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Wall curvature is a widely used technique to passively enhance convective heat transfer that has proven
to also be effective in the thermal processing of highly viscous fluids. These geometries produce a highly
uneven convective heat-flux distribution at the wall along the circumferential coordinate, thus affecting
the performance of the fluid thermal treatment. Although many authors have investigated the forced
convective heat transfer in coiled tubes, most of them have presented the results only in terms of the
Nusselt number averaged along the wall circumference. A procedure to estimate the local convective wall
heat flux in coiled tubes is presented and tested in this paper: the temperature distribution maps on the
external coil wall were employed as input data of the inverse heat conduction problem in the wall under
a solution approach based on the Tikhonov regularisation method with the support of the fixed-point
iteration technique to determine a proper regularisation parameter. The investigation was focused on
the laminar flow regime.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Wall curvature is among the most frequently used passive tech-
niques to enhance convective heat transfer. The effectiveness of
wall curvature occurs because it gives origin to the centrifugal
force in the fluid: this phenomenon induces local maxima in the
velocity distribution that locally increase the temperature gradi-
ents at the wall by maximising the heat transfer [1–6]. The asym-
metrical distribution of the velocity field over the cross-section of
the tube leads to a significant variation in the convective heat-
transfer coefficient along the circumferential angular coordinate:
it presents higher values at the outer bend side of the wall surface
than at the inner bend side.

This irregular distribution may be critical in some industrial
applications, such as in those that involve a thermal process. For
instance, in food pasteurisation, the irregular temperature field in-
duced by the wall curvature could reduce the bacteria heat-killing
or could locally overheat the product. Therefore, to predict the
overall performance of heat-transfer apparatuses that involve the
use of curved tubes, it is necessary to know the local distribution
of the convective heat-transfer coefficient not only along the axis
of the heat-transfer section but also at the fluid-wall interface
along the cross-section circumference.

Although many authors have investigated the forced convective
heat transfer in coiled tubes, most of them have presented the re-
sults only in terms of the Nusselt number averaged along the wall
circumference: only a few authors have studied the phenomenon
locally, and most of them have adopted the numerical approach.

Yang et al. [7] presented a numerical investigation on the fully
developed laminar convective heat transfer in a helicoidal pipe,
with particular attention to the effects of torsion on the local
heat-transfer coefficient. In particular, the authors reported the
Nusselt number distribution varying the coil pitch, and they
showed that, due to torsion, the local heat-transfer coefficient,
compared to the case of an ideal torus, is increased on half of the
tube wall while it is decreased on the other half.

Jayakumar et al. [8] numerically analysed the turbulent heat trans-
fer in helically coiled tubes and presented the local Nusselt number at
various cross sections along the curvilinear coordinate. The results
showed that, on any cross section, the highest Nusselt number is on
the outer side of the coil, and the lowest one is expected on the inner
side. Moreover, the authors proposed a correlation for predicting the
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Nomenclature

a coil diameter (m)
Dint tube internal diameter (m)
De Dean number (–)
h convective heat-transfer coefficient (W/m2 K)
g gravitational acceleration (m/s2)
Gr Grashof number Gr ¼ g � bf � ðTw � TbÞ � D3

int � q2
f =l

2
f (–)

Nu Nusselt number (–)
q convective heat flux (W/m2)
q convective heat-flux vector (W/m2)
qg internal heat generation per unit volume (W/m3)
r radial coordinate m
Re Reynolds Number (Re = w�Di�qf/lf) (–)
Renv overall heat-transfer resistance between the tube wall

and the surrounding environment (m2 K/W)
T temperature (K)
w mean axial velocity
X sensitivity matrix (m2 K/W)

P coil pitch (m)
a angular coordinate (rad)
b volumetric thermal expansion coefficient (K�1)
C dimensionless curvature of the coil (C = Dint/a)
P dimensionless torsion of the coil (P = P/pa)
k thermal conductivity (W/m K)
l dynamic viscosity (Pa s)
q density (kg/m3)

Subscripts, superscripts
b bulk
env environment
ext external
f fluid
int internal
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local Nusselt number as a function of the average Nusselt number and
the angular location for both the constant temperature and the con-
stant heat-flux boundary conditions.

Bai et al. [9] experimentally studied the turbulent heat transfer
in helically coiled tubes using deionised water as the working fluid.
As expected, they found that the local heat-transfer coefficient was
not evenly distributed along the periphery of the cross section and
that, in particular, at the outside surface of the coil, it was three or
four times higher than that at the inside surface.

