ingredient for the solution of this inverse problem is the linear integral operator

(Fg)(x̂) :=
∫
S2

u∞(x̂; d̂)g(d̂) ds(d̂) , x̂ ∈ S
2 , (11)

henceforth called the far-field operator, where the kernel is formed by the far-field pat-
terns. Note that this operator is compact, since the far-field pattern is an analytic 
function in both of its variables. The Linear Sampling method (LSM) looks for a function 
g ∈ L2(S2) such that

(Fg)(x̂) = Φ∞
e (x̂,z), x̂ ∈ S

2 (12)

has a solution, where z is an arbitrarily chosen sampling point. Roughly, for a set of 
sampling points z ∈ R

3, the Linear Sampling method looks for the solution of the far-field 
equation (12), exploiting the fact that the norm of approximate solutions of the far-field 
equation becomes large when z → ∂D and can therefore be used as an indicator of the 
shape of D. However, we notice that, due to the compactness of the far-field operator, 
the problem of solving the far-field equation is ill-posed. Thus, in general this equation 
does not necessarily have any solution [12]. Even so it can be proved the existence of 
nearby solutions gε(·, z) ∈ L2(Ω) in the sense that

‖Fgε(·, z) − Φ∞
e (·, z))‖ ≤ ε, (13)

where ε is a small parameter independent of z, such that

lim
z→∂D
z∈D

‖gε‖L2(Ω) = ∞. (14)

Based on these results, the linear sampling method looks for stable solutions of the far-
field equation obtained through some regularization method, looking for those solutions 
that blow up as z approaches ∂D.

Another way to characterize the scatterer D is in terms of a range test due to 
Kirsch [24] involving an appropriate factorization of the far-field operator. In partic-
ular, the following linear operator equation is used in place of (12)

[(F∗F)1/4g](x̂) = Φ∞
e (x̂,z), x̂ ∈ S

2, (15)
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and the range test reads “a grid point z ∈ D if, and only if, Φ∞
e (x̂, z) ∈ R((F∗F)1/4)”. 

In terms of a singular system of the far-field operator, {σc
j , u

c
j , v

c
j}, j ∈ N, a grid point 

z satisfies the range test if, and only if, the series 
∑∞

j=1 |β
(z)
j |2/σc

j is convergent, where 

β
(z)
j stands for the Fourier coefficient of Φ∞

e (x̂, z) with respect to vcj , in which case 

the solution of (15) is gz =
∑∞

j=1(β
(z)
j /

√
σc)uc

j . Equivalently, z ∈ D if, and only if, 
‖gz‖2 =

∑∞
j=1 |β

(z)
j |2/σc

j < ∞. Thus, the characterization of the object can be done 
by inspecting gridpoints z for which the norm ‖gz‖2 becomes arbitrarily large. How-
ever, due to the compactness of the far-field operator, the problem of solving (15) is 
also ill-posed and some regularization is needed in order to compute stable solutions. 
The same idea is followed when Kirsch’s method is implemented in a finite dimensional 
framework.

3. Projection approach for the linear sampling method

The purpose of this section is to outline a projection approach for approximately 
solving the far-field equation through Tikhonov regularization, which will be the basis 
for our linear sampling method based projection approach for 3D object reconstruction. 
We start by considering the linear equation

Ag = h, (16)

where A is a linear and bounded operator with non-closed range from a Hilbert space X

into a Hilbert space Y and g is assumed to belong to the range space of A. As this 
equation is ill-posed, regularization methods are required for its numerical treatment. 
Perhaps the most immediate way to generate stable approximations to g† = A†h, is 
by a projection method where we approximate the space X by a finite-dimensional 
subspace Xk under the assumption that

X1 ⊂ X2 ⊂ · · · , with
∞⋃
k=1

Xk = X, (17)

and generate approximations to g† by determining the minimal norm solution to

Akg = h, (18)

which we denote by g(k), where Ak = APk and Pk is the orthogonal projector of X

onto Xk. Even if f (k) does not converge to f† as k → ∞ in general, it turns out that 
when convergence holds and the subspace Xk is properly chosen, the most important 
features of f† are quickly captured for small k in g(k). For conditions that guarantee 
convergence of g(k) to g† as k → ∞, the reader is referred to Groetsch [19] and Engl 
et al. [16].
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We emphasize that regularization is necessary when solving the far-field equation as 
in practice the integral operator is affected by measurement noise. Hence a projection 
approach as described before could be used in order to construct stable approximations 
to the solution of the far-field equation. However, it is well known that for noisy data, 
better results are obtained by combining the projection method with an additional reg-
ularization method such as Tikhonov regularization. The Tikhonov regularized solution 
to the ill-posed problem (16) is defined by

gλ = argmin
g∈X

{
‖Ag − h‖2 + λ2‖g‖2} , (19)

where λ > 0 is the regularization parameter. The regularization parameter determines 
how close gλ is to the noise free solution of (16), and should therefore be carefully chosen. 
Postponing the choice of the regularization parameter to later on, for our projection ap-
proach we assume again that Xk is an expanding sequence of finite-dimensional subspaces 
of X whose union is dense in X. We can then generate finite-dimensional approximations 
g
(k)
λ to g† by minimizing the Tikhonov functional g �→ ‖Ag−h‖2

2 +λ2‖g‖2 over Xk. This 
problem is equivalent to solving the “projected problem”

g
(k)
λ = argmin

g∈X

{
‖Akg − h‖2 + λ2‖g‖2} , (20)

with Ak and Pk as before. For the case when the operator is free of noise it can be 
proved that g(k)

λ → A†h as λ → 0 and k → ∞ simultaneously only if λ and k are 
related in a proper way, the success of this depending on how well Ak approximates A, 
or equivalently how quickly the number

γk = ‖A(I − Pk)‖ (21)

becomes small. Obviously convergence is not an issue when we are dealing with discrete 
counterparts of the ill-posed problem (16) since in this case the linear operator has finite 
rank. However, for large-scale problems, the condition γk ≈ 0 will become crucial for the 
projection approach to be successful: the smaller the dimension of Xk for which γk ≈ 0, 
the better the results of the projection approach. This is the central observation on which 
the projection approach is based.

We end the section with a very simple description of the linear sampling method based 
projection approach we have in mind. Basically, it comprises the following steps:

(i) Choose a subspace Xk.
(ii) For each grid point z solve the projected problem (20) associated to either the 

far-field equation (12) or (15) in conjuction with an appropriate Tikhonov parameter 
choice rule.

(iii) Determine the scatterer D by inspecting for which gridpoints z the norm ‖gλ,z‖
becomes large.
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The effectiveness of the projected approach will be demonstrated by numerical examples 
later.

4. On the selection of the Tikhonov regularization parameter

For the numerical realization of the linear sampling method the far-field equation has 
to be discretized. The main difficulty here is that, since the original problem is ill-posed, 
the linear system representing the discrete counterpart of (12) is ill-conditioned and 
characterized by numerical instability. Thus to obtain stable approximate solutions of the 
continuous problem, an appropriate regularization method should be used. Henceforth, 
we shall assume that the unit sphere is discretized using a triangular mesh containing 
N vertices (which are also used as directions for the plane incident waves) and that the 
far-field equation is discretized by following the scheme described in [10], giving rise to 
a system of N ×N linear equations

Fgz = rz, F ∈ C
N×N , (22)

where rz ∈ C
N is a discrete version of Φ∞

e (x̂, z) and F denotes the far-field matrix. 
Thus, for the implementation of the linear sampling method, the Tikhonov regularized 
solution is

gλ,z = argmin
g∈CN

{‖F̃ g − rz‖2
2 + λ2‖g‖2

2} (23)

where λ is the regularization parameter and F̃ is a perturbed far-field matrix: F̃ = F+E. 
The choice of λ has been made via Morozov’s generalized discrepancy principle (GDP) [9,
10,20]. GDP chooses as regularization parameter the only root of the nonlinear equation

G(λ) = ‖F̃ gλ,z − rz‖2
2 − δ2

F ‖gλ,z‖2
2 = 0 (24)

where δF is an estimate for ‖E‖ such that ‖E‖ ≤ δF . The function G is increasing and 
has a unique root under mild conditions [28]. Additionally, G is convex for small λ and 
concave for large λ. As a result global and monotone convergence of Newton’s method 
cannot be guaranteed [32]. To overcome this difficulty, Lu et al. [28] transformed equa-
tion (24) into one that depends on two free parameters (η, ν) and perform an analysis 
to determine the set of parameters that ensure global convergence of Newton’s method. 
Numerical examples reported in [28] suggest that among the pairs (η, ν) that guaran-
tee convergence, there must be a pair for which the iteration converges faster, but the 
determination of such a pair is still lacking.

