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1 Introduction

Linear discrete ill-posed problems of the form

argmin
f ∈Rn

‖g − A f ‖22, (1.1)

where A ∈ R
m×n , m ≥ n = rank(A), is severely ill-conditioned and the available data

g ∈ R
m are contaminated with noise, i.e., g = gexact + e, arises naturally in a range of

applications in science and engineering. It is well known that the naive least squares solution
fLS = A†g (in which A† denotes the Moore–Penrose pseudoinverse of A) has no relation with
the desired noise-free solution fexact. To calculate solutions that resemble fexact and are less
sensitive to inaccuracies in g, some kind of regularization must be imposed to (1.1). Perhaps,
one of the most well-known methods is due to Tikhonov (1963), in which a penalization term
is added to (1.1) with a positive scalar controlling how much regularization is applied, see,
e.g., (Engl et al. 1996; Hanke and Hansen 1993; Hansen 1998), and the references therein.
Another way to construct regularized solutions is through iterative methods for which the
iteration index k plays the role of the regularization parameter. The reason is that for many
iterative methods, in the early stages of the algorithm, the iterates seem to converge to
fexact, then the iterates become worse and finally converge to the solution of (1.1) that is
useless; this phenomenon is called semi-convergence. Thus, stopping the iteration after a
well-chosen number of steps has a regularizing effect. Such methods are attractive for the
following reasons:

• Matrix A is only accessed to perform matrix–vector products and no decomposition is
required: if A is sparse, any matrix decomposition will, probably, destroy this sparsity or
any special structure Björck (1996).
• Usually the performed operations are matrix–vector products, saxpy ( f ← α f +g), vec-

tor norms and solutions of triangular systems. These operations are easily parallelizable.
• If matrix A can only be accessed by means of a black-box, i.e., A is not known, iterative

methods are the only alternative.
• Iterative methods must be interrupted, specially while dealing with large-scale linear

discrete ill-posed problems. The iterated solutions as well as the respective residuals can
be monitored and used to design stopping criteria.

Iterative methods include Landweber iterations Landweber (1951), Cimmino iterations
Cimmino (1983), algebraic reconstruction technique Dold and Eckmann (1986), and Krylov
projection methods including CGLS, MINRES, etc (Bunse-Gerstner et al. 2006; Hanke 1995;
Hestenes and Stiefel 1952; Neuman et al. 2012; Paige and Saunders 1975, 1982; Saad and
Schultz 1986). While most researchers exploit a priori knowledge of the norm of the noise
in the data and stop the iterative process using the discrepancy principle (DP) of (Morozov
1984), developing stopping rules for iterative methods that do not exploit this information
is still a topic of active research (Bazán et al. 2013; Castellanos et al. 2002; Hansen et al.
2007; Kilmer and O’Leary 2001; Reichel and Rodriguez 2012). A drawback associated with
rules that do not exploit information about the noise, referred to as heuristic, is that they can
fail, at least for some problems (Bakushinski 1984). Nevertheless, they are important on its
own right and proven to be successful in a number of areas. For a discussion and analyses of
heuristic rules, the reader is referred to (Engl et al. 1996; Kindermann 2011).

In this paper, we analyze the underlying properties of a stopping rule for LSQR proposed
recently by Bazán et al. (2013), and show how to extend it to Krylov subspace projection
methods such as GMRES, MINRES, etc., for which regularization is achieved by projecting
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the original problem onto a Krylov subspace and where the dimension of this subspace
plays the role of the regularization parameter. In addition, because some classical iterative
methods (e.g., GMRES) are not always able to calculate useful solutions to some problems,
as an attempt to overcome this drawback, we also consider how to apply the rule to certain
preconditioned versions of the methods. In the present work, by preconditioning we mean
the incorporation of smoothing properties of fexact into the computed iterates, as suggested
by Calvetti et al. (2005) and Hansen and Jensen (2006). Our focus is on a stopping rule that
works in connection with large-scale problems with and without preconditioning and without
a priori knowledge about the norm of the noise.

The rest of the paper is organized as follows. In Sect. 2, some classical projection methods
are reviewed. In Sect. 3, the k-th iterated solution generated by the projection method is
compared with the TSVD solution, and error bounds that provide insight into the choice of
the regularization parameter are derived. The bounds reveal that the closeness of the k-th
iterate and the TSVD solution depends on the subspace angle between the Krylov subspace
and the corresponding right singular subspace of A, with the angle depending on the distance
‖A−APk‖2 as a function of k, where Pk is the orthogonal projector onto the Krylov subspace.
Section 4 describes the extension of the automatic stopping rule for LSQR proposed in Bazán
et al. (2013) to the general Krylov projection method. How to include a priori information
about the desired solution into the iterative process can be found in Sect. 5. Section 6 contains
some numerical experiments. The paper ends with concluding remarks in Sect. 7.

We close this section by introducing some notation that will be used throughout the paper.
As usual, the SVD of A is given by

A = U
(

�

0

)

VT , (1.2)

where U = [u1, . . . , um] ∈ R
m×m and V = [v1, . . . , vn] ∈ R

n×n are orthogonal matrices
and � ∈ R

n×n is a diagonal matrix, � = diag(σ1, . . . , σn), with the singular values σi

ordered as usual, i.e., σ1 ≥ · · · ≥ σn > 0. The naive least squares solution is thus given by

fLS =
n
∑

i=1

uT g
i

σi
vi . (1.3)

Furthermore, for future use let us define

Uk = [u1, . . . , uk], Vk = [v1, . . . , vk], Sk = span{v1, . . . , vk}. (1.4)

2 Review of some projection methods

In this paper, we are interested in projection methods that construct approximations fk to the
solution of (1.1) by solving the constrained problem

fk = argmin
f ∈Vk

‖g − A f ‖22, k ≥ 1, (2.1)

where {Vk}k≥1 is a family of nested k-dimensional subspaces. If we are given a matrix
Vk = [v1 · · · vk] with orthonormal columns such that span {v1, . . . , vk} = Vk , then (2.1) can
be reformulated by taking f = Vkd for some d ∈ R

k , and the approximate solution is

fk = Vkdk, dk = argmin
d∈Rk

‖g − (AVk)d‖22. (2.2)
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Fig. 1 Exact solution (dashed) and TSVD solutions (solid) for k = 4, 9, 18 for phillips test problem with
n = 512 and NL = ‖e‖2/‖gexact‖2 = 0.01

This least squares problem is often referred to as the projected problem because it is obtained
by projecting the original problem onto the k-dimensional subspace Vk . The purpose of this
section is to briefly describe some of the classical projection methods currently used for
solving discrete ill-posed problems.