Bozzoli et al. [10] presented preliminary results regarding the
local convective heat coefficient in coiled tubes for the laminar
flow regime: because the estimation method proposed in this pa-
per was based on the non-linear inverse heat conduction problem
(IHCP), several strong approximations in the formulation of the
model were adopted due to the restrictions imposed by the high
computational cost of the minimisation algorithm.

To the authors’ knowledge, the experimental data presented by
Bozzoli et al. [10] are the only data available on the local heat
transfer in coiled tubes for the laminar flow regime that is fre-
quently encountered in industrial fields where highly viscous flu-
ids are processed.

As shown by Bozzoli et al. [10], the solution of the IHCP in the
wall, starting from the temperature distribution acquired on the
external wall surface, is a robust tool to estimate the local convec-
tive heat-transfer coefficient on the interior wall surface. However,
because IHCPs are generally ill-posed, the solution may not be un-
ique and would have great sensitivity to small variations in the in-
put data. To cope with this difficulty, many techniques have been
proposed, and the most well-known are: function specification
methods [11,12], iterative methods [13–15], methods based on fil-
tering proprieties [16–18] and regularisation techniques[19,20].

Among the regularisation techniques, Tikhonov regularisation
method [20] is perhaps the most common: it promotes the con-
struction of stable approximate solutions to the original IHCP by
solving a well-posed problem via the minimisation of an objective
function. The objective function is expressed by the sum of the
squared difference between the measured and the estimated tem-
perature discrete data and of a regularisation parameter times a
term that expresses the smoothness of the unknown quantity.
The regularisation scheme suggested by Tikhonov and Arsenin
[20] in the case of a particularly critical signal-to-noise ratio makes
it possible to overcome the instability of the problem. The success
of this approach relies on a proper choice of the regularisation
parameter, and this is not an easy task.
The classical L-curve method to select a proper regularisation
parameter, proposed by Hansen and O’Leary [21], was proven to
produce good regularisation parameters in several cases;
however, locating the corner in a robust way is not always an
easy task because the L-curve sometimes displays several
corners and sometimes the corner is not visible at all. On the
contrary, the fixed-point method and its variants [22–24] have
been proven to circumvent these difficulties on several test
problems.

In the present paper, the Tikhonov regularisation method cou-
pled to the fixed-point method for determining a proper value of
the regularisation parameter was adopted to estimate the local
convective heat flux at the fluid-wall interface in coiled tubes
under the formulation of the linear IHCP in the wall. The tempera-
ture distributions on the external wall of the coiled tube, which are
acquired using the infrared technique, were adopted as input data
of the IHCP in the wall of the tube.

The investigation was particularly focused on the laminar flow
regime, which is often found in coiled tube heat-exchanger appli-
cations. The purpose of this paper is twofold: to illustrate the esti-
mation technique, which has been originally customised for this
specific inverse problem, and to test it on an experimental case.
The results, although obtained for a limited range of experimental
conditions, are representative of a wide range of technical applica-
tions. Moreover, the data could be employed both as a useful
benchmark for CFD results as well as in the design of coiled tube
heat exchangers for the treatment of highly viscous fluids.

2. Experimental setup and data processing

In the present investigation, a smooth-wall helically coiled
stainless steel type AISI 304 tube was tested. It was characterised
by eight coils following an helical profile along the axis of the tube
where the helix diameter and the pitch were of approximately
310 mm and 200 mm, respectively. The tube internal diameter
was 14 mm, and the wall thickness measures 1.0 mm. This geom-
etry yields a coiled pipe length L of approximately 10 m, a dimen-
sionless curvature C of 0.045 and a torsion P of 0.21.

The working fluid was conveyed by a volumetric pump to an
holding tank, and it entered the coiled test section equipped with
stainless-steel fin electrodes, which were connected to a power
supply, type HP 6671A. This setup allowed investigation of the heat
transfer performance of the tube under the prescribed condition of
uniform heat flux generated by the Joule effect in the wall. The heat
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Fig. 2. The experimental facility.
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flux provided to the fluid was selected to make the buoyancy forces
negligible compared to inertial ones for the fluid velocity values
investigated here.

The coiled section was inserted horizontally in a loop completed
by a secondary heat exchanger that was fed with city water, which
enabled keeping the working fluid temperature constant at the
tube inlet.

