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Abstract

Let H be an in�nite Hankel matrix with hi+j−2 as its (i; j)-entry, hk =
∑n

l=1 rl z
k
l , k = 0; 1; : : : ; |zl|¡ 1, and rl; zl ∈ C.

We derive upper bounds for the 2-condition number of H as functions of n, rl and zl, which show that the Hankel matrix
H becomes well conditioned whenever the z’s are close to the unit circle but not extremely close to each other. Numerical
results which illustrate the theory are provided. c© 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Let H be an in�nite Hankel matrix whose (i; j)-entry is hi+j−2, that is

H =



h0 h1 h2 · · ·
h1 h2 h3 · · ·
h2 h3 · · · · · ·
...

... · · · ...


 ; (1.1)

where {hk}∞k=0 denotes a complex-valued sampled signal composed of n exponentials

hk =
n∑
l=1

rl zkl ; k = 0; 1; : : : ; (1.2)

where rl; zl are complex constants and the z’s are known as modes or poles. We assume |zl|¡ 1 and zk 6= zl
for k 6= l. Then H has rank n and can be factorized as (see, e.g., [10])

H =WRW T; (1.3)
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where R= diag(r1; r2; : : : ; rn) and W T the in�nite Vandermonde matrix

W T =



1 z1 z21 z31 · · ·
1 z2 z22 z32 · · ·
...

...
...

...
...

1 zn z2n z3n · · ·



n×∞

: (1.4)

Let ‘2 be the Hilbert space of in�nite complex column vectors with �nite 2-norm. Then H gives rise to
a bounded linear operator of �nite rank on ‘2 and its Moore–Penrose pseudo-inverse can be de�ned as the
unique bounded operator H † satisfying the conditions

HH †H = H; H †HH † = H †; (HH †)∗ = HH †; (H †H)∗ = H †H: (1.5)

The star symbol stands for the adjoint of the operator. The singular values of H , which we denote by �i(H),
are the square roots of the eigenvalues of H∗H . They satisfy

�1(H)¿�2(H)¿ · · ·¿�n(H)¿ 0 = �n+1(H) = �n+2(H) = · · · ; (1.6)

�1(H) = ‖H‖2, and �n(H) = ‖H †‖−12 , where ‖ · ‖ stands for the operator norm. Similarly, the in�nite Van-
dermonde matrix W gives rise to another bounded linear operator of rank n, from Cn in ‘2, and its pseudo
inverse W † also can be de�ned via the above conditions. Taking this observation into account we verify using
(1.5) for W , that is

W † = (W ∗W )−1W ∗: (1.7)

From this relation it follows that W T†R−1W † satis�es (1.5), which ensures that

H † =W T†R−1W †: (1.8)

All the above properties of pseudo-inverses are consequences of the well-developed Hilbert space theory for
pseudo-inverses of bounded linear operators with closed range, which clearly also hold for matrices in CM×N .
The reader is referred to Ben-Israel and Greville [4] for details about pseudo-inverses and, in particular, to
Theorems 2 and 3 of Chapter 8 therein.
The 2-condition number of H , k2(H), is de�ned as the ratio of the largest to the smallest non-zero singular

value of H , that is k2(H)=�1(H)=�n(H), and it is of interest in areas such as signal processing, where Hankel
matrices of growing dimension are often used [5–7,13,14].
Our goal in this paper is to analyze under which conditions over n; zl, and rl, the Hankel matrix H becomes

well conditioned. To achieve our goal, we �rst modify (1.3) as

H = UUT; U =WR1=2; (1.9)

where R1=2 is an arbitrarily chosen square root of R, and then we obtain that

k2(H)6‖U‖22‖U †‖22 = [k2(U )]2: (1.10)

This relation enables us to derive bounds for k2(H) by bounding k2(U ). Notice that inequality (1.10) holds
as an equality when the modes zl and the weights rl are positive real numbers. Of course, using (1.9) it is
easy to see that, discarding zero eigenvalues, the spectrum of H∗H; �(H∗H), satis�es

�(H∗H) = �(G �G); G = U ∗U; (1.11)

where the bar stands for complex conjugation. Thus if both zl and rl are positive real numbers, then �(H∗H)=
�(G2), in which case the inequality in (1.10) becomes an equality. The positive singular values �i(H) (i=1 : n)
can be computed from the n × n eigenvalue problem related to G �G. However, we stress that our main goal
is not to compute the singular values �i(H) but rather to derive informative bounds on k2(H). Thus, all our
conclusions about k2(H) shall arise from analyzing their bounds. We state our results by slightly modifying
an analysis by Baz�an [1] who provided an upper bound for k2(W ). As a by product, we obtain a bound on
k2(U ) which improves that of Ref. [1], when all weights are equal to one. Further, we derive an upper bound