GDP works well when ‖E‖ is accurately estimated but this may not be the case in 
real life applications. There exist some alternative parameter selection criteria that avoid 
knowledge of the noise level, referred to as heuristic rules, which have also been used in 
inverse scattering; these include the L-curve method [22,31] and a Fixed-point method 
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[2,27]. Recently, Fares et al. [17] developed a new heuristic algorithm, the SVD-tail, 
based on the combined presence of error in the operator and eigenvalue clusters corre-
sponding to a singular subspace associated with a few small singular values. SVD-tail is 
proven efficient since the point-wise solution of the far-field equation is never explicitly 
constructed; one of its disadvantages though is that the quality of the reconstruction 
depends on the chosen dimension of the singular subspace.

More recently, Bazán et al. [7] introduced the so-called maximum product criterion 
(MPC) which defines as regularization parameter a solution to the problem

λ̄ = argmax
λ>0

{Ψ(λ) }, Ψ(λ) = x(λ)y(λ), (25)

where

y(λ) = ‖gλ,z‖2, x(λ) = ‖rz − F̃ gλ,z‖2
2. (26)

Existence of a maximum is always guaranteed when the far-field matrix is nonsingular 
as in such a case Ψ(λ) ≥ 0 and Ψ(0) = 0 = limλ→∞ Ψ(λ). The main virtue of MPC 
(illustrated on 2D reconstruction problems in [7]) is to deliver regularized solutions of 
large norm for z outside D and regularized solutions of small norm for z inside, a 
necessary condition for LSM to produce good reconstructions. From the practical point 
of view, under the assumption that Ψ has a unique maximizer, the authors in [7] show 
that such a maximizer can be determined by applying some root finder to the nonlinear 
equation

ϕ(λ) = x(λ) − λ2y(λ) = 0. (27)

However, MPC can fail when the function Ψ has several local maxima. Difficulties arise 
since, depending on factors such as the chosen root finder, the chosen initial guess, etc., 
the regularization parameter determined in this way may not guarantee the success of 
LSM. To overcome these difficulties, Bazán et al. [3] introduced an improved version of 
MPC (IMPC) based on a fast fixed-point algorithm. For medium size problems, all the 
above selection criteria can be readily implemented using the singular value decomposi-
tion (SVD) of F̃ .

Having reviewed current selection criteria for the Tikhonov regularization parameter 
in connection with inverse scattering, we will now concentrate on new algorithms for 
determining this parameter for the case when the far-field matrix is such that the use 
of SVD-based approaches is prohibitive, while the projection approach is well suited. 
As indicated in the Introduction, the main idea of our methods is to approximate the 
regularized solution gλ by using a sequence of regularized solutions g(k)

λ in appropriate 
Krylov subspaces of increasing dimension. By doing so, the regularization parameter 
for the projected problem will now involve only k variables, and can be determined 
efficiently at low computational cost using a direct method such as the SVD of a small 
matrix.
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5. Linear sampling method based projection approach equipped with GDP

As already commented, when using GDP errors δF are taken into account and the 
regularization parameter is chosen as the unique root of the equation G(λ) = 0. Existence 
and uniqueness of such solution follows as G is a monotonically increasing continuous 
function of λ since x(λ) and y(λ) are monotonic [7,3]. Thus, G will have a unique root 
as long as

lim
λ→0+

G(λ) = δ2
0 − δ2

F ‖gLS‖2
2 < 0, (28)

where gLS denotes the unregularized solution of (22) and δ0 denotes the norm of the 
incompatible component of rz that lies outside the range subspace of F̃ . Consequently, 
imposing the reasonable condition that δF � σ1(F ), the discrepancy equation G(λ) = 0
will have a unique solution as long as the noise δF satisfies

δ0
‖gLS‖2

< δF � σ1(F ). (29)

If the far-field matrix F̃ is nonsingular, as seen frequently when the noise is random, 
then δ0 = 0 and the left inequality is satisfied automatically. The right inequality holds 
true when the amount of noise δF is small. From here on we will assume that F̃ is always 
nonsingular and concentrate on a method for solving the discrepancy equation. Let the 
singular value decomposition (SVD) of F̃ be

F̃ = UΣV H (30)

where H denotes conjugate transpose, U = [u1, . . . , uN ], V = [v1, . . . , vN ] are orthonor-
mal matrices, and Σ = diag(σ1, . . . , σN ), with σ1 ≥ σ2 ≥ · · · ≥ σN . Based on the SVD 
of F̃ and (26), the discrepancy equation is shown to be

G(λ) =
N∑
i=1

(λ4 − δ2
Fσ

2
i )αi

(σ2
i + λ2)2 , (31)

where αi = |uH
i rz|2. As already commented, this function is convex for small λ and 

concave for large λ and thus global convergence of Newton’s method cannot be guaran-
teed [32]. The following result shows that the unique root of the discrepancy equation 
can be computed through a fixed-point algorithm.

Theorem 5.1. For λ > 0 let ϑ(λ) = ‖F̃ gλ − r̃z‖2

δF ‖gλ‖2
and ζ(λ) = λ√

ϑ(λ)
. Assume that (29)

holds true. Then the following properties hold:

a) The parameter chosen by GDP, λGDP, is the unique root of the nonlinear equation 
ϑ(λ) = 1.
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b) ζ is a monotonically increasing function having a unique nonzero fixed-point at λ =
λGDP such that ζ(λ) ≥ λ if 0 < λ ≤ λGDP, and ζ(λ) ≤ λ if λ ≥ λGDP.

c) For given λ0 > 0 consider the sequence {λj} defined by

λj+1 = ζ(λj), j ≥ 0. (32)

Then lim
j→∞

λj = λGDP irrespective of the initial guess chosen.

Proof. Recall from [3, Lemma 3.1] that both ϑ(λ) and ζ(λ) are increasing functions. 
Using this result together with the observation that ϑ(λ) = 1 is another way of writing 
(24) item a) follows.

For the proof of item b) we first notice that since λGDP is a solution of ϑ(λ) = 1, then

ζ(λGDP) = λGDP√
ϑ(λGDP)

= λGDP.

This shows that λGDP is a fixed-point of ζ. Conversely, if λ∗ is a fixed-point of ζ, which 
means ζ(λ∗) = λ∗, then it follows that ϑ(λ∗) = 1 and, due to item a), we obtain 
λ∗ = λGDP. This implies that ζ has a unique nonzero fixed-point at λ = λGDP.

