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A series solution for a 2D bioheat Pennes conduction model with convective boundary
conditions is established by using the classical Fourier method. To validate and compare
results, a numerical method for constructing highly accurate numerical solutions is also
derived and numerically illustrated. Both, the series solution and the proposed numerical
method open interesting possibilities of application in inverse perfusion coefficient identi-
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1. Introduction

Modeling of heat transfer processes in biological tissues is of great importance in therapeutic procedures as well as in
temperature-based disease diagnostics. Accurate temperature quantification in these processes is a very difficult task due
to several factors peculiar to living tissues, e.g., complex anatomical structure, blood perfusion, etc. [11]. In the context of
continuum models, considering the Fourier law and assuming that all heat transfer between the tissue and the blood occurs
in the capillaries, the temperature can be obtained by solving the widely used Pennes bioheat transfer equation [28]. Several
analytical and numerical methods have been employed to investigate the solution of the bioheat equation in different sce-
narios. An explicit solution in the case of transient boundary conditions using the Green’s function method can be found in
[32]; in [8] the authors consider transient coefficients by spectral element methods; oscillatory heat flux condition has been
considered in [34] by using the Laplace transform method; in [13] fundamental solutions were obtained in the case of Carte-
sian, cylindrical and spherical coordinates and in [3] the finite difference method was used in the case of concentric spherical
regions (see also [33]). Interesting inverse coefficient estimation problems involving the bioheat equation are addressed in
[37,38]. In all the above references only the one dimensional case was analyzed and few papers deal with multiple spatial
components. A 2D bioheat transfer model involving convective boundary in a rectangular region has been used in [2] to pre-
dict temperature of rectangular perfused organic tissues subjected to hyperthermic treatment. The authors obtained an
eigenfunction expansion for the temperature based on an integral transform method for the case where the perfusion
coefficient is constant. A 2D rectangular case is also addressed in [6], where the authors employ the radial basis function
approach combined with the fundamental solution method to handle spatial discretization.
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The purpose of the present paper is twofold: first, to obtain an explicit Fourier-based solution to the 2D bioheat model
subjected to convective boundary conditions in the case of space-wise dependent perfusion coefficient, and second, to intro-
duce a numerical method for constructing highly accurate numerical solutions for the problem under consideration based on
the well known pseudospectral collocation (CPS) method. Theoretically, because we deal with a linear second order parabolic
equation with mixed boundary conditions on a rectangle, our analysis will be carried out by using the Fourier method.
Obviously, alternative approaches such as the semigroup theory [24] or other procedures based on the construction of a suit-
able heat kernel, are also possible. Our choice for the Fourier method is motivated by its simplicity and as it allows a certain
degree of flexibility for treating some particular cases of physical interest, for instance, cases when the perfusion coefficient
is space-dependent [37,38], or when both the source term and the perfusion coefficient are constants. Although linear second
order parabolic equations are widely discussed in the literature, to the best our knowledge, this approach has not yet been
applied to the 2D Pennes model as we described before.

The numerical method we propose is based on the well known pseudospectral collocation Chebyshev method
[12,15,27,29,36] in a rectangular domain, which seems appropriate due to its capability of constructing highly accurate
numerical solutions. Besides being accurate, another interesting aspect of our numerical method is that it mitigates the well
known Gibbs phenomenon occurring at discontinuities, typical of numerical solution constructed by Fourier-based methods.
In addition, as we will see our method is much easier to implement than the one described in [8].

The paper is organized as follows. Section 2 describes background information on the bioheat Pennes conduction model,
including both the dimensional and non-dimensional forms necessary to describe the physical meaning of the variables in-
volved. In Section 3 we obtain a Fourier series solution for the problem and show the strength of the method in the case
when the perfusion coefficient is either space-dependent or constant, illustrating it numerically and testing its validity. Sec-
tion 4 describes in some details the proposed numerical method as well as a stability analysis that guarantees its efficiency.
Numerical results which illustrate the effectiveness of the method are presented and discussed in Section 5. The paper ends
with some conclusions in Section 6.

Throughout the paper L2ð�a; b½��c; d½Þ denotes the standard Hilbert space of square-integrable functions in the open rect-
angle �a; b½��c; d½, with the scalar product
hf ; gi ¼
Z b

a

Z d

c
fg dxdy:
2. Pennes equation

The evaluation of temperature fields in biological tissues must take into account complex thermal mechanisms which
arise due to microcirculatory blood perfusion, metabolic heat generation, anatomical structure of the tissue, and the heat
exchange between the skin and its environment [5,21]. A widely used approach is to regard the tissue as a continuum in
which the effects of the presence of a large numbers of vessels are collectively accounted to avoid local anatomical issues
[19,11]. In the seminal paper [28], Pennes considered this assumption and introduced the so called bioheat equation
qc hs ¼ r � ðjrhÞ þ hp þ hm þ he; ð1Þ
where h stands for the temperature of the tissue, s is the time variable, q; c and j denote the density, the specific heat and
the thermal conductivity of the tissue, respectively; he stands for the volumetric rate of external heat and hm; hp denote the
volumetric rates of metabolic and blood perfusion heat generation, respectively. To obtain (1), Pennes used energy conser-
vation principles assuming that the material is homogeneous and has isotropic thermal properties, as well as the constitutive
relation for the heat flux density h given by the Fourier law for heat conduction
h ¼ �jrh: ð2Þ
Under the assumption that the blood vessels are isotropic, and that the blood flow enters at arterial temperature but
reaches the tissue temperature before leaving the arterial system [31], Pennes concentrated all the perfusion information
into the term
hp ¼ wbcbðha � hÞ; ð3Þ
where ha stands for the arterial temperature, cb denotes the specific heat of the blood and wb is the so called blood perfusion
term which represents the mass flow rate of blood per unit volume of tissue. This means that the volumetric rate of heat
generation due to the blood perfusion is proportional to the difference of temperature between the vascular and extra-vas-
cular system. As pointed out in [19], the key assumption in (3) is that the heat transfer between blood vessels and the tissue
occurs mainly in the wall of capillaries, where the influence of the thermal effects due to blood velocity can be neglected. The
validity of (3) was checked throughout experimental measurements of the temperature in human tissues and the adjust-
ment of wb until the predicted temperature (solving (1)) agreed well with the measured temperature [19,9,7].