2.1 Truncated SVD

When dealing with small to moderate size problems, the SVD is the preferred “tool” for
analysis and solution of discrete ill-posed problems, see, e.g., Hansen (1998). If the summa-
tion (1.3) is interrupted at k ≤ n, we obtain the method known as Truncated SVD (TSVD),
see, e.g., Hansen (1998). Hence, the k-th TSVD solution is defined by

fk =
k
∑

j=1

uT g
j

σ j
v j , k ≤ n. (2.3)

Alternatively, fk is the solution to the following constrained least squares problem

fk = argmin
f ∈Sk

‖g − A f ‖22 = A†
k g, Ak =

k
∑

j=1

σ j u j vT
j . (2.4)

The point here is that if k is poorly chosen, the solution fk either captures not enough infor-
mation about the problem or the noise in the data dominates the approximate solution. This is
illustrated in Fig. 1 where are depicted some TSVD solutions for phillips test problem from
Hansen (1994), with n = 512 and NL = ‖e‖2/‖gexact‖2 = 0.01. Throughout the paper, NL
stands for Noise Level. For this problem, the first 4 SVD components are not able to capture
enough information about the problem, whereas for k > 9, the noise begins to dominate.
However, it is apparent that for k = 9 the subspace Sk is appropriate. Therefore, the challenge
in connection with TSVD for the case when no estimate of the error norm ‖e‖2 is available,
is how to select a proper truncation parameter.

2.2 CGLS/LSQR method

If the SVD is not available, as it is more likely to occur when treating large-scale problems,
iterative methods that only use matrix–vector products are preferable. One of the classical
iterative methods to treat symmetric positive definite linear systems is the CG method. The
normal equations associated to (1.1) are indeed a symmetric linear system which can be
solved by CG, as proposed by Hestenes and Stiefel (1952). This gave rise to what is known
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as CGLS method. An interesting property is that the CGLS iterates satisfy the constrained
least squares problem Björck (1996)

fk = argmin
f ∈Kk (AT A,AT g)

‖g − A f ‖22, (2.5)

where Kk(AT A, AT g) is the Krylov subspace associated to the pair (AT A, AT g). It is well
known that in some problems, the first CGLS iterates look like regularized solutions but
after a certain number of steps, these solutions approximate the naive least squares solution
which is completely dominated by noise. It is out of the scope of this paper to deal with such
properties. For more information about the regularizing effects of the CGLS iterations, the
reader is referred to Hansen (1998) and references therein.

The LSQR algorithm, due to Paige and Saunders (1982), also constructs a sequence of
iterated solutions that satisfies (2.5), but it is obtained in a completely distinct way. LSQR
is based on the Golub–Kahan bidiagonalization (GKB) procedure, which, after k steps con-
structs matrices Uk+1 = [u1, . . . , uk+1] ∈ R

m×(k+1) and Vk = [v1, . . . , vk] ∈ R
n×k with

orthonormal columns, and a lower bidiagonal matrix Bk ∈ R
(k+1)×k ,

Bk =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

α1

β2 α2

β3
. . .

. . . αk

βk+1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (2.6)

such that

β1Uk+1e1 = g = β1u1, (2.7)

AVk = Uk+1 Bk, (2.8)

AT Uk+1 = Vk BT
k + αk+1vk+1eT

k+1, (2.9)

where ek denotes the kth unit vector of appropriate dimension. Using Eqs. (2.7)–(2.9), it is
possible to show that fk satisfies

fk = Vkdk, dk = argmin
d∈Rk

‖β1e1 − Bkd‖22. (2.10)

Paige and Saunders also explain how to efficiently update fk from fk−1 and, hence,
avoiding the need of saving all vectors v j , see Paige and Saunders (1982) for details.

2.3 Minimal residual methods

For square A, two classical minimal residual methods are MINRES (1975) by Paige and
Saunders, and GMRES (1986) by Saad and Schultz. The former requires that A = AT and
seeks for a solution fk that satisfies

fk = argmin
f ∈Kk (A,g)

‖g − A f ‖22. (2.11)

The latter works with any A and seeks for a solution fk such that

fk = argmin
f ∈Kk (A,g−A f0)

‖g − A f ‖22, (2.12)
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where f0 is an approximation of the desired solution. Note that, if f0 = 0 both methods share
the same search space. Algorithmically, MINRES is based on the Lanczos Tridiagonalization
(LT) process and GMRES is based on the Arnoldi process. If both are initialized with vector
g, after k steps, for the LT process we obtain matrices Vk with orthonormal columns and
Tk ∈ R

k×k being tridiagonal, while for the Arnoldi process, we obtain matrices Qk ∈ R
n×k

with orthonormal columns, and Hk ∈ R
k×k being upper Hessenberg matrix:

Tk =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

α1 β2

β2 α2 β3

. . .
. . .

. . .

βk−1 αk−1 βk

βk αk

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, Hk =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

h11 h12 · · · · · · h1k

h21 h22 · · · · · · h2k

h32 · · · · · · h3k

. . . · · · ...

hk,k−1 hkk

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

(2.13)

and the following relations hold

LT Process Arnoldi Process

β1Vke1 = g = β1v1 ‖g‖2 Qke1 = g = ‖g‖2q1

AVk = Vk Tk + βk+1vk+1eT
k AQk = Qk Hk + hk+1,kqk+1eT

k

(2.14)

Using the above relations, the respective iterated solutions can also be obtained by

fk = Vkdk, dk = argmin
d∈Rk

‖β1Vke1 − (Vk Tk + βk+1vk+1eT
k )d‖22, (2.15)

for MINRES, and

fk = Qkdk, dk = argmin
d∈Rk

∥

∥‖g‖2e1 − ˜Hkd
∥

∥

2
2 , ˜Hk =

(

Hk

0 hk+1,k

)

, (2.16)

for GMRES where 0 = [0 · · · 0] ∈ R
1×k−1. If we look for a solution in Kk(A, Ag)

and Kk(A, A(g − A f0)), instead of Kk(A, g) and Kk(A, g − A f0), respectively, we obtain
methods known as MR-II (Hanke 1995) and RRGMRES (Calvetti et al. 2000). As shown in
Jensen and Hansen (2007), MINRES and MR-II have regularization properties by “killing”
the large SVD components to reduce the influence of the noise. On the other hand, GMRES
and RRGMRES mix the SVD components in each iteration, so it is possible that for some
problems neither GMRES nor RRGMRES is able to produce regularized solutions (Jensen
and Hansen 2007).

3 Iterated solution fk vs. TSVD solution fk

Probably due to the fact that the noise-free solution of (1.1) is expressed in terms of the
right singular vectors, the subspace Sk = span {v1, . . . , vk} is sometimes referred to as the
“best” subspace, see, e.g., Hansen (2010). Thus, a natural question that arises is how close
the iterated solution fk defined in (2.1) is to the TSVD solution. The goal of this section is
to determine bounds on ‖fk − fk‖2. Intuitively, for the kth iterated solution fk to be a good
approximation to the kth TSVD solution, the subspace Vk should be a good approximation
to Sk , and a way to compare these subspaces is by assessing the angle between them. For
this, let Pk be the orthogonal projector onto Vk and let γk = ‖A − APk‖2. This number
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is important since it measures how well the operator APk approximates the operator A. In
addition, we shall show that it is fundamental to estimate the quality of fk compared to fk .
The following Lemma gives a simple expression for γk .

Lemma 3.1 Let Vk = [v1, . . . , vk] ∈ R
n×k be a matrix with orthonormal columns such that

span{v1, . . . , vk} = Vk . Thus, there is a matrix M = [M1 M2] ∈ R
m×n where M1 ∈ R

m×k

and M2 ∈ R
m×(n−k) such that

γk = ‖M2‖2. (3.1)

Proof Since Vk has k columns, there is a matrix V⊥ such that V = [Vk V⊥] is orthogonal.
Define U = AV . We can decompose U in U = U M where U ∈ R

m×m is orthogonal and
M = [M1 M2] ∈ R

m×n . Thereby, AVk = U M1 and

γk = ‖A − APk‖2 = ‖A − AVk V T
k ‖2 = ‖M − M1V T

k [Vk V⊥]‖2 = ‖M2‖2. (3.2)

�	
The theorem below gives an upper bound for the angle between the subspaces Vk and Sk .