F.S.V. Baz�an, Ph.L. Toint / Systems & Control Letters 41 (2000) 347–359 349

on k2(H) in terms of n; rl and zl, whose quality essentially depends on the separation of the zl inside the
unit circle. In particular, we show that if the z’s are close to the unit circle but not extremely close to each
other, then the related Hankel matrix becomes well conditioned, provided n is not very large.
The paper is organized as follows. In Section 2 we consider �nite sections of the Hankel matrix as Krylov

matrices and some basic results arising from this identi�cation are described. Our upper bounds for k2(H) are
presented in Section 3. Because the smallest non zero singular value of �nite sections of H plays the role of
a threshold value for separating signal from noise, in several signal processing applications, an application of
our results illustrating that role is presented in Section 4. We discuss the choice of the dimension of the �nite
Hankel matrix that guarantees a satisfying separation of signal from noise. This is numerically illustrated in
Section 5. Section 6 �nally presents some conclusions.

2. Basic results

In what follows, the singular values of a matrix A are denoted by �i(A) and are arranged so that �1(A)¿�2
(A)¿ · · ·¿�n(A). Also, as usual, ‖A‖2 and ‖A‖F denote the spectral and the Frobenius norm of A, respec-
tively. Leading M×N principal submatrices of the Hankel matrix H play a important role in our developments,
and are denoted by HM×N ; when M = N they are simply denoted by HN . A �rst consequence of the matrix
Hankel structure is that if N¿n, then HN inherits its rank from H and also its Vandermonde decomposition
(1.3), that is, rank(HN ) = n and

HN =WN RW T
N ; (2.1)

where WN is the matrix consisting of the �rst N rows of W , and R is as in (1.3). It is well known that the
entries of H satisfy a recurrence relation of order n of the form

hk = fn−1hk−1 + fn−2hk−2 + · · ·+ f0hk−n; k = n; n+ 1; : : : (2.2)

which generates the entire signal once the set of n initial values {h0; h1; : : : ; hn−1} are given (see [8, Vol. 2,
p. 207]). Furthermore, the modes zl generating the entries in 1.2 are the roots of the polynomial

pn(z) = zn − fn−1zn−1 − · · · − f1z − f0: (2.3)

The coe�cients fi are uniquely determined from the recurrence relation and are referred to as predictor
parameters. Recurrence relations of type (2.2) of order N ¿n are also possible. In this case however, the
predictor parameters are not uniquely determined since they are computed from the rank-de�cient underdeter-
mined linear system

HN f
:= [h0h1 · · · hN−1]f = hN ; (2.4)

where

hi
:= [hihi+1 · · · hi+N−1]T; i = 0; : : : ; N and f = [f0f1 · · ·fN−1]T:

Despite this, the modes zl still can be extracted from the roots of any polynomial pN (z) whose coe�cients
satisfy (2.4) [2,15]. Let C denote the companion matrix corresponding to the polynomial

PN (z) = zN − fN−1zN−1 − · · · − f1z − f0;
whose coe�cients are the components of the minimum 2-norm solution of (2.4), i.e.

C =




0 1 0 · · · 0
0 0 1 · · · 0
...

...
. . .

. . .
...

0 · · · · · · 0 1
f0 f1 · · · · · · fN−1


 : (2.5)
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The fact that the signal modes can be extracted from the zeros of PN (z) implies that there are n eigenvalues
of C exactly coinciding with the n modes zl. More precisely, it can be proved that

CWN =WNZ; (2.6)

where Z = diag(z1; z2; : : : ; zn), which means that WN is a matrix of right eigenvectors of C with associated
eigenvalues zl. We may now rephrase the property that the coe�cients fi are su�cient to predict future
values of the signal (see (2.2) in terms of the matrix C: given two successive columns vectors of HN ; hi and
hi+1, then

hi+1 = C hi ; i¿0:

From this observation, it follows that the Hankel matrix HN can be regarded as a Krylov matrix generated
by C, that is

HN = [h0 h1 · · · hN−1] = [h0 Ch0 · · ·CN−1h0]
and that, since rank(HN )=n for N¿n, the associated Krylov subspace, which we denote by HN , is invariant
under C. Let V be an N ×n matrix with orthonormal columns spanning HN and consider CP to be the n×n
matrix de�ned by

CP = V ∗CV: (2.7)

The bounds on k2(H) that we shall derive crucially depend on the eigenvalue and singular value spectra of
CP. In what follows we brie
y describe a result early obtained by Baz�an [1] that characterizes that spectra.
Note that, since the columns of both V and WN span HN , 2:6 ensures that Z is an eigenvalue matrix of CP

with V ∗WN as right eigenvector matrix, i.e.