In the present work we consider a rectangular perfused tissue with length and thickness equal to L and 1, respectively.
That is to say, the tissue occupies the region 0 6 x� 6 L; 0 6 y� 6 1, where ðx�; y�Þ 2 R2, the boundary y� ¼ 1 represents the
upper skin surface, while the boundary y� ¼ 0 corresponds to a wall between the tissue and an adjoint large blood vessel [2].
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Thus the transient temperature of the tissue h ¼ hðx�; y�; sÞ is governed by the Pennes bioheat Eq. (1) with convective bound-
ary conditions:
qc hs � jDhþwbcbðh� haÞ ¼ hm þ he; 0 < x� < L; 0 < y� < 1; s > 0; ð4Þ
hx� ¼ 0; x� ¼ 0; 0 < y� < 1; s > 0; ð5Þ
hx� ¼ 0; x� ¼ L; 0 < y� < 1; s > 0; ð6Þ
jhy� ¼ 1ðh� h1Þ; 0 < x� < L; y� ¼ 0; s > 0; ð7Þ
h ¼ hb; 0 < x� < L; y� ¼ 1; s > 0; ð8Þ
h ¼ h0; 0 < x� < L; 0 < y� < 1; s ¼ 0; : ð9Þ
In (7), 1 denotes the heat transfer coefficient, h1 is the environmental temperature (in the adjacent blood vessel) and hb is
the skin surface temperature. The convective boundary condition (7) attempts to simulate the heat transfer between the tis-
sue and the adjoint blood vessel in y� ¼ 0, while (5)–(6) are adiabatic conditions. In the upper skin surface, the temperature is
prescribed, giving rise to the boundary condition (8). The initial and boundary value problem (4)–(9) very often appears in
connection with the modeling of heat transfer processes in tumor hyperthermia and detection of skin burn injury [6,22].

As widely discussed in literature, there are several limitations to be noted regarding the constitutive assumptions in the
Pennes bioheat model (1). For instance, the fundamental premise of considering living tissues as a continuum is questioned
by several authors [11,16,26]. They argue that a living tissue looks like a fluid saturated porous medium where complex
transport phenomena occur, as convection with heat internal generation and mass diffusion. In this vein, generalizations
of the standard bioheat transfer model (1) that attempt to simulate the nature of the porous medium have been proposed
[25,5]. Unlike the Pennes assumption of homogeneous and isotropic blood flow, in these models the effects of directional
convective mechanisms of heat transfer, which depend on the blood velocity (a priori known), are taken into account. This
is stressed also in [11], where a two-phase microscale approach is considered and the Navier–Stokes equations is used to
describe the dynamics of the blood velocity and pressure fields. Another relevant issue regarding the constitutive relations
of (1) is the Fourier law (2) for heat conduction in the tissue. When assuming (2), temperature disturbances will be propa-
gated at an infinite speed throughout the medium. But there are evidences of non-Fourier feature in the heat conduction due
to the interactions between the blood and the tissue [41,40]. In fact, perturbations in the medium propagate in a finite speed
and the thermal wave phenomenon occurs [1]. Then, to take into account the departure of the infinite propagation assump-
tion, (2) is usually replaced by hþ srhs ¼ �jrh, where sr is the so called thermal relaxation time [11]. As a consequence,
instead of the parabolic Eq. (1) the energy conservation principles give rise to a hyperbolic bioheat transfer equation
[39,11,1]. In connection with the above constitutive issues, the assumption (3) for the heat generation due to the blood per-
fusion is also controversial. Accordingly, modern experimental measurements indicate that, in some cases, a temperature
dependent expression for hp is more appropriate [9,20]. The replacement of hp in (3) by a temperature dependent expression
leads to a nonlinear version of (1), which is referred in [19] to as the modified Pennes equation. The temperature dependent
expression for hp accounts for the specificity of each tissue and its response to heat stress; for instance, Lang et al. [20] have
considered hp ¼ #ðhÞwbcbðha � hÞ, where # is an exponential function of the variable h; Lakhassi et al. [19] in turn, considered
hp as a square function of h. Numerical results which attempt to compare the constant and the temperature dependent cases
can be found in [9].

Although we are aware of the limitations and constitutive issues of the classical bioheat transfer Eq. (1), the extensions
and generalized models discussed in the previous paragraph will not be considered here. The reason is that, as pointed out in
[41], the Pennes equation has presented good agreement with experimental measurements when applied to a wide class of
problems. This is the case, for instance, when the blood perfusion rate must be determined from experimentally measured
local temperature gradients [22,38].

