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Abstract

We re-analyze a Tikhonov parameter choice rule devised by Reginiska (1996
SIAM J. Sci. Comput. 3 740-49) and algorithmically realized through a fast
fixed-point (FP) method by Bazan (2008 Inverse Problems 24 035001). The
method determines a Tikhonov parameter associated with a point near the
L-corner of the maximum curvature and at which the L-curve is locally
convex. In practice, it works well when the L-curve presents an L-shaped
form with distinctive vertical and horizontal parts, but failures may occur when
there are several local convex corners. We derive a simple and computable
condition which describes the regions where the L-curve is concave/convex,
while providing insight into the choice of the regularization parameter through
the L-curve method or FP. Based on this, we introduce variants of the FP
algorithm capable of handling the parameter choice problem even in the case
where the L-curve has several local corners. The theory is illustrated both
graphically and numerically, and the performance of the variants on a difficult
ill-posed problem is evaluated by comparing the results with those provided by
the L-curve method, generalized cross-validation and the discrepancy principle.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Least square problems arising from ill-posed problems (also called discrete ill-posed

problems),

min|Af ~ g, ACR™m>m), geR", (1.1)

need to be regularized. The main difficulty in these problems is that small errors in the
data can be enormously magnified in the solution, because the coefficient matrix is severely
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ill-conditioned. Perhaps the earliest and most well-known method to deal with this class of
problems is due to Tikhonov [18]. The underlying idea of Tikhonov’s method is to replace
(1.1) by the minimization problem

fi = arg min {IAf = gll3 + RIS 112} (1.2)

where L is chosen to incorporate desirable properties on the solution such as smoothness, and
A is a positive parameter called the regularization parameter. The problem is how to choose
the parameter A such that f; becomes as close as possible to the noisy-free solution.

Parameter-choice strategies are commonly divided into two classes: a priori strategies
and a posteriori strategies. The difference between these is that while a priori strategies
try to select the regularization parameter before doing numerical computations, a posteriori
strategies try to select the regularization parameter from the results (e.g., f3) and the given
right-hand side. This last class covers the discrepancy principle (DP) of Morozov [14], the
L-curve criterion of Hansen and O‘Leary [8], generalized cross-validation (GCV) of Heath,
Golub and Wabba [3] and a fixed-point method (FP method) recently introduced by Bazan [1],
among others; for a survey on Tikhonov parameter choice rules see [9] and references therein.
More recent references can be found in [2, 5, 6, 11-13, 16, 19]. Attributes and properties of
parameter choice rules are well documented in a number of papers and we do not elaborate
about this any further here; instead we will concentrate on certain features of the FP method
which motivated this work. For simplicity of exposition, the L-curve criterion will be denoted
by LC and the FP method by FP. FP can be regarded as a realization of a parameter choice rule
devised by Reginiska [15], who proposed as the regularization parameter a local minimum of
the function

V(1) = x()y" (), (1.3)

for proper u > 0, where y(1) = ||fk||% (or y(A) = ||Lf)\||%) andx(A) = ||lg — Af;\||%. Bazan
investigated the properties of W, (1) and concluded that its minimizers are converging values
of a sequence defined by

ka1 = G (Ap), k>0, (1.4)
where
—A
6, () = \/ﬁu, A > 0. (1.5)
Il £ ll2

Having defined the quantities above, we can briefly describe FP by saying that it starts with
a proper initial guess and then proceeds with the iterates (1.4) until a minimizer of W, is
captured. There are two remarkable characteristics of FP to be mentioned here. First, FP
converges very quickly since only a few solution (semi)norms and corresponding residual
norms are required (see the numerical results reported in [1]), and second, FP is closely related
to LC: for every L-curve displaying an L-shaped form with distinctive vertical and horizontal
parts, there corresponds a function ¢, having a unique fixed-point at which the L-curve is
locally convex, the fixed-point being associated with a point near the L-corner of the maximum
curvature. These characteristics justify the performance of FP when compared to LC and other
methods, as reported in [1].