CP = (V ∗WN )Z(V ∗WN )−1: (2.8)

On the other, it can be proved that

C∗
PCP = V ∗C∗CV = I + xx∗ − yy∗;

where I denotes the identity matrix of order n; x=V ∗fT∗ and y=V ∗e1. From this it is not di�cult to check
that the singular values of CP verify (see Theorem 3 in [1])

�21(CP) =
2 + ‖f‖22 − ‖p1‖22 +

√
(‖f‖22 + ‖p1‖22)2 − 4|f0|2
2

;

�2i (CP) = 1; i = 2; n− 1;

�2n(CP) =
2 + ‖f‖22 − ‖p1‖22 −

√
(‖f‖22 + ‖p1‖22)2 − 4|f0|2
2

; (2.9)

where p1 is the �rst column of the orthogonal projector onto HN . Hence it follows that

16�21(CP)61 + ‖f‖22 (2.10)

and thus �21(CP) → 1 as N → ∞ since ‖f‖2 → 0 as N → ∞ (see [3] again). On the other hand, since
det(C∗

PCP) = [det(CP)]2 =
∏n
l=1 |zl|2, it follows that

�21(CP)�2n(CP) =
n∏
l=1

|zl|2: (2.11)

This relation implies that �2n(CP)→
∏n
l=1 |zl|2 as N → ∞. All above results are summarized in the following

theorem.
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Theorem 1. Suppose CP is the matrix de�ned in (2:7). Then it admits a spectral decomposition given by
(2:8); and its singular values �i(CP) satisfy (2:9). Furthermore;

lim
N→∞

�1(CP) = 1 and lim
N→∞

�n(CP) =
n∏
i=1

|zi|: (2.12)

3. Upper bounds for k2(H)

We start by deriving bound k2(U ), where U is the scaled Vandermonde matrix de�ned in (1.9). To this
end, we �rst analyze the �nite-dimensional case for k2(UN ), where UN =WNR1=2, with WN de�ned in (2.1)
and R as in (1.9).

Theorem 2. Let p and q be indices between 1 and n; such that ‖UNei‖; i= 1; : : : ; n; is maximum for i= p
and minimum for i= q; where UN is as above. De�ne �= |zp|; �= |rp|; �= |zq|; 
= |rq|; and kR= �=
. Also
de�ne;

�= min
16i; j6n

i 6=j

|zi − zj|; (3.1)

�N =

√
1 + �2 + · · ·+ �2(N−1)
1 + �2 + · · ·+ �2(N−1) (3.2)

and

D2N = (�
2
1(CP) + · · ·+ �2n(CP))− (|z1|2 + · · ·+ |zn|2) (3.3)

with �i(CP) as in (2:9). Then; for all N¿n¿2; the 2-condition number of UN ; k2(UN ) = ‖UN‖2‖U †
N‖2;

satis�es

k2(UN )6 1
2 (�+

√
�2 − 4); (3.4)

where

�=
√
kR

[
1 +

D2N
(n− 1)�2

](n−1)=2
n
2

(
�N +

1
kR
�−1
N

)
− n+ 2: (3.5)

Proof. Our proof relies on the crucial observation that the conditioning of the eigenvalue problem related to
matrix CP (see Theorem 1) is essentially governed by k2(UN ). Let ui = V ∗U †∗

N ei and vi = V
∗UNei where

ei is the ith canonical basis vector in Cn. It then follows that they are left and right eigenvectors of CP

corresponding to the eigenvalue zi, respectively, and satisfy u∗i vi = 1. It is easy to see that ‖vi‖22 = ‖UNei‖22,
and ‖ui‖22 = ‖U †∗

N ei‖22; because VV ∗ is the orthogonal projector onto HN and the columns of UN span this
subspace. This yields

‖UN‖2F =
n∑
i=1

‖vi‖22 and ‖U †
N‖2F =

n∑
i=1

‖ui‖22:

Using these observations, we obtain from Theorem 5 by Smith [12], that

‖ui‖2 = 1
|si|

1
‖vi‖26

[
1 +

D2N
(n− 1)�2i

](n−1)=2
1

‖vi‖2 ; i = 1; 2; : : : ; n

with �i = min16j6n|zi − zj|; i 6= j; and where |si|−1 = ‖ui‖‖vi‖ is the condition number of the eigenvalue zi
(see [16, p. 69]). From this, it follows that