To minimise the heat exchange with the environment, the
heated section was thermally insulated.

A small portion of the external tube wall, near the downstream
region of the heated section, was made accessible to an infrared
imaging camera by removing the thermally insulating layer, and
it was coated by a thin film of opaque paint of uniform and known
emissivity.

Therefore, the test section was taken approximately 9 m down-
stream from the inlet section, in the region of the heated section
where, according to [4–6,25], the laminar boundary layers reached
the asymptotic profiles. This condition makes the results obtained
for this particular section representative of the thermally fully
developed region.

The surface temperature distribution was acquired by means of
a FLIR SC7000 unit, with a 640 � 512 pixel detector array. Its ther-
mal sensitivity, as reported by the instrument manufacturer, is
20 mK at 303 K, while its accuracy is ±1 K. A sketch of the experi-
mental setup is reported in Fig. 1; Fig. 2 shows the laboratory
facility.

To measure the temperature distribution on the whole heat-
transfer test section surface, multiples images were acquired, mov-
ing the infrared camera around the section. When using an infrared
scanner, care should be taken while performing measurements if
the scanned surface is not locally normal to the viewed rays due
to directional emissivity of the surface.

However, in the present experimental setup, the viewing angle
was limited to less than ±30�, and in this condition, the surface was
considered to be behaving as a diffuse grey emitter [26]. The
effective emissivity of the coating was estimated in situ by shoot-
ing a target at different known temperatures [27], and the value
0.99 was found.

The acquired images, thanks to a position reference fixed on the
tube wall, were conveniently cropped, processed by perspective
algorithms [28] and merged together in Matlab� environment to
obtain continuous temperature functions on the tube wall versus
the circumferential angular coordinate. Due to the infrared camera
set-up adopted in this work (e.g., the focal length and the camera
position with respect to the tube test section), temperature values
Fig. 1. Sketch of the ex
at 256 angular positions over the whole circumferential section
were obtained.

The inlet and the outlet fluid bulk temperatures were
measured with type-T thermocouples, previously calibrated and
connected to a multichannel ice point reference, type KAYE
K170-50C. The bulk temperature at any location in the heat trans-
fer section was then calculated from the power supplied to the
tube wall. Volumetric flow rates were obtained by measuring
the time needed to fill a volumetric flask placed at the outlet of
the test section.

The tests were performed by varying the Reynolds number, and
consequently the Dean number, which are defined, according to
[25] as follows:

Re ¼
qf �w � Dint

lf
; ð1Þ

De ¼ Re �
ffiffiffiffiffiffiffiffi
Dint

a

r
; ð2Þ

where w is the mean fluid axial velocity, Dint is the tube inter-
nal diameter, a is the coil diameter, lf is the fluid dynamic
viscosity and qf is the fluid density, evaluated at the bulk
temperature.

To investigate the heat transfer performance of coiled tubes in
the laminar flow regime, ethylene glycol was used as the working
perimental setup.
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fluid in the Reynolds number range 135�1050. In the temperature
range characterising the experimental conditions, the Prandtl
number of the working fluid varied in the range of 170–200.

3. Estimation procedure

The description of the estimation procedure starts with the
modelling of the direct heat-transfer problem, proceeds by apply-
ing the Tikhonov regularisation method with the support of the
fixed-point iteration technique and concludes with the estimation
of the local convective heat-transfer coefficient.

3.1. Numerical model

The simplified 2-D model of the test section (sketched in Fig. 3)
was formulated by assuming that the temperature gradient is al-
most negligible along the axis of the tube.

In the 2-D solid domain, the steady-state energy balance equa-
tion is expressed in the (r, a) coordinate system in the form:

k
r
@

@r
r
@T
@r

� �
þ k

r2

@2T
@a2 þ qg ¼ 0; ð3Þ

where qg is the heat generated by the Joule effect in the wall, k is
the wall thermal conductivity and a is the angular coordinate,
[29].

The following two boundary conditions completed the energy
balance equation:

k
@T
@r
¼ ðTenv � TÞ

Renv
; ð4Þ

which is applied on surface S1 and where Renv is the overall heat-
transfer resistance between the tube wall and the surrounding envi-
ronment with temperature Tenv;

�k
@T
@r
¼ qðaÞ; ð5Þ

which is applied on surface S2 and where q is the local convec-
tive heat flux at the fluid-internal wall interface, assumed to be
varying with the angular coordinate a.