We now proceed with the observation that ζ ′(λGDP) < 1, which we prove by contra-
diction. In fact, assume ζ ′(λGDP) ≥ 1. Then since ϑ(λGDP) = 1 by item a) and since

ζ ′(λ) = (ϑ(λ))−1/2 − λ

2ϑ
′(λ)(ϑ(λ))−3/2,

taking λ = λGDP we obtain

1 ≤ ζ ′(λGDP) = 1 − λGDP

2 ϑ′(λGDP),

or equivalently ϑ′(λGDP) ≤ 0, which is a contradiction as ϑ is increasing. Therefore we 
must have ζ ′(λGDP) < 1. Using this property, the monotonicity of ζ and the fact ζ has 
a unique nonzero fixed-point, we conclude that ζ(λ) ≥ λ if 0 < λ ≤ λGDP and ζ(λ) ≤ λ

if λ ≥ λGDP. This ends the proof of item b).
Finally, since ζ is also an increasing function it follows that {λk} will be either an 

increasing sequence if λ0 < λGDP or a decreasing sequence if λ0 > λGDP. This concludes 
the proof. �

Our fixed-point algorithm for determining the regularization parameter λGDP can be 
outlined as follows.
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GDP-FP algorithm:

Input data: F̃ , rz, ε, and δA.
1. Compute the SVD of F̃ .
2. Set j = 0 and take, e.g., λ0 = σ1.
3. Compute λj+1 = ζ(λj) with ζ being defined in Theorem 5.1.
4. If |λj+1 − λj | ≥ ε|λj |

do j ← j + 1 and go to 3.
else stop.

5. Compute gλ,z.

Full computation of the SVD of F̃ is quite expensive and thus unreliable for large-scale 
problems. For large-scale problems, we will see that projection methods are reliable 
options.

5.1. General projection approach for computing regularization parameter chosen by 
GDP

We shall now construct approximations to the regularized solutions gλGDP,z for the 
case where the dimension of the far-field matrix F̃ is such that the computation of its 
SVD is infeasible or unattractive. As in Hilbert space settings, we consider an increasing 
sequence of k-dimensional subspaces Xk of CN and generate a sequence of approxima-
tions λ̄(k) to λGDP by solving “the projected discrepancy equation”

G(k)(λ) = ‖F̃ g
(k)
λ,z − rz‖2

2 − (δF ‖g(k)
λ,z‖2)2 = 0, (33)

where for λ > 0 and k ≥ 1, g(k)
λ,z solves the regularized projected problem

g
(k)
λ,z = argmin

g∈Xk

{
‖F̃kg − rz‖2 + λ2‖g‖2

}
(34)

in which F̃k = F̃Pk, with Pk being the orthogonal projector onto the subspace Xk. 
Let {u(k)

j , σ(k)
j , v(k)

j }, j = 1, . . . , k, be a singular system for F̃k. Then the projected 
discrepancy equation reads

G(k)(λ) =
k∑

i=1

(λ4 − δ2
F [σ(k)

i ]2)α(k)
i

([σ(k)
i ]2 + λ2)2

+ [δ(k)
0 ]2 = 0, (35)

where δ(k)
0 is defined in the same way as δ0 is defined in (28) and α(k)

i = |u(k)
j

H
rz|2. It is 

clear that for k � N evaluation of G(k)(λ) will be significantly cheaper than evaluation 
of G(λ). Thus, if G(k)(λ) is close to G(λ) in some interval containing the root of G and 
k � N , good approximations to λGDP can be quickly obtained from (35). This justifies, 
to some extent, the use of the projection approach in solving large-scale problems. The 
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Fig. 1. Typical behavior of functions ϑ(λ) and ϑ(k)(λ) for data from an inverse scattering problem with noisy 
far-field matrix of order 512 × 512 such that δF = ‖F̃ − F‖2 = 2.5 × 10−3. The regularization parameter 
λGDP is marked with a small circle and obtained intersecting the curve z = ϑ(λ) with the line z = 1.

success of this undertaking depends on a proper selection of the subspace Xk and on the 
simplicity as the projected problem is solved. As for the first requirement, a careful look 
at the functions G(λ) and G(k)(λ) reveals that for these functions remain close to each 
other in a certain interval a ≤ λ ≤ σ1, the singular σj contained in that interval must be 
approximated well by the singular values σk

j . In other words, what matters here is that 
the selection of the subspace Xk should be made so that the operator F̃k can capture as 
many dominant singular values of F̃ as possible.

To illustrate the potential of the projection approach in connection with GDP, for 
k ≥ 1 consider the sequence of functions ϑ(k) : R+ → R, k = 1, . . . , N , defined by

ϑ(k)(λ) =
‖rz − F̃kg

(k)
λ,z‖2

δF ‖g(k)
λ,z‖2

≡ ρ(k)(λ)
δF η(k)(λ)

. (36)

Notice that determining roots of the projected discrepancy equation is equivalent to 
determining roots of the nonlinear equation ϑ(k)(λ) = 1 and that this equation may 
or may not have any root. However, we can deduce that a sufficient condition for the 
existence of roots of G(k)(λ) is

δ
(k)
0

‖g(k)
LS ‖2

< δF � σ1(F ). (37)

The promising potential of the projection approach is illustrated in Fig. 1 where for Xk

we have selected the Krylov subspace Kk(F̃H F̃ , F̃Hrz) generated by the Golub–Kahan 
bidiagonalization (GKB) algorithm [8,18]. Notice that in a wide range of λ values which 
include the parameter λGDP, the functions ϑ(k) remain remarkably close to ϑ even for 
small k. For this example, a subspace of dimension k = 18 suffices to determine good 
approximation to the root of the original problem. A way to understand this success is by 
inspecting the closeness between the far-field matrix F̃ and the projected one F̃k = FPk
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Fig. 2. Comparison of σk+1 and γk for integer k ranging from 1 to 50.

as done by the number γk = ‖F̃ − F̃k‖2, see eq. (21). Number γk associated to the GKB 
algorithm has been investigated by Bazán et al. in [6]. The main conclusions of these 
authors is that γk decreases with k, γk ≥ σk+1, with the inequality becoming an equality 
when Xk is the dominant k-dimensional subspace generated by the first k right singular 
vectors of F̃ . These properties are illustrated in Fig. 2. Notice that γk becomes small for 
moderate k; this explains both the closeness between ϑ(k) and ϑ for k = 18 and for a 
range of λ values containing the regularization parameter λGDP, as seen in Fig. 1, and 
the success of the GKB algorithm when solving discrete ill-posed problems [4,22].

Besides the remarkable closeness between F̃k and F̃ for moderate k, perhaps the 
most important consequence of using the GKB algorithm in inverse scattering is that 
the information captured in the Krylov subspace can be used to implement the Linear 
Sampling method based on the computation of the roots of the projected discrepancy 
function, with the observation that the subspace needs to be calculated no more than 
once. Before we describe this implementation we will show how to efficiently solve the 
projected problem.

Lemma 5.2. Let the columns of Vk form an orthonormal basis of the subspace Xk. Then 
the regularized solution g(k)

λ,z and the corresponding residual r(k)
λ = rz − F̃ y

(k)
λ satisfy

g
(k)
λ,z = Vky

(k)
λ , y

(k)
λ =

(
Vk

H F̃H F̃Vk + λ2Ik

)−1
Vk

H F̃Hrz, (38)

r
(k)
λ = rz − F̃kg

(k)
λ,z. (39)

Consequently, ‖g(k)
λ,z‖2 = ‖y(k)

λ ‖2.

Proof. The regularized solution of the projected problem (34) reads

g
(k)
λ,z =

[
(F̃Pk)H(F̃Pk) + λ2IN

]−1
(F̃Pk)Hrz. (40)
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Using the SVD it is straightforward to see that for each matrix A ∈ C
m×n it holds

(AHA + λIn)−1AH = AH(AAH + λIm)−1. (41)

The assertion of the lemma in (38) follows by using the above property twice in (40). 
The assertion in (39) follows automatically. �

A brief description of LSM based on a general projected approach might go as fol-
lows.

Linear Sampling Method based on GDP and a general projection approach (LSM-PGDP)
1. Select a grid point z ∈ R

3.
2. Determine a subspace Xj , j ≥ 1, such that condition (37) is fulfilled

and compute the root λ
(j)
GDP of G(j)(λ).