‖U †
N‖2F6

n∑
i=1

[
1 +

D2N
(n− 1)�2i

]n−1
1

‖vi‖22
6
[
1 +

D2N
(n− 1)�2

]n−1 n∑
i=1

1
‖vi‖22

; (3.6)
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where � is de�ned by (3.1). This implies that

‖U †
N‖2F‖UN‖2F6

[
1 +

D2N
(n− 1)�2

]n−1 n∑
i=1

‖vi‖22
n∑
i=1

1
‖vi‖22

: (3.7)

Now note that, if we de�ne Q = diag(‖v1‖22; ‖v2‖22; : : : ; ‖vn‖2), the product of the two sums in the right-hand
side of this inequality may be rewritten as

n∑
i=1

‖vi‖22
n∑
i=1

1
‖vi‖22

= e∗Qe e∗Q−1e; e = (1; : : : ; 1)T ∈ Rn (3.8)

and that this quantity may be bounded from above by using Kantorovic’s inequality (Horn and Johnson [11,
p. 444]). This implies that

e∗Qe e∗Q−1e6
[
n
2

(
vmax
vmin

+
vmin
vmax

)]2
;

where vmax =max‖vi‖2 and vmin =min‖vi‖2. Using the previous inequality and the notations introduced in the
theorem, and since

‖vi‖22 = ‖WNR1=2ei‖22 = |ri|(1 + |zi|2 + · · ·+ |zi|2(N−1));
inequality (3.7) gives

kF(UN )6
√
kR

[
1 +

D2N
(n− 1)�2

](n−1)=2
n
2

(
�N +

1
kR
�−1
N

)
: (3.9)

We now recall a result about Jordan condition numbers (see [12, Theorem 1]) which states that, if A=X�X−1

is a spectral decomposition of A ∈ Cn×n and all eigenvalues of A are simple, then
n− 2 + k2(X ) + [k2(X )]−16kF(X ): (3.10)

This inequality continues to hold if we substitute X by UN and can be seen as follows. First, notice that as
we can always write CP=(V ∗UN )Z(V ∗UN )−1 (see (2.8)), then (3.10) holds for X =V ∗UN . Now given that
X ∗X = U ∗

NVV
∗UN = U ∗

NUN , since the columns of UN span HN , it follows that X and UN have the same
singular values and therefore k2(X ) = k2(UN ), as desired.
Solving inequality (3.10) for k2(X ) = k2(UN ) we obtain

k2(UN )6 1
2 [kF(UN )− n+ 2 +

√
(kF(UN )− n+ 2)2 − 4]:

The proof concludes by substituting (3.9) in this inequality.

An immediate consequence of the above analysis is that if R= I , bound (3.4) becomes a bound on k(WN ),
which improves one derived by Baz�an [1]. Despite this, it is worth noting both bounds strongly depend on D2N
and �: small values of the bounds are ensured only when D2N.(n− 1)�2. While �2 measures the separation
of the modes zl inside the unit circle, D2N , known as the departure from normality, measures how near is CP

from being a normal matrix (see, for instance, [9, p. 314]). Numerical examples showing the dependence of
the bound on those quantities are presented and discussed in Section 5. Another consequence is given in the
following corollary.

Corollary 1. Suppose N¿n. Then

k2(HN )6 1
4 (�+

√
�2 − 4)2; (3.11)

where � is as above.

Proof. It su�ces noting that k2(HN )6[k2(UN )]2, which holds by (2.1), and then applying Theorem 2 in this
inequality.

To derive our bounds for k2(H) we need the following auxiliary result.
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Lemma 1. Let UN be the N×n scaled Vandermonde matrix as above. De�ne two sequences of real numbers
{aN}; {bN}; N¿n; by aN = ‖U †

N‖2 and bN = k2(UN ) = ‖UN‖2‖U †
N‖2. Then;

(a) aN decreases monotonically with N ;
(b) limN→∞ bN = k2(U ).

Proof. The proof of part (a) is immediate and we shall only prove that (b). In fact, let {ÛN} be the sequence
of in�nite matrices with zeros everywhere except in the �rst N rows whose entries coincide with those of
UN , i.e.

ÛN =



UN
0
...