Theorem 3.2 Let Vk = [v1, . . . , vk] ∈ R
n×k be a matrix with orthonormal columns such

that span{v1, . . . , vk} = Vk and let �k denotes the angle between the subspaces Vk and Sk .
Thus,

sin(�k) ≤ γk

σk
, (3.3)

where γk is from Lemma 3.1.

Proof From proof of Lemma 3.1, we have AV⊥ = U M2. Multiplying this equation by UT
k

and using the fact that UT
k A = �kVT

k where �k contains the first k singular values of A, we
have VT

k V⊥ = �−1
k UkU M2. Taking norms leads to sin(�k) ≤ γk/σk , where we used the

fact that sin(�k) = ‖VT
k V⊥‖2, see Golub and Van Loan (1996). �	

If, in particular, the subspace Vk is generated by the Golub–Kahan process, we have the
following upper bound for sin(�k).

Theorem 3.3 Let �k be the angle between the subspace Vk generated by the GKB process
and the right singular subspace Sk . Assume that the smallest singular value of Bk given in
(2.6), denoted by σmin(Bk), satisfies, σmin(Bk) > σk+1. Then,

sin(�k) ≤ σmin(Bk)αk+1

σmin(Bk)2 − σ 2
k+1

. (3.4)

Proof The SVD of A can be rewritten as

A = [Uk U0 U⊥]
⎡

⎢

⎣

�k 0

0 �0

0 0

⎤

⎥

⎦

[

VT
k

VT
0

]

= Uk�kVT
k + U0�0VT

0 . (3.5)

Since A is full rank, after n GKB steps, matrix A can be written as

A = [Uk+1 U0 U⊥]
⎡

⎢

⎣

Bk Ck

0 Fk

0 0

⎤

⎥

⎦

[

V T
k

V T
0

]

, (3.6)
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where Ck = αk+1ek+1eT
1 ∈ R

(k+1)×(n−k),

Fk =

⎡

⎢

⎢

⎢

⎢

⎣

βk+2 αk+2

. . .
. . .

βn αn

βn+1

⎤

⎥

⎥

⎥

⎥

⎦

∈ R
(n−k)×(n−k). (3.7)

Let Bk = Pk

(

Dk

0

)

QT
k be the SVD of Bk . Then, (3.6) can be rewritten as

A = [˜Uk ˜U0 ˜U⊥]
⎡

⎢

⎣

Dk ˜Ck

0 ˜Fk

0 0

⎤

⎥

⎦

[

˜V T
k

˜V T
0

]

= ˜Uk Dk˜V
T

k + ˜Uk˜Ck˜V
T

0 + ˜U0˜Fk˜V
T

0 , (3.8)

where ˜Uk ∈ R
m×k contains the first k columns of matrix Uk+1 Pk , ˜U0 = [ p̃ U0] ∈

R
m×(n−k+1) with p̃ being the last column of Uk+1 Pk , ˜U⊥ = U⊥Pk ∈ R

m×(m−n−1),
˜Ck ∈ R

k×(n−k) contains the first k rows of matrix PT
k Ck , ˜Fk = [˜f T FT

k ]T ∈ R
(n−k+1)×(n−k)

with ˜f being the last row of PT
k Ck , ˜Vk = Vk Qk and ˜V0 = V0. Thus,

˜V T
k V0 = D−1

k

(

˜U T
k A − ˜Ck˜V

T
0

)

V0 = D−1
k

(

˜U T
k AV0 − ˜Ck˜V

T
0 V0

)

= D−1
k

(

˜U T
k U0�0 − ˜Ck˜V

T
0 V0

)

. (3.9)

We also have

A˜Vk = ˜Uk Dk ⇒ ˜V T
k AT = DT

k
˜U T

k ⇒ ˜U T
k = D−1

k
˜V T

k AT = D−1
k
˜V T

k AT , (3.10)

and ˜U T
k U0 = D−1

k
˜V T

k AT U0 = D−1
k
˜V T

k V0�0. Thus,

˜V T
k V0 = D−1

k

(

D−1
k
˜V T

k V0�
2
0 − ˜Ck˜V

T
0 V0

)

= D−2
k
˜V T

k V0�
2
0 − D−1

k
˜Ck˜V

T
0 V0 (3.11)

Taking norms, we obtain

sin(�k) ≤
σ 2

k+1

σmin(Bk)2 sin(�k)+ ‖˜Ck‖2
σmin(Bk)

. (3.12)

Using the assumption σmin(Bk) > σk+1 and the fact that ‖˜Ck‖2 ≤ αk+1, we have

sin(�k) ≤ σmin(Bk)αk+1

σmin(Bk)2 − σ 2
k+1

. (3.13)

�	
This theorem is very similar in spirit to one due to Fierro and Bunch (1995, Thm. 2.2)

who considered subspaces generated by rank-revealing decompositions. The results of these
authors are not applicable here since Bk is not square. Bounds (3.3) and (3.4) denoted,
respectively, by “Bound A” and “Bound B”, as well as sin(�k) for the first 20 iterations of
GKB process applied to i_laplace and shaw test problems with n = 512 and NL = 0.01,
are depicted in Fig 2.

The main result of this section gives upper bounds on the distance between fk and fk .
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Fig. 2 Bounds (3.3) and (3.4) for i_laplace (left) and shaw (right) test problems with n = 512 and NL = 0.01

Theorem 3.4 Let the columns of Vk = [v1, . . . , vk] ∈ R
n×k form a basis of subspace Vk .

The distance between fk given by (2.1) and the TSVD solution fk can be bounded as

‖fk − fk‖2
‖ fk‖2 ≤ 1

σk
(φk + γk), (3.14)

where φk = ‖g − A fk‖2/‖ fk‖2 and γk is as (3.1). In addition, under assumptions given in
Theorem (3.3), we have

‖fk − fk‖2
‖ fk‖2 ≤ φk

σk
+ σmin(Bk)αk+1

σmin(Bk)2 − σ 2
k+1

. (3.15)

Proof Let rk = g − A fk and fk = Vkdk where dk = (AVk)
†g. Thus,

fk − fk = A†
k g − Vk(AVk)

†g = A†
krk + A†

k A fk − Vk(AVk)
† A fk, (3.16)

where we used the fact that Vk(AVk)
†rk = 0. Notice that

Vk(AVk)
† A fk = Vk(AVk)

† AVk V T
k fk = Vk V T

k fk = fk, (3.17)

and since A†
k A = A†

kAk , it follows that

fk − fk = A†
krk + (A†

kAk − In) fk = A†
krk − (In − Pk)Pk fk, (3.18)

where Pk = Vk V T
k and Pk = A†

kAk are, respectively, the orthogonal projectors onto Vk and
Sk . Therefore,

‖fk − fk‖2 ≤ ‖A†
k‖2‖rk‖2 + ‖(In − Pk)Pk‖2‖ fk‖2,

≤ ‖ fk‖2φk/σk + ‖ fk‖2γk/σk, (3.19)

where we used the fact that ‖(In − Pk)Pk‖2 = sin(�k) and Theorem 3.2. Inequality (3.15)
follows from equation (3.19) and Theorem 3.3. �	