Unfortunately, FP is not always without difficulties and our experience with it in cases
where the L-curve displays several convex corners has been unsatisfactory, due mainly to the
fact that the suggested starting value sometimes leads to regularization parameters which yield
undersmoothed solutions (this will be illustrated in the following section). The purpose of the
present paper is to introduce variants of the FP algorithm designed in order to overcome the
difficulties mentioned above.
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This paper is structured as follows. As FP depends on fixed-points at which the L-curve
is locally convex, the convexity properties of such curve are analyzed in section 2. Our main
result is expressed in terms of a simple and readily computable/verifiable condition, which
determines the regions in which the L-curve is concave/convex, thereby providing insight
into the decision on how to select the regularization parameter when using parameter choice
rules such as FP or LC. From the theoretical point of view, this result not only complements
earlier convexity analyses performed independently by Reginska [15] and Hansen [7], but also
provides insight into the convexity properties of the L-curve on the whole domain. The use
of fixed-points in determining convexity regions of the L-curve is also exploited. The variants
of FP to be proposed are described in section 3. In section 4, the performance of one of the
proposed variants on a difficult discrete ill-posed problem is evaluated and compared with
results provided by DP, LC and GCV.

We end the section with some preliminary results and notation used throughout this paper.
As usual, we assume that Lis p x n, rank(L) = p < n, and that the pair (A, L) have a GSVD

A=U|:2 0 i|X, L =V[M;0]X. (1.6)
0 Infp
Here both U = [uy,...,u,] € R and V = [vy,...,v,] € R?*? have orthonormal
columns, X € R"™" is nonsingular and X, M are diagonal matrices: X =
diag(oy,...,0,), M = diag(u,...,up). Define o; = |uiTg|2 (the squared Fourier
coefficient of g), 8o = ||[(I — UUT)g|» (the size of the incompatible component of g
that lies outside the column space of A). Let the generalized singular values of the pair
(A, L), y; = o;/u; be arranged in nondecreasing order. Then it is easy to see that

i Mo 4 yia,
x(W) =Y ——— +§, yoy =y ———— (1.7)
; (2 +r2)’ ; (v2+22)°

and that for A > 0 the derivatives with respect to A of these functions satisfy

x'(0) = 413 > 0, V(1) = —4A <0. (1.8)
Z 2+ A2 Z 2+ A2
In addition, 1nequahtles (1.7) and (1.8) lead to
dy/dx = —1/A% (1.9)

showing that y is a monotonically decreasing function of x. Finally, based on (1.7)—(1.8),
straightforward computations lead to

¢ZL()L) > 0, for A >0, (1.10)

which show that ¢,, is a strictly increasing function. We close this section with the observation
that throughout this paper no assumption is made on rank(A), but to ensure a unique solution
to (1.2) we shall assume that rank([A” L7]7) = n.

2. On convexity of the L-curve

In view of the existing relationship between FP and LC, a complete description of the convexity
properties of the L-curve is required in order to understand when and why these methods break
down. A first step toward this was done by Regifiska [15], who proved that if §o = 0 then
the L-curve is concave on (0, y;) U (y,, 00), whereas if §y # 0, the L-curve is concave on
(¥p» 00) and convex on (0, €) with € small enough. Regiriska’s analysis however does not
extend to the interval [y, y,]. Another analysis concerning the issue appears in a paper by
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Figure 1. Geometric interpretation of condition (2.1).

Hansen [7]; there, concavity properties of the L-curve for y; < A < y,, are discussed but no
definite conclusion is provided. As far as we know, there are no advances about this, and a
precise description of the convexity properties of the L-curve is still lacking. In this section
such a description is provided.

We start with a theorem showing that there is a close relationship between the convexity
of the L-curve in a log—log scale and the behavior of the iteration function ¢;(}).

Theorem 1. Let v = log(y(})), u = log(x (X)) and let m (1) denote the slope of the L-curve
in a log—log scale at the point (u,v). Then the L-curve is convex in the vicinity of X if and
only if for all A in the vicinity holds

1 (1) < d”/\ﬁ .1

Further, if (2.1) is strictly satisfied at . = X, then the L-curve is locally strictly convex at X.

Proof. Differentiation with respect to A shows that

dv | (1))
— =m(\) = ————,
du mL(}) AZ

Taking derivative with respect to A on both sides of this equation it follows that
d>vx'(h)
du? x(A)

_ _2¢1 ) [ A1 (L) — 1 (X)
N e ’

Since x"(A)/x (A) is always positive by (1.8), it follows that the L-curve is convex in the vicinity

of (u(X), v(X)) if and only if the condition (2.1) holds in that vicinity, as claimed. The last

assertion of the theorem is also immediate from (2.1). O

m7 (1)

Condition (2.1) has a simple and nice geometric interpretation (see figure 1). To describe this
let T; (1) denote the tangent line to the curve z = ¢;(A) at (A, ¢1 (1)), and let (0, I;(1)) be the
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Figure 2. Left: L-curve of the test problem heat of size 64. Right: curves z = £(1) and z = ¢{ (1)
for y1 <A < yp. Both curves are on a log-log scale.

intersection point of this line with the ordinate axis. Then since
T(0) = {( 2.2 = ¢1 () + [ = 1), 4 > 0),

and I,(X) = ¢ (1) — Xd){ (%), it follows that the L-curve is strictly convex (resp. concave) in
the vicinity of X if T; (A) intersects the ordinate axis above (resp. below) the origin, and that
if the L-curve changes concavity at X, then the tangent line crosses the origin.