3. Do j ← j + 1, repeat step 2 and stop when λ
(j)
GDP stagnates.

4. After λ
(j)
GDP stagnates set k = j + p, p ≥ 0, and construct subspace Xk.

5. Apply LSM to the regularized “projected problem” (34) with Xk as subspace.

Remark. There are probably many ways to determine a subspace Xj required at step 2 
of LSM-PGDP such that (37) is fulfilled. In our approach such a subspace is determined 
by solving a sequence of least squares problems g(j)

LS = argming∈Xj
‖F̃kg − rz‖2 through 

Krylov projection methods such as LSQR, MINRES, GMRES, etc. [29,18]. Interesting 
enough, these methods provide both the current approximate solution g(j)

LS and the as-
sociated subspace Xj . Number p at step 4 is introduced to enhance the approximation 
properties of subspace Xk and can be chosen as p = 0. Enhancement is important since, 
as Xj is a Krylov subspace that depends on rz for the chosen grid point z, the solu-
tion of the projected problem associated to other grid point may not be satisfactory if 
the dimension j is not increased in order to improve the information contained in the 
subspace. We will return to this point after our projection based approach for LSM is 
further discussed later on.

The main result of the section asserts that the regularization parameter λGDP can 
be approximated monotonically by a sequence of roots of ϑ(k)(λ) or equivalently by a 
sequence of fixed-points of a related function. This can be seen as follows. For fixed z
let ζ(k) : R+ → R, k = 1, . . . , N , be defined by

ζ(k)(λ) = λ√
ϑ(k)(λ)

. (42)

The following theorem describes how the sequence ζ(k) relates to the function ζ of the 
original and large-scale problem and shows that ζ(k) always has a unique nonzero fixed-
point that approximates λGDP from below.
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Theorem 5.3. Under the assumption that for λ > 0

‖g(k+1)
λ ‖ ≥ ‖g(k)

λ ‖, ‖r(k+1)
λ ‖ ≤ ‖r(k)

λ ‖, k = 1, . . . , N − 1, (43)

we have that

ϑ(k+1)(λ) ≤ ϑ(k)(λ), k = 1, . . . , N − 1, (44)

ζ(k+1)(λ) ≥ ζ(k)(λ), k = 1, . . . , N − 1. (45)

Additionally, provided that condition (37) holds for some integer k̂ ≥ 1, for fixed z and 
k ≥ k̂ we can generate a monotonic finite sequence of fixed points {λ̄(k)} of ζ(k) that 
converges to λGDP in at most N steps, where λ̄(k) is the unique solution of the nonlinear 
equation ϑ(k)(λ) = 1.

Proof. Inequalities (44)–(45) are immediate consequences of (43). To prove the asser-
tion concerning existence of fixed-point of ζ(k) we first notice that, since ρ(k) and η(k)

are monotonic [2, Section 1], it follows that ϑ(k)′(λ) > 0 and ζ(k)′(λ) > 0, see, e.g., 
[3, Lemma 3.1], and thus both ϑ(k) and ζ(k) are monotonically increasing functions. 
Next, since for k ≥ k̂ the nonlinear equation ϑ(k)(λ) = 1 has a root by assumption, this 
root is unique due to ϑ(k) being increasing. But due to the definition of ζ(k) it follows 
that λ̄(k) is a fixed-point of ζ(k) if and only if λ̄(k) is the unique root of ϑ(k)(λ) = 1. This 
concludes the first part of the proof.

Now for given k ≥ k̂ and arbitrarily chosen initial guess λ(k)
0 > 0, consider the sequence 

{λ(k)
j } defined by

λ
(k)
j+1 = ζ(k)(λ(k)

j ), j ≥ 0, (46)

and let λ̄(k) = limj→∞ λ
(k)
j . Due to (43) we have

ζ(k+1)(λ̄(k)) ≥ ζ(k)(λ̄(k)) = λ̄(k). (47)

If λ̄(k) is also a fixed-point of ζ(k+1) inequality (47) holds as an equality and there 
is nothing to prove. Assume then that ζ(k+1)(λ̄(k)) > λ̄(k) and consider the sequence 
λj+1 = ζ(k+1)(λj), j ≥ 0, with initial guess λ0 = λ(k). Based on the fact that ζ(k+1)

increases as λ increases, it follows that λj forms a nondecreasing sequence, and therefore 
{λj} converges to a fixed-point of ζ(k+1), i.e.,

lim
j→∞

λj = λ̄(k+1) = ζ(λ̄(k+1))

with λ̄(k+1) ≥ λ̄(k). Now since after N steps the subspace Xk becomes CN , it follows 
that ζ(N) equals ζ and so {λ̄(k)} must converge to λGDP from below in at most N steps, 
and the proof concludes. �
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Before we end the section, we emphasize again that for the success of the projection 
approach, the subspace Xk must capture information associated with the largest singular 
values, as occurs, e.g., with the subspace generated by the GKB algorithm at step k. 
Of course, as the GKB algorithm proceeds, more and more information associated with 
the largest singular values of F̃ is captured [8,22]. As a result, the sequence ζ(k)(λ) will 
quickly capture the information of ζ(λ) for a range of values of λ inside the part of the 
singular spectrum of F̃ that is captured by the GKB algorithm in k steps. This explains 
the excellent quality of approximation of function ϑ(λ) by the sequence ϑ(k)(λ) displayed 
in Fig. 1. Another property in favor of the GKB algorithm is that the regularized solution 
and the corresponding residual satisfy property (43) [4, Theorem 2.1]. Finally, we notice 
that subspaces Xk that do not guarantee fulfillment of condition (43) can also be used 
in the projection approach. The difference in this case is that the sequence λ̄(k) is not 
necessarily monotonic.

5.2. Implementation of LSM based projection approach equipped with GDP: use of 
GKB algorithm

Recall that application of k < n GKB steps to F̃ with initial vector rz/‖rz‖2 yields 
three matrices: a lower bidiagonal matrix Bk ∈ C

(k+1)×k and two matrices Uk+1 ∈
C

m×(k+1) and Vk ∈ C
n×k with orthonormal columns, such that

β1Uk+1e1 = r̃z = β1u1, (48)

F̃ Vk = Uk+1Bk, (49)

F̃HUk+1 = VkB
H
k + αk+1vk+1e

T
k+1, (50)

where ek denotes the k-th unit vector in Rk+1. The columns of Vk provide an orthonor-
mal basis for the generated Krylov subspace Kk(F̃H F̃ , F̃H r̃z}, an excellent choice for 
use when solving ill-posed problems [8,21]. GKB iterations constitute the basis of LSQR 
method [29,30]. LSQR is designed to construct approximate solutions g

(k)
z to the solu-

tion gLS of the least squares problem

gLS = argmin
g∈Cn

‖F̃ g − rz‖2
2 (51)

defined by g(k)
z = Vky

(k), where y(k) solves the projected least squares problem

min
y∈Ck

‖Bky − β1e1‖2. (52)

In practical computations g(k)
z is computed via a QR factorization of Bk which allows 

for an efficient updating of the LSQR iterates; the reader is referred to [29] for details. 
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LSQR is also well suited for solving the “damped least squares problem” (34) for fixed λ

[29]. In this case, the k-th approximate solution is taken to be

g
(k)
λ = Vky

(k)
λ , (53)

where y(k)
λ solves the regularized projected problem

y
(k)
λ = argmin

y∈Ck

{
‖Bky − β1e1‖2

2 + λ2‖y‖2
2
}
, (54)

which can be handled efficiently using the QR factorization of (BT
k ; λIk)H . On its turn, 

g
(k)
λ can be computed using (53) or through an updating formula which does not require 

any storage of Vk, see Paige and Saunders [29]. Note that due to (48) and (49), the 
residual vector r(k)

λ = rz − F̃ g
(k)
λ,z and the regularized solution g(k)

λ,z satisfy

‖r(k)
λ ‖ = ‖β1e1 −Bky

(k)
λ ‖, ‖g(k)