To express the problem in the discrete domain, the convective
heat flux distribution can be simplified by considering that it is de-
scribed by a continuous, piecewise linear function composed of p
sections as follows:
Fig. 3. Geometrical domain with a coordinate system.
qðaÞ ¼

bp þ a � b1�bp

2p=p

� �
; 0 � a < 1�2p

p

b1 þ a � b2�b1
2p=p

� �
; 1�2p

p � a < 2�2p
p

. . .

bm�1 þ a � bmþ1�bm
2p=p

� �
; m�2p

p � a < ðmþ1Þ�2p
p

. . .

bp�2 þ a � bp�1�bp�2
2p=p

� �
; ðp�2Þ�2p

p � a < ðp�1Þ�2p
p

bp�1 þ a � bp�bp�1
2p=p

� �
; ðp�1Þ�2p

p � a < p�2p
p

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð6Þ

As suggested by Beck et al. [12] and Dennis et al. [30], because the
problem is linear with respect to the heat flux q(a), it can be written
in the discrete domain as follows:

T ¼ Xqþ Tq¼0; ð7Þ

where T is the vector of the discrete temperature data at the exter-
nal coil surface, q is the heat flux vector at the fluid-internal wall
interface, Tq=0 is a constant term and X is the sensitivity matrix.

The heat-flux vector q is a column vector composed by b1,b2,
. . . ,bp values.

The sensitivity matrix X values were calculated using the two-
point difference approach:

Xi;j ¼
Tiðq1; q2; . . . ; qj þ Dq; . . . ; qnÞ � Tiðq1; q2; . . . ; qj; . . . ; qnÞ

Dq
ð8Þ

where Ti is the temperature value at the i sensor position obtained
by solving Eqs. (3)–(5)and imposing an internal heat flux distribu-
tion as defined by Eq. (6).

In an analogous way, the constant vector was determined by
imposing a null heat flux:

Tq¼0;i ¼ Tiðq1 ¼ 0; q2 ¼ 0; . . . ; qj ¼ 0; . . . ; qn ¼ 0Þ: ð9Þ

The direct formulation of the problem is concerned with the deter-
mination of the temperature distribution on the tube external wall
when the convective heat flux vector q is known. In the inverse for-
mulation considered here, q is instead regarded as being unknown,
whereas the surface temperature is measured.

3.2. Tikhonov regularisation method

The function estimation procedure is embedded in the inverse
solution of the problem expressed by Eq. (7). The temperature dis-
tribution on the external surface of the section, T, can be easily
computed numerically, by imposing a trial convective heat flux
distribution on the internal wall side q.

Observing Eq. (7), it must be highlighted that the constant term
Tq=0 and the sensitivity matrix X are not functions of the unknown
variable q, and this fact confirms that the inverse heat conduction
problem investigated here is linear.

In the inverse formulation, this computed temperature distri-
bution T is forced to match the experimental temperature distri-
bution Y, by tuning the convective heat-flux distribution on the
internal wall side q. The matching of the two temperature distri-
butions (the computed and the experimentally acquired) could be
easily performed under a least square approach. However, due to
the ill-posed nature of the problem, the least square solution is
generally dominated by noise, and some type of regularisation
is required. As mentioned before, in this work the Tikhonov reg-
ularisation method is adopted; this approach, successfully ap-
plied in the inverse heat-transfer literature [30–36], makes it
possible to reformulate the original problem as a well-posed
problem that consists of minimising the following objective
function:

JðqÞ ¼ kY � Xq� Tq¼0k2
2 þ k2kLqk2

2; k > 0; ð10Þ
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where k � k2
2 stands for the square of the 2-norm, k is the regularisa-

tion parameter, L is the derivative operator and T is the distribution
of the external surface temperature derived from a direct numerical
solution of the problem obtained by imposing a given convective
heat flux distribution on the internal wall side q. Often, L is the zero,
first or second derivative operator: in this work the second-order
derivative formulation was chosen to preserve the local variation
in the heat-flux distribution.

Minimisation of J(q) is equivalent to solving the regularised
normal equations [34]:

ðXtXþ k2LtLÞq ¼ XtðY � Tq¼0Þ; k > 0; ð11Þ

whose solution is unique when the null spaces of matrices X and L
intersect trivially. Here, superscript t stands for matrix transposi-
tion. This solution, often referred to as the regularised solution,
can therefore be expressed as:

qk ¼ ðX
tXþ k2LtLÞ�1

XtðY � Tq¼0Þ; k > 0 ð12Þ

In practice, qk can be computed efficiently using standard linear

algebra tools such as the Cholesky decomposition of matrix X
kL

� �

or the generalised singular value decomposition (GSVD) of the ma-
trix pair (X,L) [34].