We now choose g0 > 0 as a reference source of heating generation, suppose that ha ¼ hb and introduce the following
dimensionless variables
U ¼ jg�1
0 L�2ðh� haÞ; M ¼ L�1; ðx; yÞ ¼ L�1ðx�; y�Þ t ¼ jq�1c�1L�2s;

Pf ¼ wbcbL2j�1; B ¼ 1Lj�1; G ¼ ðhe þ hmÞg�1
0 ; U1 ¼ jg�1

0 L�2ðh1 � haÞ;
U0 ¼ jg�1

0 L�2ðh0 � haÞ;
ð10Þ
to obtain the dimensionless Pennes equation which we will investigate in this work
Ut � DU þ Pf U ¼ G; 0 < x < 1; 0 < y < M; t > 0; ð11Þ
Ux ¼ 0; x ¼ 0; 0 < y < M; t > 0; ð12Þ
Ux ¼ 0; x ¼ 1; 0 < y < M; t > 0; ð13Þ
Uy ¼ BðU � U1Þ; 0 < x < 1; y ¼ 0; t > 0; ð14Þ
U ¼ 0; 0 < x < 1; y ¼ M; t > 0; ð15Þ
U ¼ U0; 0 < x < 1; 0 < y < M; t ¼ 0: ð16Þ
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The coefficient Pf in (11) is the so called perfusion coefficient which, in general, is time and spacewise-dependent as the
tissue is not always homogeneous. Some aspects of the experimental techniques used to estimate Pf can be found in [7,23].
As mentioned before, another approach is to use the Pennes equation in order to obtain Pf numerically from the solution of a
suitable inverse problem ([38,37,22]). Here, we consider only the direct problem (11)–(16), in the case where Pf does not
depend on time.

For our Fourier analysis of the bioheat problem, the boundary value problem (11)–(16) is first transformed by using aux-
iliary quantities defined by
nðyÞ ¼ BU1
M

yðy�MÞ; ð17Þ
which clearly satisfies (12)–(15), and
f ðx; y; tÞ ¼ Gðx; y; tÞ � Pðx; yÞnðyÞ þ 2BU1
M

: ð18Þ
Elementary analysis then shows that the solution to (11)–(16) can be expressed as U ¼ V þ n, where V solves the trans-
formed problem
Vt � DV þ Pf V ¼ f ; 0 < x < 1; 0 < y < M; t > 0; ð19Þ
Vx ¼ 0; x ¼ 0; 0 < y < M; t > 0; ð20Þ
Vx ¼ 0; x ¼ 1; 0 < y < M; t > 0; ð21Þ
Vy � BV ¼ 0; 0 < x < 1; y ¼ 0; t > 0; ð22Þ
V ¼ 0; 0 < x < 1; y ¼ M; t > 0; ð23Þ
V ¼ U0 � n; 0 < x < 1; 0 < y < M; t ¼ 0 ð24Þ
which we will use in our Fourier analysis.

3. Fourier series approach

In this section we shall describe the Fourier method to obtain solutions to the initial and boundary value problem
(19)–(24). To this end we start by noticing that the standard separation of variables method together with the assumption
that we seek solutions of the form Vðx; y; tÞ ¼ cðtÞwðx; yÞ lead us to the following eigenvalue problem associated with the
elliptic operator L :¼ �Dþ Pf I
Find k 2 R and a nontrivial w satisfying the boundary conditions (20)–(23) such that
Lw ¼ kw; 0 < x < 1; 0 < y < M: ð25Þ
We now notice that if Pf is a bounded nonnegative function defined in �0;1½ � �0;M½ and B > 0, then it can be proved that
there exists a non-decreasing sequence of real positive eigenvalues fkkg1k¼1 of L such that limk!þ1kk ¼ þ1 and an orthonor-
mal basis fwkg

1
k¼1 of L2ð�0;1½ � �0;M½Þ consisting of eigenfunctions of L. This result follows from spectral theory for elliptic

operators [10, Theorems 6 and 7 in Appendix D], taking into account the very nature of the boundary conditions (20)–
(23) and the convexity of the domain. The key idea is to consider elliptic regularity results on convex polygons [4, Theorems
2.1, 3.2.4 and 3.2.5] in order to show that wk is sufficiently regular such that (25) makes sense. The proofs of these results are
outside the scope of the paper and are omitted.

With the existence of families fkkg1k¼1; fwkg
1
k¼1 ensured, we now seek solutions to (19)–(24) defined by
Vðx; y; tÞ ¼
Xþ1
k¼1

ckðtÞwkðx; yÞ; ð26Þ
where each coefficient ckðtÞ is regarded as unknown. Formally, we can differentiate (26) term by term with respect to x; y and
t as many times as needed. As a consequence, replacing (26) in (19), recalling the definition of L and taking into account the
equality (25), we get
Xþ1

k¼1

½c0kðtÞ þ kkckðtÞ�wkðx; yÞ ¼ f ðx; y; tÞ; 0 < x < 1; 0 < y < M; t > 0;

Xþ1
k¼1

ckð0Þwkðx; yÞ ¼ U0ðx; yÞ � nðyÞ; 0 < x < 1; 0 < y < M;

ð27Þ
for each k 2 N. Now, for fixed j 2 N, if we multiply (27) by wj, integrate the resulting expression in ½0;1� � ½0;M� and use the
orthogonality of fwkg

1
k¼1 in L2ð�0;1½ � �0;M½Þ, then we obtain the following initial value problem for cj
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c0jðtÞ þ kjðtÞcjðtÞ ¼ fjðtÞ; t > 0

cjð0Þ ¼ aj;
ð28Þ
where
fjðtÞ ¼
Z 1

0

Z M

0
f wjdxdy; and aj ¼

Z 1

0

Z M

0
ðU0 � nÞwjdxdy: ð29Þ
Elementary calculus shows that the solution of (28) is given by
cjðtÞ ¼ aje�kj t þ
Z t