λ ‖ = ‖y(k)
λ ‖. (55)

In addition, if we let the singular value decomposition of Bk be

Bk = Pk

(
Σk

0

)
QH

k =
k∑

i=1
σ

(k)
i piq

T
i , (56)

where Pk ∈ C
(k+1)×(k+1) and Qk ∈ C

k×k are orthogonal, and Σk = diag(σ(k)
1 , . . . , σ(k)

k )
with σ(k)

1 ≥ σ
(k)
2 ≥ · · · ≥ σ

(k)
k > 0, then it is immediate to check that

‖y(k)
λ ‖2

2 = β2
1

k∑
i=1

[σ(k)
i ]2ξ2

1i

([σ(k)
i ]2 + λ2)2

, ‖r(k)
λ ‖2

2 = β2
1

k∑
i=1

λ4ξ2
1i

([σ(k)
i ]2 + λ2)2

+ δ
(k)
0

2
(57)

where ξ1i denotes the i-th component of the first row of matrix Pk, and δ(k)
0 is the 2-norm 

of the incompatible part of β1e1 that lies outside R(Bk). Moreover, analogously to the 
squared residual norm x(λ) and the squared solution norm y(λ), ‖r(k)

λ ‖2
2 increases with λ

and ‖y(k)
λ ‖2

2 decreases.
Thanks to Theorem 5.3 and the approximation properties of the Krylov subspace 

generated by the GKB algorithm, we can now construct approximations to λGDP using 
a nondecreasing finite sequence of fixed-points λ̄(k) of ζ(k). From the practical point 
of view, this gives rise to an algorithm for computing λGDP and the corresponding 
regularized solution, which we will refer to as PGDP-FP. The main steps of PGDP-FP 
can be summarized as follows:
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PGDP-FP:

1. Using the GKB algorithm, for a grid point z determine an integer j such that
condition (37) is satisfied

2. Set � = j, compute the fixed-point λ̄(	) of ζ(	) and set
λ0 = λ̄(	), λold = λ0, � ← � + 1.

3. Perform one more GKB step and compute the fixed-point
λ̄(	) of ζ(	) taking λ0 as starting value.
Set λold = λ0, λ0 = λ̄(	).

4. If stopping criterion is satisfied do
λGDP = λold

else do
� ← � + 1
Go to step 3.

end if
5. Compute the regularized solution g

(	)
λ̄

For practical purposes, we note that computing fixed-points for each � requires solving 
the projected problem (54) for several values of λ and for increasing values of �. This 
can be done following the ideas of the LSQR algorithm at a cost of approximately O(�)
arithmetic operations [30]. Moreover, since very often a fairly small number of steps is 
required for convergence, the overall cost of PGDP-FP is dominated by � matrix-vector 
products with F̃ and F̃H for some moderate number �.

Taking into account the monotonicity of λ̄(	), we choose to stop the outer iterations 
when the relative change of consecutive fixed-points,

∣∣∣ ¯λ(	+1) − λ̄(	)
∣∣∣ < ελ̄(	), (58)

is sufficiently small, where ε is a tolerance parameter.
Turning to the implementation of LSM for large-scale problems, assume that a grid 

point z ∈ D is chosen and that the regularization parameter λGDP is determined by 
PGDP-FP. When this is the case, an associated �-dimensional subspace X	 (k = � + p, 
p ≥ 0) is determined which concentrates relevant information of the far-field matrix. 
Then we can now design a specific method for inverse scattering problems following 
LSM-PGDP where the approximating subspace Xk is constructed by performing p extra 
GKB steps. For this it suffices to replace steps 1, 2, 3 and 4 of LSM-PGDP by PGDP-FP 
and then proceed with traditional LSM applied to the projected problem (54) with GDP 
as parameter choice method. However, a word of caution seems appropriate with regard 
to the practical implementation of the algorithm when we choose p equal to or near zero. 
The reason is that the information captured in Xk may not be sufficient to guarantee that 
(37) is satisfied in relation to other grid point z, in which case the projected discrepancy 
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equation (33) may not have any root. A way to overcome this difficulty is by considering 
a modification of the projected discrepancy equation of the form

Ĝ(k)(λ) = ‖F̃ g
(k)
λ,z − rz‖2

2 − μ(k)
z

2
2 − (δF ‖g(k)

λ,z‖2)2 = 0, (59)

where μ(k)
z is the incompatibility measure of the projected far-field equation F̃k g = rz

defined as

μ(k)
z = inf

g∈Xk

‖F̃kg − rz‖2. (60)

For further information about the incompatibility measure for linear operator equations, 
the reader is referred to A.G. Yagola [33, Chapter 2, page 29]. As for the incompatibility 
measure associated to the projected far-field equation, it is immediate to see that μ(k)

z

equals δ(k)
0 introduced in Eq. (35) and that Ĝ(k)(λ) = G(k)(λ) −δ

(k)
0

2
. Additionally, using 

the singular system of F̃k and (35) it is not difficult to see that Ĝ(k) always has a unique 
root λ̄(k) satisfying √

δFσ
(k)
k ≤ λ̄(k) ≤

√
δFσ

(k)
1 . (61)

Summarizing, in our implementation of LSM-PGDP based on the GKB algorithm, 
for chosen grid point z a subspace Xk is determined following steps 1–4 of PGDP-FP, 
and then the regularization parameter is computed for the other grid points using the 
modified discrepancy equation (59) taking advantage of the SVD of the (k + 1) × k

bidiagonal matrix Bk, with the observation that this decomposition needs to be computed 
no more than once.

6. Linear sampling method based projection approach equipped with IMPC

As the GDP can fail when the noise level δF is not accurately estimated, methods that 
do not rely on this estimate seem favorable. The purpose of this section is to introduce 
an LSM-based projection approach using IMPC as parameter choice rule. Recall that 
IMPC selects as regularization parameter the largest local maximizer λ̄ of the function 
Ψ(λ) = ‖rz − F̃ gλ‖2

2‖gλ‖2
2 and that this maximizer corresponds to a fixed-point of the 

function φ(λ) = ‖rz− F̃ gλ‖2/‖gλ‖2. The following result asserts that this maximizer can 
be efficiently computed through a fixed-point iteration process with appropriate iteration 
function.

Theorem 6.1. For fixed z and λ > 0 consider the function ξ : R+ �→ R
+ defined by

ξ(λ) = λ2
. (62)
φ(λ)
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Then ξ increases as λ increases and ξ(λ) ≤ σ1 for all λ > 0. Further, consider the 
sequence

λk+1 = ξ(λk), k ≥ 0. (63)

Then λk converges monotonically to the largest fixed point of ξ as long as the initial 
guess λ0 is chosen in the interval [

√
3

3 σ1, σ1].

Proof. See [5].
Algorithmically, IMPC can be described as follows [5].

Improved version of MPC algorithm (IMPC)

Input: σ1, tol
1. Set k = 0 and choose λ0 in the interval [

√
3

3 σ1, σ1]
2. Compute s0 = ξ(λ0)/λ0.
3. while (|sk − 1| > tol) do

λk+1 = ξ(λk), sk = λk+1/λk

k = k + 1
end while

4. if (φ′(λk) > 1) do
λ̄ = λk

elseif (φ′(λk) = 1) do
Set k = 0, λ0 = 0.9 ∗ λk, and go to step 2

end if

We now consider an implementation of IMPC for large-scale problems. To this end, 
for fixed grid point z let ξ(k) : R

+ �→ R
+, k = 1, . . . , N , be a sequence of functions 

defined by

ξ(k)(λ) = λ2

φ(k)(λ)
, φ(k)(λ) =

‖rz − F̃kg
(k)
λ,z‖2

g
(k)
λ,z

. (64)

As before, assume that the far-field matrix F̃ is nonsingular and that the subspaces Xk

are chosen so that condition (43) holds true. Under these assumptions it follows that 
Ψ(λ) has at least a maximum, which we denote by λ̄, and that

ξ(λ) = ξN (λ) ≥ ξN−1(λ) ≥ · · · ≥ ξ1(λ). (65)

Based on both this result and the assumption that ξ(k) has a fixed point λ̄(k) for some 
integer k ≥ 1, we can follow the line of analysis of the proof of Theorem 5.3 to prove 
that λ̄(k) converges to the largest maximizer λ̄ of Ψ as k → N .
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Fig. 3. Functions Ψ̂(k) (left) and ξ̂(k) (right) for some values of k. The data correspond to a far-field equation 
with far-field matrix F̃ of size 512 × 512 and relative noise level 1%.