The function expressed in Eq. (10) represents a trade-off be-
tween two optimisation processes: first, the fidelity of the fit and
second, the smoothness or the stability of the solution. Thus, an
appropriate choice of k should give an optimal balance, which in
turn, should lead to a reliable approximation of the wanted
solution.

3.3. Regularisation parameter

The importance of the choice of the regularisation parameter
has been widely analysed in the literature.

For a survey of the Tikhonov parameter choice rules the reader
is referred to Hansen [34]. Choosing a large regularisation param-
eter means that imposing too much regularisation on the solution
prejudices the fitting of the data and the ability to obtain a great
residual; the absence of regularisation or an insufficiently small
regularisation parameter will provide a good fitting but also a solu-
tion affected by data errors. Therefore, the choice of a proper reg-
ularisation parameter requires a good balance between the size
of the residual norm and the size of the solution norm (semi
norm); this is what motivated the development of the L-curve
method proposed by Hansen and O’Leary [21]. This method deter-
mines the regularisation parameter by locating the ‘corner’ of the
parametric curve in the u, v plane defined by:

uk ¼ logðkY � Xqk � Tq¼0k2Þ
vk ¼ logðkLqkk2Þ
k > 0

8><
>: ð13Þ

The motivation for this choice of the regularisation parameter is
that very often this curve is L-shaped, and its corner corresponds
to a parameter that produces a good balance between the residual
norm and the solution norm. From a computational point of view,
the ‘corner’ is taken to be the point on the L-curve where the curva-
ture is maximised; see Hansen and O’Leary [21]. In practice, the L-
curve method has been proven to produce good regularisation
parameters in several cases. However, locating the corner in a ro-
bust way is not always an easy task, either because sometimes
the curve displays several corners or because the corner is not vis-
ible at all. A method that has been proven to circumvent the diffi-
culties of the L-curve method on several test problems from the
literature is the fixed-point method and its variants proposed by
Bazán and co-workers [22–24]. The fixed-point method requires
the computation of the solution seminorm and the corresponding
residual norm, and it selects the parameter that minimises the
product of these norms as a function of the regularisation parame-
ter. Like the L-curve, the motivation to use this algorithm is that the
sought minimiser corresponds to a good balance between the size
of these norms. Algorithmically, the regularisation parameter cho-
sen by the fixed-point method is the limit value of the sequence:

kkþ1 ¼ uðkkÞ ¼
kY � Xqkk

� Tq¼0k2

kLqkk
k2

; k ¼ 0;1;2; . . . ð14Þ

The value for the regularisation parameter can also be visually rep-
resented as a fixed-point of the curve.

In practice, the sequence converges very quickly, and the com-
puted regularisation parameter yields solutions with accuracy
comparable to that of the L-curve method, but it is more robust
and less computationally expensive [22–23]. Like the L-curve ap-
proach, the fixed-point method does not require a priori knowledge
of the noise level.

In this work, the regularised solution qk is computed efficiently
by means of the GSVD of the matrix pair (X,L), which simplifies
enormously the implementation of the fixed-point algorithm; for
the algorithmic details and the stopping criterion of the sequence
(14), the reader is referred to Bazán [22].

3.4. Heat transfer characterisation

Once the heat-flux distribution at the fluid-wall interface com-
patible with the experimental temperature data has been deter-
mined through the strategy described above, the local convective
heat-transfer coefficient can be easily determined, as follows:

hintðaÞ ¼
qkðaÞ

Tða; r ¼ rintÞ � Tb
; ð15Þ

where qk(a) is the heat flux distribution estimated under the solu-
tion approach based on the Tikhonov regularisation method with
the support of fixed-point iteration techniques, Tb is the bulk-fluid
temperature on the test section, calculated from the energy balance
on the heated section as described in [4–6] and T(a,r = rint) is tem-
perature distribution on the tube internal wall efficiently estimated
by numerically solving the direct problem expressed by Eqs. (3)–
(5)by imposing a convective heat flux equal to qk(a).