As the error bound becomes useless when φk/σk>1, Theorem 3.4 suggests that the quality
of the iterates fk with respect to the TSVD solutions will probably deteriorate after this
inequality is met. We shall see that the inequality φk/σk>1 marks a kind of transition between
the size of the solution norm and the size of the residual norm, which is crucial for the proper
functioning of the parameter choice rule we are going to propose. To illustrate how the
behavior of φk/σk relates to the error Ek = ‖ fk − fk‖2/‖ fk‖2, these quantities are displayed
in Fig. 3 for LSQR and i_laplace test problem with n = 512 and NL=0.01. As we can see,
the range of values of k for which the bounds (3.14) and (3.15) start to deteriorate occurs
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Fig. 3 Relative error Ek (left), and σk , φk/σk for the first 15 iterated solutions obtained by LSQR for i_laplace
test problem with n = 512 and NL = 0.01. Integer k that minimizes Ek is marked in red with times

when k > 8 which is precisely when the inequality φk/σk > 1 holds. This suggests that the
iteration that minimizes the error should occur near the first k such that φk/σk > 1.

If Vk is the Krylov subspace generated by the GKB process, we have the following result.

Corollary 3.5 Let Vk be the Krylov subspace Kk(AT A, AT g), and Ak = Uk+1 Bk V T
k . Then,

‖fk − fk‖2
‖ fk‖2 ≤ sin(�k)

(

σ1

σk

‖rk‖2
‖g‖2

σk+1

τkσmin(Rk)
+ 1

)

, τk =
√

1− ‖rk‖22
‖g‖22

. (3.20)

Proof From Eq. (3.8), we have Ak = ˜Uk Dk˜V T
k , thus

fk − fk = (A†
k − A†

k)g

= (A†
k − A†

k)g − (A†
kAk − A†

k Ak) fk + (A†
kAk − A†

k Ak) fk

= (A†
k − A†

k)g − (A†
k A − A†

k A + ˜Vk D−1
k
˜Ck˜V

T
0 ) fk + (A†

kAk − A†
k Ak) fk

= (A†
k − A†

k)rk + (A†
kAk − A†

k Ak) fk

= A†
krk + (A†

kAk − A†
k Ak) fk (3.21)

where we used that A†
kAk = A†

k A, A = Ak+˜Uk˜Ck˜V T
0 +˜U0˜Fk˜V T

0 , rk = g− A fk , ˜V T
0 fk = 0

and A†
krk = 0. Since A†

k = A†
kUkUT

k and rk = ˜U⊥k ˜U⊥T
k rk , it follows

fk − fk = A†
kUkUT

k
˜U⊥k ˜U⊥T

k rk + (A†
kAk − A†

k Ak) fk . (3.22)

Thus,

‖fk − fk‖2 ≤ ‖A†
k‖2‖UT

k
˜U⊥k ‖2‖rk‖2 + ‖(A†

kAk − A†
k Ak)‖2‖ fk‖2. (3.23)

Using the inequality 1
‖ fk‖2

√

1− ‖rk‖22
‖g‖22
≤ ‖A‖2‖g‖2 and denoting by 
k the angle between the

subspaces R(Uk) and R(˜Uk), we have

‖fk − fk‖2
‖ fk‖2 ≤ σ1

σk

‖rk‖2
‖g‖2

sin(
k)

τk
+ sin(�k). (3.24)
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Combining Eqs. (3.5) and (3.8), it can be proved that sin(
k) ≤ σk+1
σmin(Bk )

sin(�k) (Fierro and
Bunch 1995), thus

‖fk − fk‖2
‖ fk‖2 ≤ sin(�k)

(

σ1

σk

‖rk‖2
‖g‖2

σk+1

τkσmin(Rk)
+ 1

)

, τk =
√

1− ‖rk‖22
‖g‖22

. (3.25)

�	
This corollary confirms that the iterated solutions will be close to the TSVD solutions

provided the sine of the angle between the subspaces Vk and Sk is small.

4 Stopping rule

As already mentioned, projection methods must be suitably stopped to produce good approx-
imations to the noise-free solution of (1.1). If a good estimate of ‖e‖2 is available, say
‖e‖2 ≤ δ, the discrepancy principle (DP) is probably the most appropriate criterion to be
used. However, in this paper, we consider that estimates of ‖e‖2 are not available, hence DP
will not be used. One stopping rule that is derived within a statistical framework and that
does not require any estimate of the error norm is the generalized cross-validation (GCV).
The main idea is that the regularization parameter should be able to predict data in vector g
that is missing. If the iterated solutions are carried out by TSVD method, the stopping index
is chosen to be the minimizer of G(k) = ‖rk‖22/(m − k)2, see (Björck 1996; Hansen 1998;
Bauer and Lukas 2011; Lukas 2006) for robust versions of this method for small to moderate
size problems. Since the SVD is computationally expensive for large A, GCV will not be
considered in this paper. Hence, the development of simple and efficient stopping rules for
Krylov projection methods is required.

4.1 Automatic stopping rule

To describe our automatic stopping rule, we start as in (Bazán et al. 2013, Sect. 4.1) and
discuss a truncation criterion for the TSVD method. We shall assume that the noise-free
data gexact satisfy the discrete Picard condition (DPC) (Hansen 1990), i.e., the coefficients
|uT

i gexact|, on average, decay to zero faster than the singular values, as well as the noise
contains zero-mean Gaussian random numbers. These assumptions imply that there exists a
integer k∗ such that

|uT
i g| = |uT

i gexact + uT
i e| ≈ |uT

i e| ≈ constant, for i > k∗. (4.1)

The error in the kth TSVD solution can be written as

Ek = ‖fk − fexact‖22 =
k
∑

i=1

|uT
i e|2
σ 2

i

+
n
∑

i=k+1

|uT
i gexact|2

σ 2
i

≡ E1(k)+ E2(k). (4.2)

The first term measures the error caused by the noise; it increases with k and can be large
for σi ≈ 0. The second term, called the regularization error, decreases with k and can be
small when k is large. Thus, to choose a good truncation parameter, it is required that these
errors balance each other to make the global error small. A closer look to these errors reveals
that for k > k∗, the error E1(k) increases dramatically while E2(k) remains under control,
hence the error should not be minimized for k > k∗. Also, for k < k∗, E2(k) increases with
k while E1(k) stays under control since σi dominates |uT

i e|, and hence, the error should not
be minimized. This suggests that the error should be minimized at k = k∗.
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Another way to perform the above analysis, which we introduce here by the first time and
we use in the general framework of Krylov projection methods, is by analyzing the finite
forward differences

∇Ek = Ek+1 − Ek =
|uT

k+1e|2
σ 2

k+1

− |u
T
k+1gexact|2

σ 2
k+1

. (4.3)