6.1. Implementation of LSM based projection approach equipped with IMPC: use of 
GKB algorithm

Similarly to the sequence of approximations to λGDP, the quality of the approximation 
of λ̄(k) to λ̄ will depend on how many dominant singular values of F̃ are captured 
by F̃k; this motivates again the choice of the subspace generated by the GKB algorithm. 
Thus, the only issue that requires discussion is under what condition the function ξ(k)

has nonzero fixed-points. The difficulty here is that, as φ(k)(0) > 0 due to (57) and 
φ(k)(λ) > λ for λ > σ1(Bk) due to [2, Lemma 1], the question about existence of 
fixed-points of φ(k) (hence of ξ(k)) remains without definite answer. The key idea to 
circumvent this difficulty is to consider AR, like the case of the projected discrepancy 
equation, a modification of the iteration function ξ(k), involving the incompatibility 
measure μ(k)

z and defined by

ξ̂(k)(λ) = λ2

φ̂(k)(λ)
, φ̂(k)(λ) =

√
‖F̃ g

(k)
λ,z − rz‖2 − μ

(k)
z

2

‖gλ,z‖
. (66)

Since the squared incompatibility measure is subtracted from the squared residual 
norm, because of (57) we have that φ̂(k)(0) = 0. From this result together with the fact 
that φ̂(k)(λ) > λ for λ > σ1(Bk), which follows from [2, Lemma 1], we conclude that 
φ̂(k) always has a fixed point (which is also fixed-point of ξ̂(k)) that maximizes a related 
function Ψ̂(k) defined in obvious way and can be used to approximate the maximizer λ̄

of Ψ. Obviously, as the incompatibility measure vanishes for k = N , the sequence of 
fixed-points computed in this way has to converge to λ̄. For illustration purposes, a few 
functions Ψ̂(k) and corresponding iterations functions ξ̂(k) are displayed in Fig. 3.

Again, the remarkable closeness between Ψ̂(k)(λ) and Ψ(λ) for a large range of values 
of λ approaching the maximizer λ̄ displayed in this figure is because of the approximation 
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properties of the Krylov subspace generated by the GKB algorithm. A similar comment 
applies for the fixed-points of functions ξ̂(k) when compared to the one of ξ.

Having shown that the maximizer of Ψ can be approximated through a sequence of 
fixed-points of ξ̂(k), we can now describe our projection approach for determining the 
regularization parameter chosen by IMPC, which we will denote by PIMPC-FP.

PIMPC-FP:

1. For fixed grid point z apply q GKB steps to F̃ with starting vector
u1 = rz/‖rz‖.

2. Set � = q, compute the fixed-point λ̄(	) of ξ̂(	) and set
λ0 = λ̄(	), λold = λ0, � ← � + 1.

3. Perform one more GKB step and compute the fixed-point
λ̄(	) of ξ̂(	) taking λ0 as starting value.
Set λold = λ0, λ0 = λ̄(	).

4. If stopping criterion is satisfied do
λ̄ = λold

else do
� ← � + 1
Go to step 3.

end if
5. Compute the regularized solution g

(	)
λ̄

We now turn to an implementation of LSM for large-scale inverse scattering problems 
based on the GKB algorithm and IMPC as root finder. Assume that for z ∈ D the reg-
ularization parameter λ̄ chosen by IMPC is determined through PIMPC-FP. Then an 
associated �-dimensional subspace Xl is determined which concentrates relevant informa-
tion of the far-field matrix. Our new method for large-scale inverse scattering problems 
follows LSM-PGDP where the approximating subspace Xk, k = � + p, p ≥ 0, is con-
structed by performing p additional GKB steps. To this end, it suffices to replace steps 1, 
2, 3 and 4 of LSM-PGDP by PIMPC-FP and then proceed with traditional LSM applied 
to the projected problem (54) with IMPC as parameter choice method.

7. Kirsch’s method based projection approach

The discussions and approaches described before can now be used as a starting point 
for an implementation of Kirsch’s method for the reconstruction of 3D object that exhibit 
large-scale far-field matrices. We first note that in the finite dimensional framework the 
regularized solution for Kirsch’s method is

gλ,z = argmin
n

{‖Ã1/4g − rz‖2
2 + λ2‖g‖2

2} (67)

g∈C
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where Ã = (F̃H
q F̃q). The choice of λ has been done via Morozov’s generalized discrepancy 

principle (GDP) [1,3,24] and more recently via MPC [7]. For the projection approach we 
require the solution to the projected regularized problem given by

g
(k)
λ,z = argmin

g∈Xk

{
‖Ãkg − rz‖2 + λ2‖g‖2

}
(68)

in which Ãk = Ã1/4Pk, with Pk being the orthogonal projector onto appropriate sub-
space Xk. Thus, all we need is to solve efficiently this projected problem and then proceed 
as in the traditional LSM based projection approach described in previous sections. For 
instance, if the regularization parameter is chosen by GDP, then the discrepancy equation 
reads

Ğ(λ) .= {‖Ã1/4 gλ,z − rz‖2
2 − (δA‖gλ,z‖2)2} (69)

where δA is a noise estimate such that ‖(FHF )1/4 − (F̃H F̃ )1/4‖2 ≤ δA, and we have to 
consider the corresponding “projected discrepancy equation”

Ğ(k)(λ) = ‖Ã1/4g
(k)
λ,z − rz‖2

2 − (δA‖g(k)
λ,z‖2)2 = 0, (70)

where g(k)
λ,z solves the regularized projected problem (68). A similar procedure should be 

followed if the regularization parameter is chosen by IMPC.
However, despite the simplicity of the above description, we emphasize that solving the 

regularized projected problem (68) is not as simple as one could wish. The major problem 
here is that to determine g(k)

λ,z, the product of a matrix function and a vector, f(A)b, 
needs to be computed, for Hermitian A and f(t) = t1/4, t ∈ R

+. Such a computation is 
not always straightforward for large A. A survey of methods for approximating matrix 
functions can be found in Higham’s book [23, Chapter 13]. Our approach follows the 
well-known Lanczos approximation to f(Ã)b based on the decomposition

ÃVk = VkT̃k + βkvk+1e
T
k , (71)

where the columns of Vk = [v1, v2, . . . , vk] form an orthonormal basis of the Krylov 
subspace K = span{b, Ãb, . . . , Ãk−1b} with v1 = b/‖b‖2,

T̃k =

⎡⎢⎢⎢⎢⎢⎢⎣
α1 β1
β1 α2 β2

. . . . . . . . .
bk−2 αk−1 βk−1

β α

⎤⎥⎥⎥⎥⎥⎥⎦ (72)
k−1 k
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and ek ∈ R
k denotes the k-th unit canonical vector. Then the Lanczos approximation to 

f(Ã)b reads

f(Ã)b ≈ Vkf(T̃k)V H
k b. (73)

Since Tk is Hermitian and k is expected to be small, f(Tk) can be computed efficiently 
using an eigendecomposition of T̃k. In addition, multiplying both sides of (71) with V H

k

we obtain V H
k ÃVk = T̃k. Thus, to solve the regularized projection problem we use the 

approximation

V H
k f(Ã)Vk ≈ f(T̃k). (74)

Approximations (73)–(74) imply that we can obtain approximations to the regularized 
solution for the projected problem (68) defined by

g
(k)
λ,z = Vky

(k)
λ , y

(k)
λ =

(
T̃ 1/2 + λ2Ik

)−1
T̃ 1/4V H

k rz. (75)

We now make the crucial observation that, since the solution to the projected problems 
involves the projection matrix T̃k which is not singular, the incompatibility measure of 
the projected problem vanishes. Consequently, the projected discrepancy equation will 
always have a unique root (under mild conditions). Similarly, the iteration function ζ(k)

on which IMPC is based will always have a fixed point that can be used to approximate 
the sought regularization parameter. Based on this, the choice of the subspace Xk can 
be made following the same steps as PIMPC-FP, with the obvious replacement of GKB 
algorithm by the Lanczos algorithm.