 :

Obviously, ‖ÛN‖2 = ‖UN‖2 and ‖Û †
N‖2 = ‖U †

N‖2. Next, partition U as

U =
[
UN
C

]
= ÛN +

[
0
C

]
; (3.12)

where C = [ZNe ZN+1e · · · ]TR1=2 with e as in (3.8), and note that U † = (U ∗U )−1U ∗ can be rewritten as

U ∗
NUNU

† + C∗CU † = [U ∗
N 0 · · · ] + [0 C∗]:

This can be rewritten again as

U † + (UNU ∗
N )

−1(C∗C)U † = Û
†
N + (UNU

∗
N )

−1[0 C∗];

which, using the fact that U †
NU

†∗
N = (U ∗

NUN )
−1, yields

U † − Û †
N =−U †

NU
†∗
N (C

∗C)U † + U †
NU

†∗
N [0 C

∗]:

Hence, taking into account that both ‖U †‖2 and ‖U †
N‖2 are bounded (U † is of �nite rank and ‖U †

N‖2 decreases
by part (a)), that ‖C∗C‖2 = ‖C‖22 and that

‖C‖26
√
n
√
max|rl|(max|zl|)N‖U‖2 → 0

as N → ∞, because max|zl|¡ 1, we deduce that

‖U † − Û †
N‖26‖U †‖2‖C‖22‖U †

N‖22 + ‖C‖2‖U †
N‖22 → 0

when N → ∞, thus implying that Û †
N → U †. Hence ‖Û †

N‖2 converges to ‖U †‖2. Now since ‖ÛN‖2 → ‖U‖2,
we have that

bN = ‖UN‖2‖U †
N‖2 = ‖ÛN‖2‖Û †

N‖2
converges to k2(U ), as requested.

Theorem 3. Let H be the in�nite Hankel matrix introduced in (1:1). Let �; �; �; 
; kR and � be as in
Theorem 2. Then the 2-condition number of H satis�es

k2(H)6 1
4

(
�̂+

√
�̂2 − 4

)2
; (3.13)

where

�̂=
√
kR

[
1 +

n− 1 +∏n
i=1 |zi|2 −

∑n
i=1 |zi|2

(n− 1)�2
] n−1

2 n
2

[√
1− �2
1− �2 +

1
kR

√
1− �2
1− �2

]
− n+ 2: (3.14)
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Proof. Since by (1.10) and Lemma 1,

k2(H)6[k2(U )]2 = lim
N→∞

[k2(UN )]2; (3.15)

it is su�cient to take limit in (3.5) when N tends to in�nity. To compute this limit, note that

D∞ = lim
N→∞

D2N = n− 1 +
n∏
i=1

|zi|2 −
n∑
i=1

|zi|2 and lim
N→∞

�N =

√
1− �2
1− �2 ; (3.16)

the �rst because of (3.3) and (2.12), and the second because of (3.2) and the fact that � and � are both
smaller than one. The desired result is then obtained by substituting (3.16) into (3.15).

Theorem 3 shows that the quality of the upper bound depends on the closeness of |zl| to one and on the
separation of the modes themselves inside the unit circle.

Corollary 2. De�ne �̂=max|zl|, �̂=min |zl|. Assume the modes zl satisfy 1− �̂26�2, �̂n6�̂. Then, for n¿2

k2(H)6

[√
kR 2(n−3)=2n

(√
1− �2
1− �2 +

1
kR

√
1− �2
1− �2

)
− n+ 2

]2
: (3.17)

Proof. The proof is simples and follows from noting that k2(H)6�̂
2.

Bound (3.17) is no better than (3.13) and may overestimate k2(H) for n large. Despite this, it gives relevant
information regarding the dependence of the bound on the distribution of the modes and their separations.
The smaller the separations, the closer to the unit circle the modes must lie in order to obtain moderate
values for k2(H). Consequently, for well-separated modes satisfying |zl| ≈ 1, we deduce that H should be
well conditioned, provided n is not very large. The assumption �̂ ≈ �̂ ≈ 1 occurs in practical applications
involving slightly damped signals.

Remark. Other bounds on k2(H) can be obtained by combining the inequality

k2(H)6k2(R)[k2(W )]2; (3.18)

which follows from (1.3), with bounds on k2(W ). The quality of the bounds so derived, however, will
depend on the sharpness of the bounds on k2(W ). A bound resulting from this procedure is that ob-
tained by using Baza�n’s bound for k2(W ) [1]. The obtained bound, however, should not improve (3.13),
as k2(H)6[k2(U )]26k2(R)[k2(W )]2. A numerical comparison illustrating this fact is presented in Section 5.