A consequence of theorem 1 is that the critical points of the function §(A) = ¢ (A) /A, A >
0, determine the regions in which the L-curve is convex/concave. More precisely, we shall
prove that for every two consecutive zeros of the equation

A
fm=0 & go-"" =0
there is a region in which the L-curve is concave or convex depending on whether the sign of
o1 (A — ""Aﬂ is either positive or negative in that region. For illustration purposes, the L-curve
of a test problem from the regularization tools [10], as well as the associated function &£ (1) and
¢1 (1) are depicted in figure 2. Note that the regions where the L-curve is convex (concave)

agrees well with the regions where the curve z = ¢} () lies below (above) the curve z = £(A).

A mathematical description of what we have just demonstrated graphically can be
described as follows:

Corollary 1. Assume that the function &()\) attains two local extremes at two consecutive
critical points of &, namely )| and hy with .| < A,. Then the L-curve is convex on the interval
(A1, A2) if Ay is a local maximum point, and the L-curve is concave on (A1, A2) if A1 is a local
minimum point.

Proof. Let us assume that £ has a local maximum at A; so that £ is locally minimized at X,.
Then based on the fact that & is continuous and differentiable for A > 0, it follows that £ is a
nonincreasing function on [A;, A,] and therefore

ML) — 0 _

£\ = P , for AL < A< Ao
This inequality is equivalent to (2.1) and proves the first part of the corollary. The assertion
concerning the concavity of the L-curve is proved similarly. (|
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Remark 1. When ¢, has no fixed-point, which means ¢ (1) > A for A > 0, a decision has to
be taken concerning the choice of a parameter u to ensure that the function ¢,, has a fixed-point
that minimizes W,,. The FP algorithm, as originally described in [1], handles this heuristically
(i.e., without theoretical support), looking for an approximate minimum of £ which is then
used to select a parameter . The choice of u in this way is now theoretically supported by
corollary 1.

Remark 2. Corollary 1 continues to hold if the assumption on 1, is replaced by a weaker one,
where A, is required to be a critical point instead of a local extremum. That is, corollary 1
holds regardless of whether A, is an extremum point or not.

The next theorem shows that the fixed-points of ¢;(}), when they exist, provide
information that can be used to determine approximately the regions where the L-curve is
concave/convex.

Theorem 2. Assume 1* is a fixed-point of ¢1(L) satisfying ¢{(A*) # 0. Then the L-curve is
convex in the vicinity of \* if and only if —\* yeH

y(*)
holds, we have \* < ‘/Tgy,,, and there exists A, € (\*, y,,) that is a fixed-point of ¢ at which

the L-curve is locally concave.

< 1. Moreover, whenever this inequality

Proof. Differentiation with respect to A on both sides of the identity (¢;(1))* = X3 Jeads to

y()
/ yR)x' () — x()y'(A)
2¢1 (A A) =
$1()¢ () L

Ay +x()
=T omr ™ ¢

where we have used the fact that x’(L) = —A2y’(1) by (1.9), and hence
)\*2 +¢1 ()\,*)2 y/()\*) _ )\.*y/()\*)

") = — = 2.3

h) 2010 y(A¥) y(¥) @)
Assume

L YO

() = o <1.

Then, by continuity arguments it follows that there exists a vicinity of A* such that
¢1(A) < ¢1(A)/2 for all A in the vicinity, and theorem 1 ensures that the L-curve is convex in
this vicinity.

Conversely, if the L-curve is convex in the vicinity of A*, by theorem 1 we have that

Yy T

and we have to prove equality is not possible in the above inequality. In fact, if ¢{(1*) = 1,
then A* is a critical point of £ and, since A*§”(A*) = ¢{(1*), which is immediate to see, and
since ¢” (A*) # 0 by hypothesis, it follows that A* is an extremum point of £, and consequently,
by corollary 1, a point where the L-curve changes concavity, which is a contradiction. Thus
we must have ¢] (%) = A*y'(A*)/y(A*) < 1, as claimed.