Since the DPC is satisfied, for k ≥ k∗ we have |uT
k+1e| > |uT

k+1gexact|. Thus, Ek increases
with k and it is not minimized for these values of k. On the other hand, for k < k∗, we have
|uT

k+1e| < |uT
k+1gexact|, and Ek is decreasing. Therefore, the index k = k∗ points out a change

in Ek such that ∇Ek∗−1 < 0 and ∇Ek∗ > 0, thus indicating that Ek should be minimized at
k = k∗. Nevertheless, in practical applications, neither the error vector e nor the exact data
vector gexact is available and the best we can do is to minimize a model for Ek . Since the
sequences ‖fk‖2 and ‖g − Afk‖2 are, respectively, increasing and decreasing, a truncation
index for the TSVD method can be chosen as the minimizer of

�k(SVD) = ‖g − Afk‖2‖fk‖2, k ≥ 1, (4.4)

as minimizing log �k(SVD) is equivalent to minimizing a sum of competing terms, one
increasing and other decreasing. A similar analysis lead us to conclude that the minimizer
of �k(SVD) can serve as a good estimate for k = k∗. Unfortunately, the SVD is infeasible
for large-scale problems and the TSVD method may not be of practical utility. To overcome
this possible difficulty, our proposal is to use iterative methods such as LSQR, GMRES, etc.,
and stop the iterations at the first integer k such that

˜k = argmin�k, �k = ‖g − A fk‖2‖ fk‖2, (4.5)

where fk denotes the kth iterate computed by the chosen method. Figure 4 depicts three
sequences �k calculated by three different methods. Notice that criterion (4.5) is nothing
more than a discrete counterpart of Regińska’s rule (1996) which looks for a corner of the
continuous Tikhonov L-curve; for details the reader is referred to (Bazán 2008; Bazán and
Francisco 2009). We mention that in (Bazán et al. 2013) the rule (4.5) was analyzed and
illustrated in connection with LSQR method. Here, we extend its use to a more general
framework along with a detailed analysis to understand its behavior. Notice also that from
the practical point of view, the stopping criterion (4.5) can be implemented by monitoring
the finite forward differences

∇�k = �k+1 −�k, k ≥ 1, (4.6)
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Fig. 4 Sequences �k obtained by TSVD, LSQR and MR-II for phillips test problem with n = 512 and
NL = 0.01
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Fig. 5 Sequences φ2
k+1 and ξk calculated by TSVD (left), LSQR (middle) and MR-II (right) using the same

data as in previous figure

and thus selecting the first index k such that ∇�k−1 < 0 and ∇�k > 0. However, to know
more about the rule, motivated by the above analysis for TSVD based on forward differences,
we will consider the sequence �2

k (which shares minimum with �k) and look for extreme
values by identifying sign changes of ∇�2

k . In fact, letting xk = ‖g − A fk‖22, yk = ‖ fk‖22,
∇xk = xk+1 − xk, and ∇ yk = yk+1 − yk, after some calculation, for ∇ yk �= 0, we have

∇�2
k = �2

k+1 −�2
k = yk+1∇ yk

(

φ2
k+1 − ξk

)

, (4.7)

where

φ2
k = xk/yk, ξk = − yk

yk+1

∇xk

∇ yk
, (4.8)

while for ∇ yk = 0, we have

∇�2
k = yk(xk+1 − xk). (4.9)

To analyze the sign of ∇�2
k , three cases are considered.

• If∇ yk = 0, which is unlikely to happen in practical applications, from (4.9) we conclude
that ∇�2

k ≤ 0 as the residual norm sequence xk is not increasing, and �k cannot be
minimized at this k.
• If ∇ yk < 0, it follows that ξk ≤ 0 and therefore φ2

k+1 − ξk ≥ 0. Hence, ∇�2
k and ∇ yk

share the same sign and �k cannot be minimized at this k .
• If ∇ yk > 0 we have that ξk ≥ 0, and the sign of ∇�2

k depends on the sign of φ2
k+1 − ξk .

Therefore, ∇�2
k ≤ 0 if ξk/φ

2
k+1 ≥ 1 and ∇�k ≥ 0 if ξk/φ

2
k+1 ≤ 1.

Thus, minimization of �k depends on sign changes of φ2
k+1 − ξk and occurs at the first k

such that ∇�2
k−1 ≤ 0 and ∇�2

k ≥ 0. Figure 5 displays sequences φ2
k+1 and ξk , where xk and

yk are calculated by TSVD, LSQR and MR-II using the same data of the previous figure. In
this case, sign changes occur at k = 12 for TSVD, at k = 10 for LSQR and at k = 11 for
MR-II.

As a particular case, if the sequence fk is calculated by TSVD it is easy to show that

∇xk

∇ yk
= −σ 2

k+1, (4.10)

hence

sign
(∇�2

k

) =
⎧

⎨

⎩

1, if ‖g−A fk+1‖2
‖ fk‖2 > σk+1,

−1, if ‖g−A fk+1‖2
‖ fk‖2 < σk+1.

(4.11)
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We end this subsection with a few observations.

• If the sequence ‖ fk‖2 is nondecreasing, as happening with TSVD and LSQR, we always
have ∇ yk ≥ 0 and the sequence φk is non-increasing.
• The sequence φk may be non-increasing even if ‖ fk‖2 > ‖ fk+1‖2 for some k, since φk

is a quotient between ‖ fk‖2 and ‖g − A fk‖2.
• Although the proposed rule has already been used in connection with LSQR in

Bazán et al. (2013), we emphasize that the discussion and analysis on the behavior
of �k given here do not appear elsewhere.
• A key feature of this stopping rule is that there is no need to run a predetermined amount of

steps, as required, e.g., by the L-Curve criterion (Hansen et al. 2007; Kilmer et al. 2007).
More precisely, it stops automatically in at most ˜k + 1 steps where ˜k is the selected
regularization parameter.

5 Iterative methods with preconditioning via smoothing norm

It is possible that for a certain class of problems, certain projection methods cannot always
capture some intrinsic feature of the solution probably because the search space is not well
suited. One way to circumvent this difficulty is by changing the search space with the incor-
poration of prior information via regularization matrices. For instance, if the required solution
is known to be smooth, we can use general-form Tikhonov regularization to construct regu-
larized solutions defined as

fλ = argmin
f ∈Rn

{‖g − A f ‖22 + λ2‖L f ‖22
}

, (5.1)

where λ > 0 is the regularization parameter and L is chosen so as to incorporate into the
minimization process (hence into the computed fλ) prior information such as smoothness.
If L �= In (the identity matrix of order n), Eq. (5.1) can be transformed into Hansen (1998)

fλ = argmin
f ∈Rp

{‖g − A f ‖22 + λ2‖ f ‖22
}

, (5.2)

thus incorporating the properties of matrix L into A, the transformation being given by

A = AL†
A, g = g − A fN , fλ = L†

A f λ + fN , (5.3)

where L†
A =

(

In −
(

A
(

In − L†L
))†

A
)

L† is known as the A-weighted generalized inverse

of L (Eldén 1982), and fN is the component of the solutions that belongs to the null space of
L , N (L). Nevertheless, on large-scale problems, the computation of the regularization para-
meter λ can be a burdensome task and a way to overcome this issue is to replace Tikhonov
regularization by iterative regularization via projection methods. As far as iterative regular-
ization in this new context is concerned, the idea is to incorporate prior information into the
computed iterates by changing the original search subspace in such a way that the original
problem (1.1) is replaced by the following minimization problem

argmin
f ∈Rp

‖g − A f ‖22, (5.4)

and then compute regularized solution by early truncation of the iterative process. To exploit
the stopping rule described in the previous section in this new context, our proposal is to
apply Krylov projection methods (e.g., MINRES/MR-II, GMRES/RRGMRES, etc) to (5.4)
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and stop the iterations according to the rule described in the previous section, i.e., stop the
iterations at the first integer k such that

˜k = argmin‖g − A f k‖2‖ f k‖2. (5.5)

Once the stopping index ˜k is determined, the computed approximation f
˜k is transformed

back to obtain

f
˜k = L†

A f
˜k + fN

Two approaches can be used, one approach due to (Calvetti et al. 2005) which requires L to
be square, and a more general approach by Hansen and Jensen (2006) where such condition
is not needed. As we only consider the latter, we describe it briefly.