4. A signal processing application

In several signal processing applications one is interested in retrieving parameters such as frequencies, plane
waves, dampings, etc., from a �nite set of perturbed data. This data arises as h̃k = hk + �k ; k =0; 1; : : : ; L− 1,
where hk is an unknown sampled signal of the form (1.2), where zl=e(dl+i!l)�t ; i=

√−1, dl ¡ 0; !l ∈ R; �t
is the sampling interval, and �k the noise. The aim is to compute, as accurately as possible, estimates of rl; dl
and !l, even if the data is relatively noisy. We refer the reader to Van Hu�el [14] for a variety of applications
where this problem is relevant.
Most of methods to the problem start by �lling the available data in a Hankel matrix HM×N , and can be

separated into two large groups: methods that extract the parameters from the roots of large polynomials, as
described in Section 2, and methods based on estimates of the so-called signal subspace (the column or row
space of HM×N ). Crucial for these approaches is the detection of n (the rank of H) and the estimation of the
chosen signal subspace, both informations being extracted from a full rank Hankel matrix: H̃M×N=HM×N+E;
where E contains the noise. In practice, this is accomplished by a heuristic criterion for looking for a break
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in the pattern of singular values of H̃M×N , attributing the larger ones to the signal and the smaller ones to the
noise. Similarly, the subspace spanned by the singular vectors associated with the set of large singular values
is used as an estimate of the signal subspace. For a discussion concerning conditions on the noise matrix E
that allow to recover the row signal space from the SVD of H̃M×N , see [6].
We are now interested in discussing the best choice of M and N for the purpose of separating the n signal

singular values from those associated with the noise, in the situation where the data is �lled in a Hankel matrix
H̃M×N such that M + N = L+ 1; where L is �xed, M;N¿n; and E is treated simply algebraically, i.e., with
no assumption on the nature of the noise. As singular value theory ensures that this separation is best carried
out when ‖E‖2� �n(HM×N ), we could focus on an analysis of the pair (M;N ) that maximizes �n(HM×N )
as a function of the dimensions. This maximization is also of interest because bounds on the quality of the
approximate signal subspace estimated from noisy measurements typically depends on expressions of the type
‖E‖2=�n(HM×N ) (see, e.g., Theorem 2:1 in [7]). However, given the di�culty of the problem, we restrict
ourselves to discussing the choice of M;N that maximizes a lower bound on �n(HM×N ) instead. We start by
noting that, since HM×N = UMUT

N , it follows that H
†
M×N = U

T†
N U

†
M , and thus

�n(HM×N ) = ‖H †
M×N‖−12 ¿‖U †

N‖−12 ‖U †
M‖−12 = �n(UN )�n(UM ):

Imposing the constraint that M + N = L+ 1, this inequality becomes

�n(HM×N )¿�n(UM )�n(UL+1−M ) for n6M6L+ 1− n: (4.1)

Observe next that for M ≈ L + 1 − n (which implies N ≈ n), this bound is small, since �n(UL+1−M ) ≈ 0
as UL+1−M is almost a scaled square Vandermonde matrix, which is generally ill-conditioned. This is in
contrast with the fact that �n(UM ) increases with M (ensured by Lemma 1). This balancing e�ect between
M and N suggests that the Hankel matrix should not be chosen too overdetermined. By symmetry, the same
reasoning applies in the case M ≈ n (which implies N ≈ L + 1 − n), i.e. HM×N should not be chosen too
underdetermined. Hence, if the aim is to maximize bound (4.1), then the Hankel matrix should not be chosen
too rectangular. The following theorem states su�cient conditions that enable us to choose M;N in order to
maximize that bound.

Theorem 4. Let HM×N be the leading submatrix of the in�nite Hankel matrix H; with M +N =L+1=2T;
and L is a given odd integer. Assume

�n(Uj)− 2�n(UT ) + �n(U2T−j)60; j = n; : : : ; 2T − n: (4.2)

Then bound (4:1) on �n(HM×N ) is maximized when M = N = T . Furthermore,

�n(HM )¿
[
1 +

D2M
(n− 1)�2

]1−n


n
1− e2d�tM
1− e2d�t ; (4.3)

where d= dq; 
= |rq|; with q an integer chosen so that ‖UNei‖ (i=1; : : : ; n) in (3:6); is minimum for l= q.

Proof. Rewriting (4.2) as �n(UT )¿ 1
2 [�n(Uj) + �n(U2T−j)]; j = n; : : : ; 2T − n, we obtain

�2n(UT )¿
1
4 [�

2
n(Uj) + 2�n(Uj)�n(U2T−j) + �

2
n(U2T−j)]; j = n; : : : ; 2T − n: (4.4)

Also, since �n(U2T−j)− �n(Uj)¿0, it is clear that �2n(Uj) + �2n(U2T−j)¿2�n(Uj)�n(U2T−j). Substituting this
inequality into (4.4) we obtain

�2n(UT )¿�n(Uj)�n(U2T−j); j = n; : : : ; 2T − n;
which shows that the bound is maximized when M = N = (L+ 1)=2, as claimed.
Estimate (4.3) is an immediate consequence of (3.6) where we use the well-known property ‖U †

M‖26‖U †
M‖F .