The convective heat transfer coefficient can be suitably
expressed in a dimensionless form by means of the local Nusselt
number, as follows:

Nu ¼ hint � Dint

kf
; ð16Þ

where kf is the fluid thermal conductivity, evaluated at the bulk
temperature.

For each dataset, the average Nusselt number value was also
determined as follows:

Nuavg ¼
R 2p
a¼0 qðaÞ � da

Tw � Tb

� Dint

kf
; ð17Þ

where

Tw ¼
R 2p
a¼0 Tða; r ¼ rintÞ � da

2p
: ð18Þ

The accuracy associated with the estimated values was assigned by
the parametric bootstrap method [35,37,38]: the input data of the
estimation procedure are re-sampled from their respective proba-
bility distributions and, from these values, the unknowns are calcu-
lated by the estimation procedure presented above; this process is
repeated many times, and the results are processed using standard
statistical techniques for evaluating 95% confidence intervals.



Fig. 4. Representative infrared image of the coil wall (Re = 558, Pr = 182).
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4. Results

A representative temperature map acquired by the infrared
camera is reported in Fig. 4. The data clearly reveal that the
temperature distribution exhibits a significant variation along
the circumference, and the temperature gradient is almost neg-
ligible along the axis of the tube. This observation confirms that
adopting a 2-D numerical model for this type of problem is
appropriate.

The corresponding temperature distribution over the whole
wall circumference is reported in Fig. 5, where the angular coordi-
nate origin was taken at the inner side of the coil.

To express the direct problem in the discrete domain, the con-
vective heat-flux distribution was simplified here by considering
the function expressed by Eq. (6) with p equal to 36. Adopting a
point every 10 angular degrees for the convective heat flux distri-
bution represents a good compromise between model precision
and the computational cost. Moreover, it must be noted that the
linear formulation of the IHCP makes it possible to increase the
number of degrees of freedom of the problem with respect to
previous investigations [10] by making it feasible to appreciate
-3 -2 -1 0 1 2 3
303
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309
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 (

K
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Fig. 5. Temperature distribution on the coil external wall (Re = 558, Pr = 182).
the local variations in the convective heat-transfer-coefficient
distribution.

To calculate the Tq=0 and X terms of Eq. (7), the numerical solu-
tion of Eq. (3)–(5)was calculated by the finite element method
implemented in Comsol Multiphysics� environment with a mesh
of approximately 2596 triangular elements. The overall heat-trans-
fer resistance between the tube wall and the surrounding environ-
ment Renv, which was assumed to be known in the inverse problem
considered here, was taken equal to 0.2 m2 K/W, which is a repre-
sentative value for natural convection in air compounded with
radiative heat transfer with the environment. The wall thermal
conductivity k was certified by the manufacturer equal to 15 W/
m K; the heat generated by the Joule effect in the wall qg was cal-
culated by the ratio of the power supplied and the volume of the
tube wall.

The method proposed by Hansen and O’Leary [21], based on the
curvature of the L-curve, was applied to the present data without
success. The L-curve, shown in Fig. 6, displays more than one ‘cor-
ner’, making the determination of a proper regularisation parame-
ter unfeasible in this approach. To overcome this, the fixed-point
method was employed, as shown in Fig. 7. The analysis reveals that
a proper k value is equal to 1.17 � 10�5.

In Fig. 8, the reconstructed temperature distribution for k equal
to 1.17 � 10�5 is compared to the experimental data. Fig. 9 shows
that the residuals between the experimental and the computed
temperature values are randomly distributed. This confirms that
the simplified numerical model used in this study adequately de-
scribes the physical problem being tested [12]. The residual norm
is equal to 0.59 K, and it is larger than the noise level, quantified
to approximately 0.04 K. The noise level has been measured by
measuring the surface temperature distribution while maintaining
the coil wall under isothermal conditions. This evidence confirms
the observation of the properties of the fixed-point method, as
illustrated by Bazán [22].

The distribution of the convective heat flux restored by the
minimisation procedure presented above is reported in Fig. 10.
As expected, the convective heat flux between the tube wall and
the fluid is minimal close to the inner bend side.

A mesh refinement study was conducted to verify the appropri-
ateness of the mesh size of the finite element model in relation to
the inverse problem solution. Table 1 compares the results,
reported in terms of the higher and the lower heat flux values at
different mesh distributions, and it confirms that the adopted
mesh ensures a satisfactory solution.

The 95% confidence interval associated with the estimated heat
flux was determined by parametric bootstrap [35,37,38], assuming
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Table 1
Mesh refinement study (Re = 558).