0
fjðsÞekjðs�tÞds:
Hence we have that
Vðx; y; tÞ ¼
Xþ1
k¼1

ake�kkt þ
Z t

0
fkðsÞekkðs�tÞds

� �
wkðx; yÞ: ð30Þ
In order to show that V given in (30) actually satisfies (19)–(23) and matches the initial condition (24), convergence re-
sults using suitable norms for the series (30) and its derivatives have to be established. This requires some assumptions on
U0 and f which depend to some extent on the type of solution to (19)–(24) we want. For instance, if U0 2 L2ð�0;1½ � �0;M½Þ
and f is square-integrable in �0;1½��0;M½ � �0; T½, (30) is a weak solution of (19)–(24) considering 0 6 t 6 T , as it can be seen
following the lines of Chapter III, Section 3 in [18]. More regular solutions to (19)–(24) require smoothness conditions on U0

and f. When this is the case, a sequence of estimates in a Sobolev spaces setting is required in order to obtain the extra reg-
ularity through embedding theorems (see Section 7.1 in [10]). Although this is a standard procedure, there are some diffi-
culties due to the convective boundary conditions and the rectangular domain. However, because one of the main
purposes of this is paper is to address the numerical aspects about the construction of (30), the theoretical technicalities
in Sobolev space settings are omitted. On the other hand, it is worth noticing that there are situations where U0 � n does
not match the conditions (20)–(23) (for example, when U0 is constant). In these cases, the initial condition (24) is only sat-

isfied in the following average sense: limt!0þ
R 1

0

RM
0 Vðx; y; tÞuðx; yÞdxdy ¼

R 1
0

RM
0 ðU0 � nÞðx; yÞuðx; yÞdxdy for all smooth func-

tions u defined in ½0;1� � ½0;M�. The reason of this is that, when t ¼ 0, convergence of series (30) holds only in L2-norm.
The construction of (30) becomes simple when the perfusion coefficient comes in the form Pf ðx; yÞ ¼ pðxÞ þ qðyÞwith both

p and q bounded and nonnegative in �0;1½��0;M½, as occurs, e.g., in certain inverse problems devoted to the estimation of
Pf [2,37]. Of course, applying the separation of variables method to the problem (25), we obtain the following regular
Sturm–Liouville problems
X 00ðxÞ þ ðl2 � pðxÞÞXðxÞ ¼ 0; 0 < x < 1

X 0ð0Þ ¼ X0ð1Þ ¼ 0;
ð31Þ

Y 00ðyÞ þ ðc2 � qðyÞÞYðyÞ ¼ 0; 0 < y < M

YðMÞ ¼ 0; Y 0ð0Þ � BYð0Þ ¼ 0
ð32Þ
from which the eigenpairs fkk;wkg have to be determined. Arguing as before, there exist nondecreasing sequences fl2
kg
1
k¼1

and fc2
kg
1
k¼1 of positive eigenvalues for (31) and (32) such that limk!þ1ck ¼ þ1; limk!þ1lk ¼ þ1, with respective eigen-

functions bXk and bY k, such that fbXkg
1
k¼1 and fbY kg

1
k¼1 are orthonormal basis of L2ð0;1Þ and L2ð0;MÞ, respectively. It is easy

to check that fbXi
bY jg

1
i;j¼1 is an orthonormal basis for L2ð�0;1½��0;M½Þ. Obviously, members of fbXi

bY jg
1
i;j¼1 can be enumerated

in infinitely many ways and for practical purposes we will consider one of them which picks out low frequencies first. In

fact, let us consider an enumeration of fbXi
bY jg

1
i;j¼1 denoted by fwkg

1
k¼1 and obtained through the following procedure:
w1 ¼ bX1
bY 1;

w2 ¼ bX1
bY 2; w3 ¼ bX2

bY 1;

w4 ¼ bX1
bY 3; w5 ¼ bX2

bY 2; w6 ¼ bX3
bY 1;

ð33Þ
and in general, for given m 2 N; m P 1, taking k ¼ 1þ mðm�1Þ
2 , we have
wk ¼ bX1
bY m; wkþ1 ¼ bX2

bY m�1; . . . ;wkþm�1 ¼ bXm
bY 1: ð34Þ
Analogously, we let
k1 ¼ l2
1 þ c2

1; k2 ¼ l2
1 þ c2

2; k3 ¼ l2
2 þ c2

1;

k4 ¼ l2
1 þ c2

3; k5 ¼ l2
2 þ c2

2; k6 ¼ l2
3 þ c2

1; . . . :
ð35Þ
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It is straightforward to check that each wk solves problem (25) considering the respective eigenvalue kk. The case q > 0
with q constant and p ¼ 0 is relatively simple since kk and wk can be determined explicitly. Indeed, from elementary
calculations it can be seen that
l2
i ¼ ði� 1Þ2p2; i ¼ 1;2; . . . ; ð36Þ
and that c2
j ¼ b2

j þ q, where bj satisfies the non-linear equation:
bj cotðbjMÞ ¼ �B; j ¼ 1;2; . . . : ð37Þ
Also, for i; j 2 N the normalized eigenfunctions are proven to be
bXi ¼ Xi=Ni; bY j ¼ Yj=Mj; ð38Þ
where
XiðxÞ ¼ cosðlixÞ; Ni ¼
Z 1

0
X2

i ðxÞ dx
� �1=2

¼
1; if i ¼ 1ffiffiffi
2
p

=2; if i – 1

�
ð39Þ
and
YjðyÞ ¼ sinðbjðM � yÞÞ; Mj ¼
Z M

0
Y2

j ðyÞ dy
� �1=2

¼ M
2
� 1

4bj
sinð2bjMÞ

 !1=2

: ð40Þ
3.1. Validation of Fourier approach

In order to validate the solution of the bioheat problem (11)–(16) expressed in series form for the constant case
Pf ¼ q > 0, we shall now describe a numerical example where the source term is defined by
Gðx; y; tÞ ¼ eaty2ðy�MÞ cosðpxÞ½a cosðctÞ � c sinðctÞ� � eat cosðctÞ cosðpxÞ½�p2y2ðy�MÞ þ ð6y� 2MÞ� � 2BU1
M