5.1 The smoothing norm (SN) approach

As our interest is to use MINRES/MR-II and GMRES/RRGMRES, we assume that A is
square and we deal with consistent linear systems. We shall also note that the iterated solution
can be written as (we will suppress the index k) f = L†

A f + fN = L†
A f + W z, with the

columns of W being a basis to N (L). Thus, the equation A f = g can be written as

A(L†
A, W )

(

f
z

)

= g. (5.6)

Multiplying the above equation by (L†
A W )T leads to

(

L†T
A AL†

A L†T
A AW

W T AL†
A W T AW

)(

f

z

)

=
(

L†T
A g

W T g

)

. (5.7)

Using the Schur complement, it follows that S f = d where

S = L†T
A AL†

A − L†T
A AW (W T AW )−1W T AL†

A = L†T
A P AL†

A,

d = L†T
A g − L†T

A AW (W T AW )−1W T g = L†T
A Pg,

(5.8)

with P = I − AW (W T AW )−1W T . The SN approach looks for approximations to fexact

from the linear system S f = d . As demonstrated in Hansen and Jensen (2006), based on the
fact that the subspaces R(LT ) and R(AW ) are complementary, the above system reduces to

L†T P AL† f = L†T Pg, (5.9)

which means L†
A is replaced by L†. Table 1 summarizes the basic ideas of the algorithm

SN-X, where X is any method, e.g., MINRES, MR-II, GMRES and RRGMRES.

Table 1 Algorithm SN-X where X = MINRES/MR-II or X = GMRES/RRGMRES

Input: A, L, g
Output: Iterated solution fk.
1. Apply the method X to the system Sf = d until some stopping rule

is satisfied to give fk.
2. Compute fk = L†

Afk + fN whit fN and L†
A according to a (5.3).
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5.2 Smoothing preconditioning for LSQR

If A is not square, methods such as MINRES/MR-II and GMRES/RRGMRES cannot be
used, and in such cases LSQR is probably the most appropriate method to be chosen. Thus,
the proposal is to apply LSQR to the problem (5.4), as suggested by Hanke and Hansen
(1993), and stop the iterations using the parameter choice rule described before. Then, the
regularization parameter solution fk is computed as in step 2 of algorithm SN-X. As in Bazán
et al. (2013), for simplicity this preconditioned version of LSQR will be referred to as P-
LSQR. Obviously, for P-LSQR to be computationally viable, the dimension of N (L) should

be small and the matrix–vector products involving both L† and L†T
must be performed as

efficiently as possible. For details and numerical results involving P-LSQR, the reader is
referred to Bazán et al. (2013).

6 Numerical experiments

To illustrate that our stopping rule is efficient, we shall apply it to a number of problems and
compare the results with those obtained by the L-Curve criterion. As in the continuous case,
the L-curve criterion promotes choosing the regularization parameter as the index associated
to the corner of the discrete L-curve defined by

Lq = {(log ‖g − A fk‖2, log ‖ fk‖2), k = 1, . . . , q} . (6.1)

Methods to find such “corner” include the use of splines due to Hansen and O’Leary (1993),
the triangle method of Castellanos et al. (2002), a method developed by Rodriguez and Theis
(2005) and an adaptive pruning algorithm due to Hansen et al. (2007). However, finding the
“corner” using a finite number of points is not an easy task and the above algorithms are
not without difficulties, see, e.g., (Hansen 1998, p. 190) for some discussions, Hansen et
al. (2007) for a case with multiple “corners”, and more recently, Bazán et al. (2013) for a
comparison of results obtained by LSQR coupled with the proposed stopping criterion and
L-curve. In our numerical experiments, we use an implementation of L-curve based on the
pruning algorithm (Hansen et al. 2007).

The following notation will be used:

• k� , kLC, kopt: stopping index determined by (4.5), by the L-Curve criterion and the
optimum one, respectively;
• Ē� , ĒLC, Ēopt: average values of relative error in fk� , fkLC , fkopt , respectively.

The optimal regularization parameter is defined as kopt = argmink‖ fk − fexact‖2/‖ fexact‖2.

6.1 Methods without preconditioning

The purpose of this section is to illustrate the potential of the stopping rule (4.5) in connection
with algorithms LSQR, RRGMRES (if A �= AT ), MR-II (if A = AT ) and TSVD. The choice
of RRGMRES and MR-II obeys the well-known fact that they outperform their counterparts
GMRES and MINRES, respectively Jensen and Hansen (2007). To this end, we selected
six test problems from Hansen (1994), namely, foxgood, shaw, deriv2, phillips, heat and
baart, and an image deblurring problem.
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6.1.1 Results for test problems from Hansen (1994)

As it is well known, Hansen’s Toolbox provides triplets [A, gexact, fexact] with A n× n such
that A fexact = gexact. For our experiment, we choose n = 800 and for each problem we
consider 20 data vectors of the form g = gexact+e where the noise vector e contains zero-mean
Gaussian random numbers scaled such that NL = ‖e‖2/‖gexact‖2 = 0.001, 0.01, 0.025. To
ensure that the overall behavior of the discrete L-Curve is captured, we take q = 200. This
choice seems reasonable compared to the dimension of the problem and the numerical rank
of each test problem. Numerical rank as well as the condition number of each test problem,
all computed by Matlab, are reported in Table 2.

Average results are reported in Tables 3, 4, 5, 6, 7, 8. Number inside the parenthesis
corresponds to the maximum stopping index of all realizations.