The sense of condition (4.2) is that �n(Uj) is required to increase rapidly initially (i.e. for n6j6T ), but
then (for j¿T ) the rate of increase must be slower, which seems to be a property often obtained in practice.
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Theorem 4 suggests that if the bound we have just analyzed approximates “well” �n(HM×N ), then a similar
behavior of the nth singular value itself is to be expected. Thus if we assume the noise is not high enough to
dominate the signal, then the best gap between �n(H̃M×N ) and �n+1(H̃M×N ), say, gn(M;N ) = �n(H̃M×N ) −
�n+1(H̃M×N ); is likely to happen for M=N . Consequently, choosing square Hankel matrices seems reasonable.
However, as we have no control over �n(H̃M×N ) and �n+1(H̃M×N ), the choice M = N may not be optimal
in all cases but the relaxed rule M ≈ N may be convenient.

5. Numerical examples

In order to illustrate the observations concerning the role of �n(HM×N ) in separating signals from noise, as
well as the behavior of the bounds on k2(H) and the condition number itself, we have carried out a number
of numerical experiments of which the most relevant are presented below. We shall consider bound (3.13)
and that obtained from (3.18) where we use Baz�an’s bound for k2(W ). These are denoted, respectively, by
B(k2(H)) and �B(k2(H)). The condition number k2(H) was computed by using singular values extracted from
(1.11).

Example 1 (Hankel matrix related to a vibratory system). We consider a simulated mechanical system whose
impulse response is de�ned by

h(t) = 0:2e−0:06t sin(25t) + 0:16e−0:056t sin(27t) + 0:12e−0:09t sin(18t) + 0:15e−0:2t sin(15t):

As this is a real signal, its sampled version (1.2) comprises 8 exponentials, which implies that the associated
Hankel matrix H has rank 8 (i.e. n = 8). To illustrate the role that �8(HM×N ) plays in the crucial problem
of choosing a pair (M;N ) that maximizes the gap g8(M;N ), we compute �8(HM×N ), �8(H̃M×N ), �9(H̃M×N )
and ‖E‖ for all pairs (M;N ) such that M + N = 256 (i.e. L= 255), where we use zero-mean Gaussian noise
and �t = 0:05.
Results corresponding to a noise level ‖e‖2=‖h‖2 ≈ 40% (standard deviation 0.05), where h and e are

vectors, respectively, containing the pure signal and noise, are shown in Fig. 1(b). Notice in this �gure that
the choice of M;N that yields the best gap g8(M;N ) is M = N . This not only agrees with our theory but
also emphasizes the importance of choosing the dimensions well: if we choose M =30, no clear gap appears.
The behavior of both �8(HM×N ) and its lower bound (4.1), displayed in Fig. 1(a), also illustrates what was
predicted in theory: the maximum value for both occurs at M = N = 128.
In the second part of this experiment we compute B(k2(H)), �B(k2(H)), as well as those corresponding to

the �nite Hankel matrix HN for several values of N , as expressed in Corollary 1.
As a result we obtain

B(k2(H)) = 31:1090 and �B(k2(H)) = 205:0791;

which show the superiority of our bound compared with that derived from (3.18). Values of the bounds on
k2(HN ) are displayed in Fig 2. What is interesting here is that the bounds on k2(HN ) approach B(k2(H))
relatively well when N¿130 (for N = 132, the bound is 31.2887). This is because the number D2N for
those values of N is very small, thus ensuring the condition D2N.(n− 1)�2 in (3.5), which in turn, enforces
reasonable values for bound (3.11). For this example (n−1)�2 =0:0695, D2132 =0:0057 and D2∞=0:0027. The
number k2(HN ) itself varies much with N . While its maximum value is about 1:9691× 104, which occurs at
N = 8, it rapidly decreases reaching a minimum close to 1:88 at N = 36, and then starts to slightly increase
with small oscillations until convergence is reached. For this example we obtain

k2(H) = 4:4977:

Example 2 (Hankel matrix related to a nuclear magnetic resonance (NMR) signal). This example is that
of a signal composed of 5 complex exponentials, representing a typical 31P NMR signal [13]. The signal
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Fig. 1. (a) �n(HM×N ) (solid line) and its lower bound (4.1) (dashed line). (b) �n(HM×N ) (solid line), �n(H̃M×N ) (dashed line),
�n+1(H̃M×N ) (dotted-line), and ‖E‖ (dashed–dotted line) as functions of (M;N ) constrained to M + N = 256.