No. of elements 1298 2596 5144

qmax (W/m2) 6534.1 6534.1 6534.1
qmin (W/m2) 1843.0 1842.9 1842.9
qmax/qmin 3.5454 3.5456 3.5456

Table 2
The 95% confidence interval of the main physical quantities involved in the estimation
procedure.

Y (K) a (�) k (W/m K) Tenv (K) Renv (m2 K/W) qg (W/m3) Tb (K)

±0.1 K ±4� ±5% ±0.1 K ±50% ±4% ±0.1 K
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the uncertainties in the input data reported in Table 1. The esti-
mated confidence interval for this experimental run is approxi-
mately ±170 W/m2.

To identify the main contributions to the uncertainty of the esti-
mated heat flux distribution, the influence coefficient values [39]
were calculated:

JZ
n ¼

@Z
@n

wn

� �2

; ð19Þ
where Z is the estimated quantity and n is the considered input
parameter with an uncertainty equal to wn.

For the inverse problem investigated in this paper, the analyti-
cal determination of the partial derivative present in Eq. (19) is
impossible, and the adoption of a finite difference approach is
needed: (Table 2)

@Z
@n
ffi Zðnþ DnÞ � ZðnÞ

Dn
; ð20Þ

where Dn is a small variation of the input parameter n.
Table 3 reports the influence-coefficient values for the main in-

put parameters, considering the maximum and the minimum of
the estimated heat flux as representative output quantities of the
inverse problem solution. These results underline that the main
contributions to the uncertainty are the k and qg measurements,
and the uncertainties in Renv and Tenv are almost insignificant. This
means that the heat exchanged between the tube wall and the
environment is negligible in comparison to that exchanged be-
tween the tube wall and the working fluid. On the contrary, to im-
prove the overall situation, particular attention to the accuracy of k
and qg should be given.

The resulting distribution of the convective heat transfer coeffi-
cient at the fluid–wall interface according to Eq. (15) is reported in
Fig. 11. The variation in the convective heat transfer coefficient
along the boundary of the duct section indicates that in the fully
developed heat transfer region, hint is minimal close to the inner
bend side of the coil, and it reaches its maximum at the outer bend
side due the onset of the secondary flows [3,7,8] induced by the
wall curvature.



Table 3
Influence coefficient values of k, Tenv, Renv and qg on the maximum and the minimum of the estimated heat-flux distribution.

k Tenv Renv qg

qmax Jqmax
k ¼ 5:3 � 103 W2/m4 Jqmax

Tenv
¼ 0:33 W2/m4 Jqmax

Renv
¼ 3:8 � 102 W2/m4 Jqmax

qg
¼ 4:2 � 104 W2/m4

qmin Jqmin
k ¼ 2:6 � 104 W2/m4 Jqmin

Tenv
¼ 0:33 W2/m4 Jqmin

Renv
¼ 8:4 � 102 W2/m4 Jqmin

qg
¼ 5:1 � 103 W2/m4
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Fig. 11. Restored convective heat-transfer coefficient distribution with 95% confi-
dence interval (k = 1.17 � 10�5, Re = 558, Pr = 182).
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The entire estimation procedure was repeated for various Rey-
nolds number values: the experimental conditions are reported
in Table 4, and representative results are plotted in Fig. 12.

To verify if free convection effects are relevant with respect to
forced convection effects, the ratio Gr/Re2 was evaluated, where
Gr and Re are the Grashof and the Reynolds numbers, respectively
[29].

The value of this ratio for the present experimental conditions is
specified in Table 4. Being Gr/Re2� 1 for all the runs, the gravity
effects can be considered negligible if compared to the inertial ones
and this makes the measurements taken in a single section repre-
sentative of the thermally developed conditions for the forced con-
vection flows.

The data clearly show the effect of torsion induced by the coil
pitch: it creates a rotation force that affects the flow pattern. Con-
sequentially, it makes the distribution of the Nusselt number non-
symmetrical, as already observed by Yang et al. [7]: the heat-trans-
fer rate is increased on half of the tube wall compared to that on
the other half. Moreover, as the Dean number increases, the loca-
tion of the minimum Nusselt number shifts slightly from zero to
higher angular coordinate values: the minimum is at approxi-
mately a = 0.02 for De equal to 29, and it is at a = 0.15 for De equal
to 227.
Table 4
Experimental conditions.