To prove that A* < ‘/Tgy,, observe that, similarly to the convex case, a necessary and
sufficient condition for the L-curve to be locally concave at A, is ¢{(A,) > 1. With this

observation in mind, assume now the statement to be proved is not true, i.e., assume that

AT > */Tgyp. Then, due to (1.7)—(1.8) and the fact that the generalized singular values decay to

zero without particular gap in the context of discrete ill-posed problems, which means there

1, 2.4)
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holds y; < y,, foratleastone 1 <i < p, we have

p *2 2\a,2 . ® 1,/ () %
=AY =y ) = Z—(Sk vi )y; % YD 1,

o (A y(r)
thus implying that the L-curve is locally concave at A*, a contradiction. Therefore,
A2 < y§/3.

To prove the last part we recall two results from [1]: (a) the fixed-points of ¢, when they
exist, belong to the interval (0, y,), and (b) for all A > y,, there holds ¢ (A1) > A. Thus, since
local convexity of the L-curve at A* implies that ¢; (1) < A at least for some A to the right of
A%, it follows that the function A — ¢ (A) changes sign in the interval (A*, y,,] and hence, there
is A, inside this interval such that ¢;(1,) = X,. To complete the proof it is sufficient to see
that the condition ¢ (1) > 1 is satisfied in the vicinity sufficiently small of A, which ensures
the last assertion of the theorem. U

2.1. On the condition ¢ (1*) < 1 and the assumption ¢ (1*) # 0

If A* is a fixed-point of ¢,,, i.e., a point for which A* = /g1 (1*), let us analyze the role that
both the condition ¢;(A*) < 1 and the assumption ¢ (A*) # 0 play in the minimization of the
Reginiska’s functional ¥,,, and in the convexity of the L-curve. For this, we start by noting
that the first and second order derivative of W, at A* satisfy

W () = [—A% + g A ]y ()Y (W) =0, (2.5)
W) = =201 — /g )1y (W) y' (W), (2.6)

where we have always y*(1*)y'(1*) < 0 because of (1.8). Then, an immediate consequence
of (2.6) (which supports the FP algorithm) is that W, is always minimized as far as
VP (AF) < 1, this is happening when ¢1(A*) < 1 and u < 1 or when ¢{(A*) < 1 and
u < 1. However, (2.6) provides no information when ¢ (1*) = 1/,/ (since in this case
“I’;Z (A*) = 0), and in order to obtain informative results we have to analyze higher order
derivatives of W,. Restricting to third and fourth order derivatives, taking ¢{(A*) = 1//it
we have

W) =2/ o] )y () y (W), 2.7)
and
W 0) = 2RI G5 + 3] (1Y ()Y (1)

+ 6./ O [y L 05y 0F) + Ry (W], (2.8)

where, as before, y*(1*)y’'(A*) < 0 is always valid.

Several conclusions can be derived from (2.7)—(2.8) provided some information about

@] (A*) is available. Some of these follow:

(1) If ¢7(A*) # 0, A* is an inflection point of W, (see (2.7)).

(2) If ¢{(A*) > 0 and p = 1, 1* is a local minimum point of £. This is because 1" is also a
critical point of & and because we noted that £”(1*) and ¢ (A*) share the same sign. As
in this case the straight line z = A is tangent to the curve z = ¢; (1) at (A*, ¢;(1*)), which
implies ¢; (A) > AV A in some interval I containing A*, from this we can conclude that the
L-curve changes from convex to concave inside 7 (see corollary 1). A similar conclusion
can be drawn if ¢ (A*) < 0.

(3) When ¢{(1*) = 0, no information is available from (2.7) but reliable information can be
extracted from (2.8) provided that ¢{" (A*) # 0. Of course, if ¢] (A*) = O and ¢{"(1*) < 0,
for instance, then A* is a local minimum point of W,,.
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Figure 3. L-curve (left), concavity/convexity regions as determined by two local extremes of the
function & (center), and curve z = ¢;(A) (right) corresponding to the test problem deriv2 from
regularization tools [10]. The straight line z = A is also included to illustrate that function ¢; has
three fixed-points. Small squares denote the points at which the L-curve changes concavity. All
curves are on a log—log scale.