Fig. 2. Bound of Corollary 1 on k2(HN ) as a function of N .

Table 1
Signal parameters of a 31P NMR signal

Mode rl dl !l (Hz) zl |zl| �2i

1 5.8921 + i1.5788 208 −1379 0.6342 −i0:7463 0.9794 0.1787
2 9.5627 + i2.5623 256 −685 0.8858 −i0:4067 0.9747 0.0643
3 5.7956 + i1.5529 197 −271 0.9663 −i0:1661 0.9805 0.0643
4 2.7046 + i0.7247 117 353 0.9642+ i0.2174 0.9884 0.0100
5 16.4207 + i4.3999 808 478 0.8811+ i0.2729 0.9224 0.0100

parameters as well as the separations of the signal modes, �i, are presented in Table 1. In contrast with the
signal of the previous example, the signal in this case is more damped and its Fourier spectrum features
closely overlapping peaks (see Fig. 3). This means the signal is very sensitive to noise because of the two
closely spaced modes.
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Fig. 3. (a) Fourier spectrum of NMR pure signal. (b) Fourier spectrum of noisy NMR signal.

Fig. 4. (a) �n(HM×N ) (solid line) and its lower bound (4.1) (dashed line). (b) �n(HM×N ) (solid line), �n(H̃M×N ) (dashed line),
�n+1(H̃M×N ) (dotted-line), and ‖E‖ (dashed–dotted line) all as functions of (M;N ) constrained to M + N = 240.

We perform the same analysis as for Example 1. The available data for analyzing the gap g5(M;N ) consists
of 239 noisy samples (L=239) obtained at a rate of 10 kHz (i.e. �t =0:0001 s) where we use a zero-mean
Gaussian noise with unit standard deviation. The results again con�rm our theory and are shown in Fig. 4.
Notice that in this case however, the maximal gap seems to happen slightly on the left (and thus on the right,
by symmetry) of 1

2 (L+ 1) = 120, which is where �5(HM×N ) is maximum.
That the signal is sensitive to noise is easily veri�ed: for N = 5, k2(HN ) = 1:7819× 106. However, even if

for that N the Hankel matrix is ill-conditioned, this no longer occurs for increasing values of the dimension
(we obtain k2(HN ) = 3:4588 for N = 100). The condition number k2(H), bound (3.13), and bound (3.18)
reach the values

k2(H) = 3:2637; B(k2(H)) = 65:4466 and �B(k2(H)) = 594:4352;

which illustrate once more the superiority of our bound compared with that of (3.18). Explanation for the
“low” value of B(k2(H)) again involves the behavior of D2N , the separation of the modes zl and the size of
the modes themselves. For this example (n− 1)�2 = 0:0399, D2100 = 0:0310; and D2∞ = 0:0298.
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For the purpose of observing how the nth singular value of the perturbed and unperturbed Hankel matrix
behave when the noise is no longer zero-mean Gaussian, the same experiment was carried out with a noise
uniformly distributed in an interval [− t; t], where t is chosen to yield approximately the same noise level as
in the above example. This experiment was motivated by the fact that this noise model is preferred for certain
applications [5]. The corresponding results are not presented because the behavior of the singular values and
‖E‖2 is practically identical to that illustrated in Fig. 1(b).

6. Conclusions

We have conducted an analysis on the conditioning of in�nite Hankel matrices whose entries are samples
of complex valued signals and expressed the results under the form of upper bounds. The bounds involve
intrinsic characteristics of the signal such as, the number of spectral components n, the amount of damping,
and the closeness of the signal modes. In particular, we have proved that k2(H) becomes moderate provided
the signal is slightly damped, with the e�ect strengthened when the signal modes are not extremely close
to each other and n is small. As the number of spectral components in signal processing is typically not
very large, at least in several applications, we conclude that the associated Hankel matrices should be well
conditioned.
Moreover, given a �nite set of samples of the pure signal, we have analyzed a lower bound for the smallest

non-zero singular value of �nite Hankel matrices containing the data, which suggests that this singular value is
maximized when these matrices are approximately square. This is of interest in signal processing applications
where that singular value plays a crucial role in the separation of signal from noise. Numerical examples
taken from modal analysis and NMR illustrate the theory.
The authors are aware that further research is desirable for the case where the signal damping is stronger:

our bounds could be pessimistic in this case if the modes are not well separated, but numerical experiments
indicate that the conditioning of the Hankel matrix remains acceptable.
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