8. Numerical examples

We shall now illustrate the effectiveness of the projection based approaches by pre-
senting numerical results on reconstructions of five surfaces taken from [1, Section 4]. 
Our examples include an acorn-shaped surface, a cushion-shaped surface, an ellipsoid, a 
peanut-shaped surface, and a unit sphere. To simulate relatively large perturbed data, 
all examples use 1026 × 1026 noisy far-field matrices

F̃ = F + ε‖F‖N ,

where F is a synthetic “noise-free” far-field matrix, N is a noise complex matrix nor-
malized such that ‖N‖2 = 1 with real and imaginary parts being Gaussian, and ε is an 
error parameter. For the numerical procedure used to generate synthetic far-field data, 
the reader is referred to [1, Section 4]. In the appendix we provide a way to estimate the 
noise level, say δ and δk, based on raw data for the linear sampling method (11) and 
the factorization method (15) respectively. For the reconstruction we consider a uniform 
grid in a cube [−t, t] × [−t, t] × [−t, t], t > 0, containing the object, with N points in 
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each direction, and denote by Z the set of all these grid points. In our numerical recon-
structions we use t = 1.5, N = 55, wavenumbers ke = 2, ki = 1, and error parameters 
ε = 0.01 (relative noise level 1%) and ε = 0.1 (relative noise level 10%). As discussed 
before ‖gλ,z‖ becomes arbitrarily large when z approaches the boundary from inside and 
remains large when z is outside. Based on the behavior of ‖gλ,z‖, the identification of 
the object can be made by using the indicator function

z �→ Wλ(z) = 1/‖gλ,z‖2 (76)

where λ is a chosen regularization parameter. Alternatively, as ‖gλ,z‖ decreases with λ, 
the identification of the object can also be made by using the indicator function

z �→ λ(z) (77)

which is expected to behave qualitatively like Wλ(z). Indeed, if the regularization pa-
rameter is chosen by a regularization method such as GDP, due to the convergence 
properties of GDP and the monotonic behavior of ‖gλ,z‖, large values of Wλ(z) corre-
spond to large values of λ(z) and vice versa. Hence, both Wλ(z) and λ(z) should behave 
qualitatively like W (z) = 1/‖gz‖2 where gz is the unique solution of (FHF )1/4g = rz. 
The reconstruction is then visualized by plotting the isosurface

S = {z ∈ Z | Wλ(z) = τ (resp. λ(z) = τ)},

for an isovalue parameter τ such that the level set S is a suitable visual representation 
of the unknown object. The isovalue parameter must satisfy minz∈Z [Wλ(z)] < τ <

maxz∈Z [Wλ(z)] (resp. minz∈Z [λ(z)] < τ < maxz∈Z [λ(z)]), and can be selected by trial 
and error or based on heuristics, always looking for a representative of the higher values 
of Wλ(z) (resp. λ(z)).

As for the choice of the isovalue parameter in practice, a value that has been found 
to yield good reconstructions is one near the mean value of the indicator function due to 
Fares et al. [17], referred to as the global mean and standard deviation (GMSD) heuristic 
and defined as

τ = meanz∈Z [I(z)] + 2stdz∈Z [I(z)], (78)

where I(z) stands for any of the indicator functions (76) or (77).
To illustrate the role of the isovalue parameter τ in the reconstructions, we consider 

the problem of reconstructing the acorn-shaped surface from data with relative noise 
level 1% by using Kirsch’s method equipped with GDP. For this we compute the indicator 
function Wλ(z) associated with the large and projected problem, respectively, as well as 
the indicator function W (z) corresponding to the noise-free case.

Fig. 4 shows unidimensional views of W (z), Wλ(z), the corresponding isovalue pa-
rameters displayed as horizontal lines, and the reconstructions. Unidimensional ver-
sions of the indicator function are obtained by stacking the columns of the matrix 
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Fig. 4. Top: unidimensional version of W (z) and Wλ(z) for Kirsch’s method equipped with GDP. Bottom: 
reconstructed objects from far-field matrix with relative noise level 1%.

I(z = (x1, x2, x3)) for fixed x3 but varying on the mesh. As we can observe, not only the 
indicator functions behave similarly but also the reconstructions look very good. For the 
reconstructions, the isovalue parameters were selected so that the reconstructed objects 
have approximately the same aspect ratio, taking as starting values those parameters 
defined in (78). For the projected approach we selected k = 30. The same trend is ob-
served when the subspace is determined automatically as described at the end of the 
previous section.

Fig. 5 shows unidimensional views of W (z), λ(z), the corresponding isovalue pa-
rameters displayed as horizontal lines, and the reconstructions. Again, we use Kirsch’s 
method equipped with GDP and select a Krylov subspace of dimension k = 30. 
As before, we observe that the indicator functions look very similar. We also ob-
serve that the reconstructions suffer some deformation but the shape of the objects 
is apparent.

We now illustrate the role of the isovalue parameter τ in the reconstructions using 
Kirsch’s method and traditional LSM, all equipped with IMPC, the projection approach 
being implemented with a Krylov subspace of dimension k = 30. Fig. 6 shows the 
indicator function λ(z) for three cases: the first case considers Kirsch’s method applied 
to the large problem, the second case considers the Kirsch based projection approach, 
and the third case considers the LSM based projection approach. As we can observe, 
the reconstructions obtained with Kirsch’s method look very similar and of good quality 
whereas the quality of the reconstruction obtained with traditional LSM is degraded. 
This is partially justified by the fact that the indicator function for LSM looks somewhat 
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Fig. 5. Top: unidimensional version of W (z) and λ(z) for Kirsch’s method equipped with GDP. Bottom: 
reconstructed objects from far-field matrix with relative noise level 1%.

different compared to the indicator functions for Kirsch’s method. Notice also that the 
range of λ(z) for traditional LSM differs significantly from the range of λ(z) for Kirsch’s 
method. The reason is that for LSM we have σmin(F̃ ) < λ(z) < σmax(F̃ ), while for 
Kirsch’s method σ1/2

min(F̃ ) < λ(z) < σ
1/2
max(F̃ ).

We shall now illustrate the effectiveness of the projection approach when applied to 
the other surfaces, concentrating on Kirsch’s method only as it performed better than 
traditional LSM. For the reader’s sake we find instructive to report the convergence 
speed of the projection approach compared to conventional implementations of GDP 
or IMPC. To this end we consider Kirsch’s method equipped with GDP and IMPC re-
spectively, using far-field data with noise level 1% and Krylov subspaces of dimension 
k = 30. Table 1 displays the time spent by three versions for GDP and two versions for 
IMPC. In this table, (LP) and (PP) refer to large and projected problem, respectively. 
Thus GDP-FP (LP) indicates application of GDP-FP to large problems, GDP-FP (PP) 
indicates application of GDP-FP to projected problems, and so on. In addition, GDP-D 
refers to an implementation of GDP based on Dekker’s algorithm as root finder (available 
as fzero.m in Matlab). The results show that the projection approach gets faster than 
the non-projected one by a factor ranging between 25 to 30. They also confirm previous 
evidence that the fixed point approach outperforms other root finders such as regula 
falsi method when applied to the discrepancy equation, as reported in [5]. For complete-
ness, we also observe that when the subspace dimension is determined automatically, 
for GDP-FP (PP) the dimension ranges from 22 to 24, whereas for IMPC-FP (PP) the 
dimension ranges from 30 to 32.
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Fig. 6. Top: unidimensional view of λ(z) for Kirsch’s method and traditional LSM equipped with IMPC. 
Bottom: reconstructions from far-field data with relative noise level 1%. Figures on first and second columns 
correspond to Kirsch’s method. Figures on third column correspond to traditional LSM.