þ Pf eat cosðctÞy2ðy�MÞ cosðpxÞ þ BU1
M

yðy�MÞ
� �
where a; c are arbitrary real constants, and the initial temperature is
U0ðx; yÞ ¼ y2ðy�MÞ cosðpxÞ þ BU1
M

yðy�MÞ:
In this situation, the solution for this bioheat problem can be shown to be
Uðx; y; tÞ ¼ eat cosðctÞy2ðy�MÞ cosðpxÞ þ BU1
M

yðy�MÞ; ð41Þ
which, in series form is (see (30))
Uðx; y; tÞ ¼ BU1
M

yðy�MÞ þ
X1
k2Jm

m2N; mP1

ake�kktwkðx; yÞ þ
X1
k2Jm

m2N; mP1

Z t

0
fkðsÞe�kkðt�sÞwkðx; yÞds; ð42Þ
where J m is the set of indexes defined by
J m ¼ f‘ 2 N=‘ ¼ mðm� 1Þ=2þ i; i ¼ 1; . . . ;mg ð43Þ
the eigenpairs fkk;wkg are described in (33)–(35) and the coefficients ak; fk are given in (29). The main purpose here is to
illustrate the accuracy of approximate solutions for the bioheat problem constructed by truncating the series above to a
finite number of terms.

For the given data, the coefficients ak, for given m 2 N and k ¼ 1þmðm� 1Þ=2; i 2 f1; . . . ;mg, are shown to satisfy
akþi�1 ¼
Z 1

0

Z M

0
y2ðy�MÞ cosðpxÞwkþi�1ðx; yÞdydx ¼

0; if i – 2

�
ffiffi
2
p
ðMbm�1 cosðbm�1MÞ�3 sinðbm�1MÞþ2Mbm�1Þ

b4
m�1Mm�1

; if i ¼ 2:

(

In addition, tedious calculations show that the integral in the second sum reduces to 0 if i – 2, while for i ¼ 2 it holds
Z t

0
fkþ1ðsÞe�kkþ1ðt�sÞds ¼

ffiffiffi
2
p

2Mm�1
e�ðl

2
2þc2

m�1Þt
Z t

0

Z M

0
eðl

2
2þc2

m�1Þsðeasy2ðy�MÞ½a cosðcsÞ � c sinðcsÞ� � eas cosðcsÞ

½�p2y2ðy�MÞ þ ð6y� 2MÞ� þ Pf ½eas cosðcsÞy2ðy�MÞ�Þ sinðbm�1ðM � yÞÞÞdyds:



Table 1
Important numbers associated with the series (30) of (41).

j bj kjðj�1Þ=2þ2 ajðj�1Þ=2þ2 f jðj�1Þ=2þ2 ake�kk tf

1 1.5803e+00 2.2337e+01 0 0 0
2 4.7156e+00 1.2467e+01 �4.6589e�02 3.8503e�03 �3.8496e�03
3 7.8559e+00 3.2206e+01 �5.0325e�02 8.0945e�05 �8.0239e�05
4 1.0997e+01 7.1685e+01 �6.6664e�03 9.7482e�08 �3.9577e�09
5 1.4138e+01 1.3090e+02 �3.4199e�03 4.7979e�08 �1.4588e�14
6 1.7280e+01 2.0986e+02 �1.2644e�03 1.7739e�08 �7.4777e�22
7 2.0421e+01 3.0856e+02 �8.4292e�04 1.1826e�08 �1.3324e�30
8 2.3563e+01 4.2700e+02 �4.3494e�04 6.1020e�09 �3.5447e�41
9 2.6705e+01 5.6518e+02 �3.2537e�04 4.5647e�09 �2.6381e�53
10 2.9846e+01 7.2310e+02 �1.9814e�04 2.7795e�09 �3.0841e�67
11 3.2988e+01 9.0076e+02 �1.5809e�04 2.2160e�09 �9.1155e�83
12 3.6129e+01 1.0982e+03 �1.0631e�04 1.4853e�09 �4.3817e�100
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As a consequence, only the coefficients ajðj�1Þ=2þ2; j P 1, play some role in the series (42), and the same observation

applies for the fk. In our computations, the integrals above, which are denoted by f kþ1, and the coefficients fkþ1 themselves,
are all computed by using Gaussian quadrature. The first twelve coefficients ak and fk, the corresponding eigenvalues kk, as
well as the first twelve roots bj, all of them corresponding to the data
a ¼ �50; b ¼ 3p; B ¼ 0:015; Pf ¼ 0:1; M ¼ 1; and U1 ¼ 0:001; ð44Þ
are displayed in Table 1. From this table, it is apparent that while the eigenvalues kk get large for small k, the coefficients ak

decrease with k, becoming fairly small rapidly. A by product of this is that depending on the value of t, the products ake�kktf

can become fairly small even for small k, as seen in the last column of Table 1, in which the products for t ¼ tf ¼ 0:2 are
displayed. Notice that at this value of t, only the first five terms of the series play some role. In other words, from a practical
point of view, the final result at t ¼ 0:2 will not suffer any modification irrespective of the number of terms (larger than five)
being used.

Finally, to evaluate the accuracy of the solution constructed by the Fourier method, introduce the ‘‘error’’
Eðx; y; tÞ ¼ Uðx; y; tÞ � bUðx; y; tÞ, where bUðx; y; tÞ denotes the solution constructed by truncating the series (42). Then, for given
t, a way to measure the accuracy in bUðx; y; tÞ, is by computing any matrix norm [14] of matrix E with entries Ei;j ¼ Eðxi; yj; tÞ,
where ðxi; yjÞ are gridpoints on O. For the example under consideration, the error corresponding to a mesh of 21� 21 grid
points and measured by the matrix 2-norm at t ¼ 0:2 is
kEk2 ¼ 1:9827e� 08:
Numerical results that illustrate the behavior of the approximate solution at t ¼ 0:2 and the corresponding error are dis-
played in Fig. 1.