Re Pr qg (W/m3) Tb (K) Tw (K) Gr/Re2

135 172 2.7 � 106 296.6 305.9 3.4 � 10�2

375 174 4.8 � 106 296.4 307.1 5.0 � 10�2

465 163 4.8 � 106 298.0 306.5 2.9 � 10�2

558 182 4.8 � 106 295.2 304.7 1.8 � 10�3

665 185 4.8 � 106 294.7 303.4 1.1 � 10�3

703 187 4.8 � 106 294.5 302.4 9.1 � 10�4

904 189 4.8 � 106 294.1 300.3 4.2 � 10�4

1006 190 4.8 � 106 293.9 299.5 3.0 � 10�4

1060 196 4.8 � 106 293.1 299.0 2.7 � 10�4

1098 175 4.8 � 106 296.2 300.3 2.2 � 10�4
To locally compare the Nusselt distributions estimated for the
various De values, the shifting effect of the torsion was compen-
sated by introducing a relative angle a⁄ into the analysis, whose
origin was taken where the Nusselt number reaches its minimum.

Fig. 13 reports the Nu/Numax ratio for various Dean numbers: by
accounting for the experimental uncertainty, it can be stated that
this ratio is almost independent of the Dean number. A similar
observation was made by Jayakumar et al. [8] for turbulent heat
transfer in helical pipes.

Moreover, the data show that, at the outside surface of the coil,
the Nusselt number is approximately five times that at the inside
surface. The pattern is particularly steep and Nu/Numax is above
0.8 for approximately 75% of the circumference.

Fig. 14 reports the best fit of the experimental distributions re-
ported in Fig. 13, along with the 95% confidence interval and the
correlations found by Yang et al. [7] and Bozzoli et al. [10]. The
asymmetric profile of the curve clearly shows the effect of the tor-
sion induced by the coil pitch: the heat-transfer rate is increased
on half of the tube wall (0 < a⁄<p) compared to that on the other
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half (�p < a⁄<0), as already numerically observed by Yang et al. [7]
(see Fig. 14).

A good agreement between the Nu/Numax correlation found here
and the one proposed by Bozzoli et al. [10] was observed, although
the latter suffers from a few limitations due to several strong
approximations in the model formulation.

The data by Yang et al. [7] mainly match the distribution ob-
tained here, although some discrepancies are registered, especially
close to the inner bend side of the coil. This may be because Yang
et al. [7] derived their data for a coiled tube with a torsion value
similar to the one of the tube investigated here but for a fluid with
a Prandtl number equal to 5.

The circumferential average of the Nusselt number values,
determined according to Eq. (17), is in substantial agreement with
the correlation proposed by Akiyama and Cheng [40] for smooth-
wall coiled tubes (see Fig. 15).
5. Conclusions

In this paper, a procedure to estimate the local convective heat
transfer coefficient in coiled tubes is presented and tested. The
investigation was focused on the fully developed region for the
laminar flow regime in the Reynolds number range of 135–1050
and the Prandtl number range of 170–200.

The temperature distribution maps on the external coil wall are
employed as input data of the linear inverse heat conduction prob-
lem in the wall under a solution approach based on the Tikhonov
regularisation method with the support of the fixed-point iteration
technique to determine the proper regularisation parameter.

The linear formulation of the inverse heat conduction problem
makes it possible to increase the number of degrees of freedom
of the problem with respect to previous investigations [10], there-
by allowing better appreciation of local variations in the distribu-
tion of the convective heat-transfer coefficient. The application of
the fixed-point iteration technique circumvented the difficulties
of the classical L-curve method to determine a proper regularisa-
tion parameter.

The results, reported with their 95% confidence interval,
showed that the variation in the convective heat transfer coeffi-
cient along the boundary of the duct section is very significant:
at the outside surface of the coil, the Nusselt number is approxi-
mately five times larger than that at the inside surface.

Although the data used in this study have been obtained for a
limited range of experimental conditions, we emphasise that they
are representative of a wide range of technical applications. More-
over, because in the scientific literature there is a lack of knowl-
edge about the local heat-transfer coefficient for the laminar flow
regime in coiled tubes, the results obtained here might be particu-
larly useful in the validation of numerical models and in the design
of coiled tube heat exchangers aimed at the treatment of highly
viscous fluids. The extension of this investigation to other tube
geometries, fluids and types of flow will be the subject of future
works.
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