As we can see, except for the poor performance of RRGMRES on heat test problem,
see Table 7, which is nothing new because, as we know, this method is not always able to
produce regularized solutions Jensen and Hansen (2007), all projection methods tested in this
study were able to produce very good results. In particular, the results indicate: (a) that both
L-curve and the new parameter choice rule work well in connection with projection methods

Table 2 Numerical rank and condition number of 6 test problems

foxgood shaw deriv2 phillips heat baart
rank 30 20 800 800 596 13

κ(A) 1.1× 1020 2.4× 1020 7.8× 105 1.1× 1010 7.1× 10188 3.0× 1018

Table 3 Results obtained by LSQR, MR-II and TSVD for foxgood test problem

NL = 0.001 NL = 0.01 NL = 0.025

LSQR MR-II TSVD LSQR MR-II TSVD LSQR MR-II TSVD
k� 3 (4) 3 (4) 3 (4) 2 (2) 2 (2) 2 (2) 2 (2) 2 (2) 2 (2)

kLC 3 (4) 3 (4) 4 (4) 2 (2) 2 (2) 2 (2) 2(2) 2(2) 2(2)

kopt 3 (4) 3 (4) 3 (4) 2 (3) 2 (3) 2 (3) 2 (3) 2 (3) 2 (3)

Ē� 0.0217 0.0211 0.0193 0.0311 0.0312 0.0312 0.0319 0.0319 0.0320

ĒLC 0.0212 0.0211 0.0193 0.0311 0.0312 0.0312 0.0319 0.0319 0.0320

Ēopt 0.0080 0.0080 0.0078 0.0256 0.0256 0.0249 0.0308 0.0308 0.0296

Table 4 Results obtained by LSQR, MR-II and TSVD for shaw test problem

NL = 0.001 NL = 0.01 NL = 0.025

LSQR MR-II TSVD LSQR MR-II TSVD LSQR MR-II TSVD
k� 7 (8) 7 (8) 7 (8) 5 (6) 5 (7) 7 (7) 4 (4) 4 (4) 4 (5)

kLC 7 (8) 7 (8) 8 (8) 4 (7) 5 (7) 7 (7) 4 (4) 4 (4) 4 (5)

kopt 7 (9) 7 (9) 7 (10) 5 (8) 5 (8) 6 (7) 5 (7) 5 (7) 5 (7)

Ē� 0.0498 0.0500 0.0500 0.0775 0.0898 0.0670 0.1683 0.1688 0.1679

ĒLC 0.0496 0.0493 0.0501 0.1082 0.0811 0.0670 0.1683 0.1688 0.1690

Ēopt 0.0427 0.0430 0.0440 0.0637 0.0637 0.0665 0.0969 0.0952 0.1036
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Table 5 Results obtained by LSQR, MR-II and TSVD for deriv2 test problem

NL = 0.001 NL = 0.01 NL = 0.025

LSQR MR-II TSVD LSQR MR-II TSVD LSQR MR-II TSVD
k� 16 (17) 13 (13) 17 (34) 7 (7) 6 (6) 9 (10) 5 (5) 4 (5) 5 (6)

kLC 16 (16) 9 (14) 32 (34) 6 (7) 6 (6) 9 (10) 5 (5) 4 (5) 6 (6)

kopt 13 (16) 11 (12) 25 (35) 7 (9) 6 (8) 10 (17) 5 (7) 5 (6) 8 (14)

Ē� 0.1474 0.1523 0.1525 0.2145 0.2161 0.2323 0.2656 0.2689 0.2949

ĒLC 0.1471 0.1537 0.1562 0.2151 0.2161 0.2325 0.2656 0.2603 0.2949

Ēopt 0.1392 0.1399 0.1451 0.2019 0.2027 0.2063 0.2344 0.2364 0.2406

Table 6 Results obtained by LSQR, MR-II and TSVD for phillips test problem

NL = 0.001 NL = 0.01 NL = 0.025

LSQR MR-II TSVD LSQR MR-II TSVD LSQR MR-II TSVD
k� 11 (15) 7 (17) 12 (25) 9 (10) 8 (10) 11 (11) 7 (8) 7 (8) 8 (8)

kLC 14 (16) 11 (18) 21 (26) 9 (10) 8 (10) 11 (11) 7 (8) 6 (8) 8 (8)

kopt 9 (10) 9 (10) 11 (12) 5 (9) 4 (9) 7 (11) 5 (8) 4 (7) 7 (9)

Ē� 0.0617 0.0343 0.0497 0.0374 0.0347 0.0280 0.0327 0.0335 0.0276

ĒLC 0.0706 0.0677 0.0721 0.0374 0.0431 0.0280 0.0327 0.0288 0.0276

Ēopt 0.0072 0.0077 0.0065 0.0223 0.0196 0.0165 0.0255 0.0246 0.0224

Table 7 Results obtained by LSQR, RRGMRES and TSVD for heat test problem

NL = 0.001 NL = 0.01 NL = 0.025

LSQR RRGMRES TSVD LSQR RRGMRES TSVD LSQR RRGMRES TSVD
k� 28 (29) 18 (24) 17 (33) 16 (16) 17 (25) 17 (24) 11 (11) 14 (24) 16 (18)

kLC 27 (31) 9 (69) 45 (46) 15 (18) 11 (80) 23 (24) 10 (12) 12 (67) 17 (18)

kopt 20 (22) 1 (1) 29 (34) 13 (15) 1 (1) 21 (28) 11 (13) 1 (1) 16 (23)

Ē� 0.0812 1.3×106 0.0660 0.0798 8.8×105 0.0762 0.1091 7.4×105 0.1129

ĒLC 0.0925 3.8×108 0.0809 0.0778 1.4×108 0.0747 0.1021 5.5×107 0.1108

Ēopt 0.0253 1.0756 0.0233 0.0711 1.0756 0.0681 0.1021 1.0755 0.1069

Table 8 Results obtained by LSQR, RRGMRES and TSVD for baart test problem

NL = 0.001 NL = 0.01 NL = 0.025

LSQR RRGMRES TSVD LSQR RRGMRES TSVD LSQR RRGMRES TSVD
k� 4 (4) 3 (5) 4 (4) 3 (3) 3 (4) 3 (3) 3 (3) 3 (4) 3 (3)

kLC 4 (4) 3 (6) 4 (4) 3 (3) 3 (6) 3 (3) 3 (3) 3 (6) 3 (3)

kopt 4 (5) 3 (4) 4 (5) 3 (4) 3 (4) 3 (4) 3 (4) 3 (4) 3 (4)

Ē� 0.1159 0.0402 0.1160 0.1662 0.0569 0.668 0.1684 0.0655 0.1691

ĒLC 0.1159 0.8584 0.1160 0.1662 17.7101 0.1668 0.1684 6.9093 0.1691

Ēopt 0.1027 0.0337 0.1028 0.1459 0.0385 0.1461 0.1614 0.0483 0.1629
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Fig. 6 Exact and blurred and noisy images for NL = 0.001 and NL = 0.05

Table 9 Results obtained by LSQR and MR-II for image deblurring test problem

NL = 0.001 NL = 0.01 NL = 0.025 NL = 0.05

LSQR MR-II LSQR MR-II LSQR MR-II LSQR MR-II
k� 535 (545) 69 (70) 90 (93) 22 (22) 39 (40) 13 (14) 20 (21) 9 (9)

kLC 495 (577) 62 (77) 80 (103) 21 (23) 36 (40) 13 (13) 18 (23) 9 (9)

kopt 247 (272) 40 (43) 43 (47) 14 (15) 22 (23) 9 (10) 13 (15) 7 (7)

Ē� 0.1618 0.1616 0.1672 0.1673 0.1702 0.1698 0.1733 0.1722

ĒLC 0.1598 0.1607 0.1662 0.1649 0.1683 0.1680 0.1724 0.1722

Ēopt 0.1494 0.1492 0.1577 0.1575 0.1629 0.1629 0.1689 0.1688

and TSVD, and (b), that the rules are able to produce results with relative errors close to the
optimal, with the observation that the new rule is cheaper.