We close the section by addressing the particular case where the initial temperature and the source term are constant.
This case appears in conjunction with inverse problems in cancer therapy [22] where one of the major goals is the identifi-
cation of the perfusion coefficient Pf from temperature histories of certain rectangular region of organic tissue. Assume that
Pf ¼ q > 0 and G are constants. Then, after some calculation, we obtain the following solution
Uðx; y; tÞ ¼ gðyÞ þ
X1
k¼1

ake�kktwkðx; yÞ; ð45Þ
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Fig. 1. Approximate solution computed by Fourier method and the ‘‘error’’ Eðx; y; tÞ.
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where
gðyÞ ¼ G
q

1� coshð
ffiffiffi
q
p
ðy�MÞÞ½ � þ BG� BqU1 � BGc� G

ffiffiffi
q
p

s

qð ffiffiffiqp cþ B sÞ sinhð
ffiffiffi
q
p
ðy�MÞÞ; ð46Þ
with c ¼ coshð ffiffiffiqp MÞ; and s ¼ sinhð ffiffiffiqp MÞ.
Numerical results that illustrate the above statement are postponed to Section 5.

4. Chebyshev pseudoespectral numerical solution

In the previous section we saw that the series solution of the bioheat equation (11)–(16) can be readily computed when
the perfusion coefficient is constant. This may no be the case if the eigenvalues and corresponding eigenfuctions are difficult
or impossible to determine. In this section we shall consider an alternative approach based on the well known pseudospec-
tral collocation (CPS) method. The CPS approach has become an efficient way to construct approximate solutions to time
dependent partial differential equations (PDEs), see, e.g., [27,12,15,17,29,36], due to its high precision and relatively lower
computation cost compared with difference finite methods. In this case, the underlying idea is to approximate spatial deriv-
atives by using the differentiation Chebyshev matrix, which gives rise to a system of ordinary differential equations (ODEs)
where only the time derivative appears, and then integrate in time by some appropriate numerical scheme for ODEs. For
simplicity we shall consider a mesh consisting of ðnþ 1Þ � ðnþ 1Þ grid points on the unit square based on ðnþ 1Þ Cheby-
shev-Gauss Lobatto points in each direction:
xi ¼
1
2

1� cos
pi
n

� �
; 0 6 i 6 n; yj ¼

1
2

1� cos
pj
n

� �
; 0 6 j 6 n; ð47Þ
and assume that the grid points are numbered in the lexicographic ordering, as seen in Fig. 2.
In order to approximate spatial derivatives, let D denote the ðnþ 1Þ � ðnþ 1Þ differentiation Chebysheb matrix in ½0;1�

and let it be expressed as
D ¼ ½d0 d1 � � � dn� ¼

rT
0

..

.

rT
n

2664
3775; di; riR

nþ1: ð48Þ
Also, for later use define
D1 ¼ ½d1 d2 � � � dn�1�; D2 ¼

rT
1

..

.

rT
n�1

2664
3775: ð49Þ
To approximate second order derivatives with respect to x, let
UjðtÞ ¼ ½Uðx0; yj; tÞ; Uðx1; yj; tÞ; � � �Uðxn; yj; tÞ�
T
; 0 6 j 6 n: ð50Þ
Then, since the second order Chebyshev differentiation matrix, D2, can be expressed as
D2 ¼ d0rT
0 þ d1rT

1 þ � � � þ dnrT
n; ð51Þ
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Fig. 2. Grid comprising 16 points corresponding to n ¼ 3.
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we get
Uxxðx0; yj; tÞ
Uxxðx1; yj; tÞ

..

.

Uxxðxn; yj; tÞ

2666664

3777775 � D2

Uðx0; yj; tÞ
Uðx1; yj; tÞ

..

.

Uðxn; yj; tÞ

2666664

3777775 ¼ d0rT
0UjðtÞ þ D1D2UjðtÞ þ dnrT

nUjðtÞ � D1D2UjðtÞ; 0 6 j 6 n� 1; ð52Þ
where we have used the fact that rT
i Uj � Uxðxi; yj; tÞ, the boundary conditions 12,13), and the definitions (49). Therefore, tak-

ing the ordering of the grid points into account, we can consider the vector of all unknown on the mesh:
UðtÞ ¼ ½U0ðtÞT U1ðtÞT � � � Un�1ðtÞT �
T
;

and use (52) to obtain
Uxxðx0; y0; tÞ
..
.

Uxxðxn; y0; tÞ
..
.

Uxxðx0; yn�1; tÞ
..
.

Uxxðxn; yn�1; tÞ

2666666666666664

3777777777777775
� ðIn � D1D2ÞUðtÞ: ð53Þ
This completes the approximation of second order derivatives with respect to x in the mesh. Similarly, to approximate
second order derivatives with respect to y, for fixed k consider
eUkðtÞ ¼ ½Uðxk; y0; tÞ; Uðxk; y1; tÞ; � � � Uðxk; yn; tÞ�

T

and use (51) again to obtain
Uyyðxk; y0; tÞ
Uyyðxk; y1; tÞ

..

.

Uyyðxk; yn; tÞ

266664
377775 � d0rT

0
eUkðtÞ þ ðd1rT

1 þ � � � þ dnrT
nÞeUkðtÞ; 0 6 k 6 n: ð54Þ
Let di and ri be the vectors obtained by taking the first n components of di and ri, respectively, and let
D1 ¼ ½d1 . . . dn�; D2 ¼

rT
1

..