Table 1
CPU time in seconds for several versions of Kirsch’s method.

Acorn Cushion Ellipsoid Peanut Sphere
GDP-D (LP) 934.51 955.17 789.41 804.74 792.85
GDP-FP (LP) 524.95 540.85 521.35 512.96 522.58
IMPC-FP (LP) 549.68 536.89 557.77 528.37 532.84
GDP-FP (PP) 30.17 30.28 29.77 32.61 30.45
IMPC-FP (PP) 36.98 36.01 38.32 37.89 37.80

We now proceed by describing other reconstructions obtained with Kirsch’s method 
based projection approach equipped with GDP and IMPC. As before, we consider 
far-field data with noise level 1% and choose k = 30 as dimension of the Krylov sub-
space. The isovalue parameters are chosen by adjusting those obtained by GMSD so 
that the reconstruction ratio becomes approximately the same. Results are displayed in 
Fig. 7.

As it appears evident, except for the peanut-shaped surface, the reconstructions look 
quite good and of similar quality as those obtained for the acorn-shaped surface. Re-
constructions obtained with automatic identification of the Krylov subspace did not 
alter significantly the quality of the reconstructions and are therefore not reported 
here.

Reconstructions of the five surfaces from far-field data with noise level 10% are dis-
played in Fig. 8. We notice that the reconstruction quality deteriorates slightly but the 
pattern of the objects remains informative.
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Fig. 7. True and reconstructed objects by using Kirsch’s based projection approach from far-field matrix of 
size 1026 × 1026 with relative noise level 1%.

Finally, in order to illustrate our projections methods in a highly contaminated envi-
ronment, in Fig. 9 we report reconstructions of the acorn-shaped surface from far-field 
data with noise level 20%. Again, we use Kirsch’s method equipped with both GDP and 
IMPC and project onto a Krylov subspace of dimension k = 30. In this case, despite the 
significant deterioration of the reconstructions, we note that both GDP and IMPC are 
still able to identify the presence of the object.

9. Conclusions

We have developed sampling based projection methods for the reconstruction of 3D 
acoustically penetrable objects that exhibit large-scale far-field matrices. Two classes of 
methods are considered: methods that exploit knowledge of noise level estimates and 
methods that do not exploit such information. Regardless of whether the noise level is 
available or not, the methods rely on the fact that the indicator function used in the 
reconstructions can be computed efficiently based on Tikhonov regularized solutions in-
volving a small number of variables, thereby reducing significantly the huge amount of 
calculations required by traditional implementations of linear sampling methods for large 
problems. Numerical results show that the methods are capable of providing satisfac-
tory visualization of the scatterers at an extremely modest cost. Future work includes
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Fig. 8. True and reconstructed objects by using Kirsch’s based projection approach from far-field matrix of 
size 1026 × 1026 with relative noise level 10%.

Fig. 9. True and reconstructed objects by using Kirsch’s based projection approach from far-field matrix of 
size 1026 × 1026 with relative noise level 20%.

exhaustive testing of the methods with larger problems to assess their effective poten-
tial.
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Appendix A

Let the exact and perturbed far-field matrices be denoted by F and F̃ , respectively. 
The goal is to derive an estimate for ‖(F̃HF̃ )1/4 − (FHF )1/4‖2 based on raw data F̃ =
F + E. Consider the following definitions:

a) D̃ = F̃H F̃ − F̃ F̃H , D = FHF − FFH ,
b) Δ̃ = ‖D̃‖2, Δ = ‖D‖2,
c) μ = ‖F̃‖2 = ‖F̃H‖2, δ = ‖F̃ − F‖2.
We start by estimating the error norm δ = ‖F̃ − F‖2 as follows. Using definitions of 

D̃ and D we have

D̃ = F̃H F̃ − F̃ F̃H − D + D

= F̃H F̃ − F̃ F̃H − FHF + FFH + D

= (F̃H F̃−F̃HF ) − F̃ F̃H + (F̃HF − FHF ) + FFH + D

= F̃H(F̃ − F ) + (F̃H − FH)F + FFH − F̃ F̃H + D. (79)

Adding

(F̃H − FH)F̃ + F̃FH + (F − F̃ )F̃H

on the right hand side of (79) and then subtracting the same quantity, after rearranging 
terms we have

D̃ = F̃H(F̃ − F ) + (F̃H − FH)(F − F̃ ) + (F − F̃ )(F̃H − FH) + (F̃H − FH)F̃ +

(F − F̃ )F̃H + F̃ (FH − F̃H) + D

By taking 2-norms we have

Δ̃ ≤ μδ + 2δ2 + δμ + δμ + δμ + Δ = 2δ2 + 4μδ + Δ

or

δ2 + 2μδ − Δ̃ − Δ
2 ≥ 0.

Solving the inequality for δ we get

δ ≥

√
μ2 + Δ̃ − Δ − μ. (80)
2
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Assuming that F is near normal, which means Δ ≈ 0, our first estimate for δ based on 
raw data is taken as

δ1 =

√
μ2 + Δ̃

2 − μ. (81)

Since δ1 is close to the lower bound of (80) and since for GDP to work we require an 
upper bound on δ, a second estimate can be taken as

δ2 =

√
Δ̃
2 . (82)

Obviously δ2 ≈ δ1 only when F̃ is near normal, i.e, when Δ̃ is small, otherwise δ2 � δ1. 
Better results are obtained with the choice δ = (δ1 + δ2)/2.

We now derive an estimate for ‖(F̃H F̃ )1/4 − (FHF )1/4‖2. Let the SVDs of F̃ and F
be

F̃ = Ũ Σ̃Ṽ H . F = UΣV H ,

Setting B̃ = F̃H F̃ , B = FHF , using the above SVDs we have

B̃1/4 −B1/4 = Ṽ Σ̃1/2Ṽ H − V Σ1/2V H = C̃HC̃ − CHC,

where C̃ = Σ̃1/4Ṽ H is a non-normal matrix which can be computed from far-field data, 
and C = Σ1/4V H . Hence

B̃1/4 −B1/4 = C̃HC̃ − CHC = C̃H(C̃ − C) + (C̃H − CH)C. (83)

Taking norms we have

‖B̃1/4 −B1/4‖2 ≤ (‖C̃‖2 + ‖C‖2)H‖C̃ − C‖2 (84)

and the error norm ‖C̃ − C‖2 can be estimated as in the previous case based on the 
departure from normality of C̃ and the corresponding matrix norm ‖C̃‖2. More precisely, 
from (81) and (82) we can obtain estimates δ̂1 and δ̂2 for ‖C̃ − C‖2 as follows

δ̂1 =

√
‖C̃‖2

2 + ‖C̃HC̃ − C̃C̃H‖2

2 − ‖C̃‖2 (85)

and

δ̂2 =

√
‖C̃HC̃ − CC̃H‖2

. (86)
2
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Since ‖C̃‖2 = σ̃
1/4
1 , assuming that σ1 ≤ σ̃1, the error norm required by Kirsch’s method, 

δK
.= ‖B̃1/4 −B1/4‖2, can be estimated from (84) as

δK = 2σ̃1/4
1 δC , (87)

where δC is either δ̂1 or δ̂2. Better results are obtained with the choice δC = δ̂1.
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