6.1.2 Results for deblurring test problem

We consider a part of the image Barbara of size 175 × 175 which was used in Hansen and
Jensen (2008). This implies that we deal with n = 30625 unknowns and a linear system with
coefficient matrix given by A = T⊗T where T ∈ R

175×175 is symmetric and Toeplitz Hansen
and Jensen (2008). The condition number of A is κ(A) ≈ 2.1×1033 and the numerical rank is
8648. In deblurring problems, A acts as blurring operator and the right hand side g = gexact+e
represents the blurred and noisy image in vector form. Since this problem is much larger than
those from the previous section, for L-curve we take q = 800. The exact image and two
blurred and noisy images (one with NL = 0.001 and other with NL = 0.05) are depicted in
Fig. 6.

In addition to the same noise levels considered in the previous examples, we also consider
data with NL = 0.05 since this value was used in Hansen and Jensen (2008). It is worth
mentioning that in Hansen and Jensen (2008) the main concern was to study the behavior
of the iterations, not to discuss stopping rules. We report results obtained by LSQR and
MR-II. Notice that, except for the fact that LSQR spends a considerably large number of
iterations compared to MR-II, both methods produced similar results, see Table 9. For this,
only reconstructed images obtained by LSQR for each noise level are reported, see Fig. 7.

From the results, we see that the reconstructed images show artifacts in the form of circular
freckles. This is in accordance with observations made in Hansen and Jensen (2008). For
a detailed analysis of the appearance of freckles in the reconstructed image, the reader is
referred to Hansen and Jensen (2008).
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NL = 0,001 NL = 0,01 NL = 0,025 NL = 0,05

Fig. 7 Solutions obtained via LSQR coupled with stopping rule (4.5)

Table 10 Results obtained by SN-RRGMRES, P-LSQR and TGSVD for deriv2 test problem

NL = 0.001 NL = 0.01 NL = 0.025

SN-R P-L TGSVD SN-R P-L TGSVD SN-R P-L TGSVD
k� 9 (11) 5 (5) 5 (6) 5 (6) 2 (2) 2 (2) 4 (5) 1 (1) 1 (1)

kLC 9 (11) 5 (5) 6 (6) 5 (6) 2 (2) 2 (2) 4 (5) 2 (2) 2 (2)

kopt 7 (10) 7 (9) 9 (15) 3 (5) 3 (5) 3 (7) 3 (5) 3 (4) 3 (5)

Ē� 0.0122 0.0162 0.0176 0.0291 0.0543 0.0609 0.0405 0.0689 0.0701

ĒLC 0.0122 0.0162 0.0176 0.0297 0.0543 0.0609 0.0405 0.0541 0.0601

Ēopt 0.0087 0.0091 0.0092 0.0210 0.0219 0.0221 0.0299 0.0306 0.0307

6.2 Methods with preconditioning via smoothing norm

To improve the quality of the solution to certain problems using a priori knowledge, we will
illustrate the effectiveness of some of the preconditioned methods described in the previous
section. In all the following examples, the regularization parameter is determined by the
stopping rule (4.5) and L-curve.

Our first example involves deriv2 test problem considered in the previous section, and is
motivated by the fact LSQR, MR-II and TSVD produced solutions with not so small errors,
see Table 5. Smoothing preconditioning is incorporated by considering the minimization
problem (5.4) with the regularization matrix defined by

L = L1 =

⎡

⎢

⎢

⎣

−1 1

. . .
. . .

−1 1

⎤

⎥

⎥

⎦

∈ R
(n−1)×n . (6.2)

Table 10 shows results obtained by P-LSQR (P-L for short), SN-RRGMRES (SN-R for short)
and TGSVD. As in the previous section, number inside the parenthesis corresponds to the
maximum stopping index of all realizations.

The results show that both L-curve and stopping rule (4.5) produced high-quality solutions
with relative errors of one order of magnitude smaller than the relative errors obtained with
methods without preconditioning.

As a second example, we choose again the image deblurring test problem considered in
the previous section. In this case, for the regularization matrix, we consider a bidimensional
first order differential operator defined by
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Table 11 Results obtained by P-LSQR and SN-RRGMRES for image deblurring test problem

NL = 0.001 NL = 0.01 NL = 0.025 NL = 0.05

P-L SN-R P-L SN-R P-L SN-R P-L SN-R
k� 285 (290) 182 (183) 67 (68) 85 (86) 33 (33) 59 (60) 17 (17) 45 (46)

kLC 3 (308) 175 (177) 3 (71) 77 (79) 35 (36) 55 (64) 16 (16) 43 (47)

kopt 479 (507) 208 (216) 160 (173) 96 (100) 98 (106) 69 (73) 67 (73) 55 (58)

Ē� 0.1518 0.1498 0.1633 0.1576 0.1731 0.1627 0.1875 0.1684

ĒLC 0.2729 0.1500 0.1691 0.1584 0.1721 0.1629 0.1899 0.1689

Ēopt 0.1495 0.1493 0.1572 0.1571 0.1618 0.1617 0.1669 0.1667
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Fig. 8 Discrete L-curve (left), corner index as function of q points (middle) and sequence �k for image
deblurring test problem for NL = 0.001. In this example, the “well” distinctive corner (marked with a small
circle) produces oversmoothed solutions, while the “false” corner (marked with a small square) produces
acceptable solutions

L =
[

L1 ⊗ I

I ⊗ L1

]

(6.3)

where ⊗ denotes Kronecker product. Table 11 shows results obtained by P-LSQR and SN-
RRGMRES. As before, for L-curve, we take q = 800.

This test problem provides an excellent way to illustrate that the regularization parameter
determined by L-curve can be very sensitive to changes in the number of points q used to
perform the L-curve analysis. A clear evidence appears in Table 11 for NL = 0.001: the
corner index varies so much taking two values, kLC = 3 and kLC = 263. To reinforce this,
Fig. 8 displays the corner index returned by the pruning algorithm (as implemented by the
Matlab function corner.m in Hansen (1994)) as a function of q for NL = 0.001 and
q ranging from 300 to 600. This example also illustrates that even if the L-curve displays
a distinctive L-corner, the corner index does not necessarily produce a good regularized
solution, as seen in this example for kLC = 3. Notice that, contrary to the behavior of kLC,
the parameter determined by minimizing �k does not suffer from large variations. Thus, the
conclusion that can be made here is that L-curve should be carefully used in connection with
iterative methods.

Figure 9 displays reconstructed images obtained by P-LSQR and SN-RRGMRES. The
benefit from using smoothing preconditioning is apparent.
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NL = 0,001 NL = 0,01 NL = 0,025 NL = 0,05

Fig. 9 Solutions obtained by P-LSQR (top) and SN-RRGMRES (bottom)

7 Conclusions

We extended a stopping rule for LSQR proposed recently in Bazán et al. (2013) to well-known
Krylov projection methods. The rule does not require any estimate of the error norm and stops
automatically after˜k+ 1 steps where˜k is the computed regularization parameter. Numerical
results show that the rule works well in conjunction with classical projection methods and its
smoothing norm preconditioned versions. In particular, the numerical examples show that the
proposed stopping rule is cheaper than L-curve, that the regularization parameter determined
by L-curve strongly depends on the number of points used to perform the L-curve analysis,
and that the proposed rule is able to produce solutions that are as good as those obtained by
L-curve when the latter performs well.
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