.

rT
n

2664
3775: ð55Þ
Then, since rT
0
eUkðtÞ � Uyðxk; y0; tÞ, by virtue of the boundary conditions (14)–(15), we get
Uyyðxk; y0; tÞ
Uyyðxk; y1; tÞ

..

.

Uyyðxk; yn�1; tÞ

266664
377775 � BUðxk; y0; tÞd0 þ D1D2

Uðxk; y0; tÞ
Uðxk; y1; tÞ

..

.

Uðxk; yðn�1Þ; tÞ

2666664

3777775� BU1d0 � Bd0eT
1 þ D1D2

� 	 Uðxk; y0; tÞ
Uðxk; y1; tÞ

..

.

Uðxk; yðn�1Þ; tÞ

2666664

3777775� BU1d0

ð56Þ
Based on (56), the vector of second order derivatives with respect to y in all points of the grid can be approximated by
Uyyðx0; y0; tÞ
..
.

Uyyðxn; y0; tÞ
..
.

Uyyðx0; yn�1; tÞ
..
.

Uyyðxn; yn�1; tÞ

2666666666666664

3777777777777775
� Bd0eT

1 þ D1D2

� 	
� Iðnþ1Þ

h i
UðtÞ � BU1H; ð57Þ
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where H ¼ ½HT
0; . . . ;HT

n�1�
T
, with Hi ¼ eT

iþ1d0 ½1; . . . ;1�T 2 Rnþ1; i ¼ 0; . . . ; n� 1. This completes the discretization of spatial
derivatives in the mesh. Now, neglecting discretization errors and denoting the vector of approximations to UðtÞ by WðtÞ,
combination of (53), (57) and (11) yields an initial-value problem for a system of linear ordinary differential equations of
the form
W 0ðtÞ ¼ AWðtÞ þ SðtÞ;
Wð0Þ ¼ U0;

�
ð58Þ
where
A ¼ ðIn � D1D2Þ þ ðBd0eT
1 þ D1D2Þ � Iðnþ1Þ � Pf

h i
; ð59Þ

Pf ¼ diag Pf ðx0; y0Þ; . . . ; Pf ðxn; y0Þ; . . . ; Pf ðx0; yn�1Þ; . . . ; Pf ðxn; yn�1Þ

 �

; ð60Þ
and
SðtÞ ¼ FðtÞ � BU1H; ð61Þ
with
FðtÞ ¼ ½Fðx0; y0; tÞ; . . . ; Fðxn; y0; tÞ; . . . ; Fðx0; yn�1; tÞ; . . . ; Fðxn; yn�1; tÞ�
T
: ð62Þ
It should be noticed that the solution to the initial-value problem (58) is
WðtÞ ¼ eAtWð0Þ þ
Z t

0
eAðt�sÞSðsÞds ð63Þ
and that it can be computed using eigenvalues and eigenvectors of A.
The capability of the CPS method to produce highly accurate numerical solutions relies on the fact that accurate approx-

imation to the most important features of the EDP, namely the eigenvalues kk and eigenmodes wk, are now concentrated in
the eigensystem of matrix A. To illustrate this, the first 100 eigenvalues of the continuous problem as well as their approx-
imations obtained from matrix A for n ¼ 30, are displayed in Fig. 3.

To illustrate something similar with regard to eigenmodes, the first four continuous eigenmodes and the first four discrete
eigenmodes, for the same data set given in (44), are all displayed in Fig. 4. Note that for n ¼ 30, three of the continuous eigen-
modes are already captured.

Summarizing, the CPS-based numerical approach for computing approximate solutions to the initial and boundary value
problem involving the bioheat equation reduces to apply time integration methods for ODEs, like multi-step or Runge–Kutta
methods, for solving the initial value problem (58). In our computations we integrate in time by the fourth order Runge–Kut-
ta method which we denote by CPS-RK4. If we let Vk denote the value that approximates VðtkÞ; tk ¼ Dt k, the method can be
outlined as follows:
CPS-RK4:
For k P 0, calculate
Wkþ1 ¼Wk þ
Dt
6
ðF1 þ 2F2 þ 2F3 þ F4Þ; ð64Þ
where
F1 ¼ AWk þ SðtkÞ; F2 ¼ A Wk þ
Dt
2

F1

� �
þ S tk þ

Dt
2

� �
F3 ¼ A Wk þ

Dt
2

F2

� �
þ S tk þ

Dt
2

� �
; F4 ¼ A Wk þ DtF3ð Þ þ Sðtkþ1Þ:
4.1. Stability considerations

This section is concerned with the problem of determining the maximum stepsize for RK4 which will assure stable inte-
gration of the system of ODEs (58). Regarding this, it is well known that for ODEs of the form (58) with system matrix A, close
to normal, the stepsize Dt has to be chosen is such a way that
DtKðAÞ 	 S; ð65Þ
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where KðAÞ denotes the spectrum of A and S denotes the stability region of the time integrator. As far as RK4 is concerned,
based on the fact that the left end of the interval of absolute stability for this method is known to be approximately 2.78, it
then follows that the maximum timestep can be calculated by the formula
Dtmax ¼
2:78
qðAÞ ; ð66Þ
where qðAÞ denotes the spectral radius of A. Since the system matrix of the bioheat equation depends only on the constant B
and on the perfusion coefficient, Pf , see (59), the maximum timestep will depend on these quantities as well. As an example,
the maximum timestep determined by the eigenvalue analysis for several values of n, for the case Pf constant, is displayed in
Table 2. These values correspond to Pf ¼ 0:1 and B ¼ 0:015.

However, it is also known that for non normal matrices the above stability condition is not always reliable and frequently
seen to fail when the system matrix is far from normal. Indeed, as demonstrated and numerically illustrated in [30,35], in
Table 2
Maximum timestep for stable integration of the
bioheat problem via RK4.

n Dtmax

4 0.018513330978850
8 0.001591237648635
16 0.000108769056027
24 0.000021833578083
32 0.000006946990495
64 0.000000436523827
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these cases the maximum timestep must be chosen in such a way that the �-pseudospectrum of DtA lie within a distance
0ð�Þ þ 0ðDtÞ of the stability region as both � and Dt remain small enough. The spectrum and pseudospectra of matrix A
for n ¼ 24 and DtS, the scaled region of absolute stability of RK4 with Dt shown in Table 2, are displayed in Fig. 5. Since with
this Dt the �-pseudospectra of A fall well inside the scaled region of absolute stability for small �, it can be concluded that
both the pseudoeigenvalue and the eigenvalue criteria are actually satisfied and therefore, the stability limits on timestep Dt
for stable integration determined by the spectral radius of A is appropriate in this case; the same holds for other values of n.

5. Numerical examples

We now numerically illustrate the effectiveness of the CPS-based approach when applied to our bioheat model. Three
examples are considered and implemented using MATLAB.

Example 1. We consider the bioheat problem using the data set (44). The purpose is to compare the accuracy of the
numerical solution obtained by the Fourier method against the one obtained by CPS-RK4. To this end, we take n ¼ 20, which
implies a grid of 21� 21 points and a system matrix A of size 420� 420, and run CPS-RK4 using a timestep Dt ¼ 0:00004.
The results are displayed in Fig. 6. Comparing the ‘‘ error surface’’ obtained via CPS-RK4 with that obtained using the Fourier
method (see Fig. 1), we see that the superiority of CPS-RK4 in terms of accuracy is apparent.
Example 2. The goal of this example is to assess the quality of approximate solutions obtained by both the Fourier method
and CPS-RK4 for the case where the initial temperature U0, the source term G, and the perfusion coefficient Pf are all con-
stant, and therefore the exact solution to the bioheat problem is not available. In this case, the perfusion coefficient is set to
Pf ¼ 4:5, the initial temperature is U0 ¼ 0:05, and the source term is G ¼ 0:25. The rest of parameters are the same as in (44).
With regard to the solution in series form, note that only the coefficients ak and corresponding eigenmodes are required. In
this case, for each m 2 N; k ¼ 1þmðm� 1Þ=2 and i 2 f1; . . . ;mg, it follows that
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ig. 6. Approximate solution computed by CPS-RK4 and corresponding error with respect to the exact solution in a grid of 21� 21 points.
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akþi�1 ¼
Z 1

0

Z M

0
U0 � gðyÞÞð Þwkþi�1ðx; yÞdydx ¼ T0

Z 1

0

Z M

0

bXiðxÞbY m�iþ1ðyÞdydx�
Z 1

0

Z M

0
gðyÞbXiðxÞbY m�iþ1ðyÞdydx
After some calculations we get
akþi�1 ¼
0; if i – 1

U0
bmMm

ðcosðbmMÞ � 1Þ � 1
Mm

RM
0 gðyÞ sinðbmðM � yÞÞdy; if i ¼ 1:

(

This shows that only the coefficients of the form ajðj�1Þ=2þ1; j P 1, as well as the corresponding eigenmodes, are required to

construct the solution in series form. Having stated this, the sought coefficients are computed by using Gaussian quadrature
and the sum is performed as in the example of the previous section but now at two time levels, the first one at t ¼ 0:00004
and the other one at t ¼ 0:1. In addition, CPS-RK4-based solutions using nþ 1 ¼ 21 grid points are also computed. The
results for t ¼ 0:00004 are displayed in Fig. 7 (first row).

In this case we note that the Fourier-based solution starts to oscillate near the boundary, thus confirming the well-known
Gibbs phenomenon attributed to the Fourier method in the presence of discontinuities, and that the CPS-RK4-based solution
does not suffer from these difficulties. The solutions corresponding to the time level t ¼ 0:1, displayed in Fig. 7 (second row),
show that both methods calculate essentially the ‘‘same solution’’.
Example 3. Spatial-dependent Perfusion coefficient case
We now illustrate the effectiveness of CPS-RK4 with two examples where the coefficient Pf is nonsmooth and dependent

on x. In these cases, the source term Gðx; yÞ is chosen so that the solution Uðx; yÞ of the bioheat problem is the function
defined in (41), where a; b; B;M and U1 are the same as in (44), and where the perfusion coefficient for each case is as in
Fig. 8.

The results of the experiment for the case where n ¼ 20 and the perfusion coefficient is as in Fig. 8 (right) are displayed in
Fig. 9. The results for the other case were very similar and are not included here.

6. Conclusions

A two dimensional Pennes equation subjected to mixed boundary conditions in a rectangle was considered. Using the
Fourier method we obtain the solution of this problem explicitly in terms of a series depending on the eigenfunctions
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Fig. 7. Approximate solution computed by Fourier and CPS-RK4 methods on a grid of 21� 21 points at two time levels.
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and eingenvalues of the elliptic operator L. Numerical results showed that convergence of the series can be very fast pro-
vided the solution satisfies certain smoothness condition. Further, to assess the accuracy of the solution expressed in series
form, we introduced a pseudospectral numerical method capable of constructing highly accurate numerical solutions. The
method was illustrated numerically and its efficiency verified. Finally, the authors believe that the theory and the numerical
method can serve as the basis for new methods in inverse perfusion coefficient estimation problems. This is the subject of
ongoing research.
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