2.2. Conclusions on convexity/concavity of the L-curve

The theory described above is now used to obtain some conclusions. In the following, the
largest fixed-point of ¢, if any, is always denoted by A.. Also, for ease of comprehension,
when §p = 0 and £ has a local extremum, we shall assume the simplifying hypothesis that
& has no more than one local extremum neither between consecutive fixed-points of ¢; nor
inside the interval (A, ¥,). When 8y # 0 and there exists a fixed-point A* that minimizes W,
we assume that & is not allowed to have more than two local extremes on the interval (0, ).
The cases §p = 0 and &y # O are described separately

(i) The case 6y = 0 is easy to analyze via our fixed-point approach. Of course, since ¢,

is always guaranteed to have at least one nonzero fixed-point on (y, y,,), see theorem 1
in [1], some conclusions can be drawn knowing the number of fixed-points of ¢;. For
instance, if A, is the unique fixed-point of ¢;, then the L-curve will be concave on the
whole domain provided & has no extremum point inside (y;, A,). If, on the other hand,
we assume ¢ has a unique fixed-point at which the L-curve is locally convex (i.e., | has
a unique minimizer), which means ¢; has three fixed-points (see theorem 1 in [1] again),
the conclusion is that the L-curve changes concavity at least three times. More precisely,
the L-curve will be concave between the origin and the local maximum of &, convex
between the two local extremes of &, and concave to the right of the local minimum of
&. This configuration is shown to hold when analyzing the test problem deriv2 from the
regularization tools [10] (see figure 3).

(i) If §o # 0, fixed-points of ¢; are not always guaranteed to exist and the intervals of

concavity/convexity of the L-curve may not be determined using fixed-point information.
So, the definite answer about the question will ultimately depend on the number of
local extremum of £&. However, taking advantage of the fact that £ has always a local
minimum near the origin (guaranteed by Regiiiska’s analysis) some conclusions can be
now obtained. For instance, if £ has a local maximum at A, besides the local minimum
near the origin, there will exist A, (located to the right of A;) at which & has another
local minimum, and if £ has no extra local extremum, the conclusion is that the L-curve
is convex on the interval (0, €) (for small €), concave on (e, A1) U (X, 00) and convex
on (A1, A2). The case where & has two local maxima and three local minima, as seen in
figure 2, appears very often in problems where the function ¢; has four fixed-points and
the L-curve has two corners, one of the corners being associated with a very small A. The
conclusions for the case where £ has more than two local maxima are straightforward.
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Figure 4. L-curve, curve z = ¢; () with ¢ having several fixed-points, and points corresponding
to several Tikhonov parameters. The graphs correspond to the test problem heat.

Table 1. Numerical results for the test problem heat generated by the function heat.m with k = 1,
an exact solution norm || f&*||, = 0.19671 e+1, n = 64, and a right-hand side contaminated by
additive zero mean random noise at a relative noise level of 5%.

L-curve FP FP DP

by 0.85782 x 1077 0.46921 x 107> 0.75681 x 102 0.16155 x 107!
Iflla 0.65739 x 102 0.654 35 x 10? 0.19363 x 10! 0.176 16 x 10!
Irallz - 030622 x 1073 0.30693 x 1073 0.93940 x 1072 0.13316 x 10~!

3. Improvements to the fixed-point algorithm

Having understood the convexity properties of the L-curve, we now clearly see that there
may exist several convex local corners, a situation in which both LC and FP tend to fail. An
example that illustrates this aspect well is the test problem heat from the regularization tools
[10]. A particularly interesting property concerning heat (with a noisy right-hand side) is that
its L-curve often displays two convex corners and the function ¢, has two fixed-points that
minimize W;. The problem here is that LC delivers a Tikhonov parameter associated with the
sharper L-corner and yields a very undersmoothed solution. A similar property holds for the
FP-based solution corresponding to the smaller fixed-point of ¢. For illustration, the residual
and solution norms as well as the regularization parameters computed, respectively, by LC,
FP and DP, are all displayed in table 1.

Observe from this table that the solutions produced by LC and FP, respectively, associated
with the sharper L-corner (the parameters of which are displayed in table 1, columns 2-3,
see also figure 4), really yield very undersmoothed solutions; this does not happen with
the FP-based solution associated with the largest minimizer of W, (as displayed in table 1,
column 4) and the DP-based solution. The graphs of the L-curve and ¢; are shown in figure 4.

The conclusion that can be drawn from the results of the test problem heat, which we
expect to be valid for other problems, is that if ¢; has several fixed-points that minimize ¥
and if the FP algorithm starts with a very small initial guess, as suggested in [1], then there
are strong reasons to believe that FP will fail and that the proper parameter in these cases is
that associated with the largest minimizer. The purpose of this section is to describe some
variants of FP designed to compute such a minimizer. The variants to be introduced rely on
the following observations:
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(a) The largest convex fixed-point of ¢;, when it exists, does not exceed éyp (see
theorem 2).

(b) The function ¢ is strictly increasing and so is its inverse d)l_l (see (1.10)).

3.1. Variants of the FP algorithm

We shall introduce two variants of the FP algorithm. The first variant claims that the largest
fixed-point that minimizes W, can always be computed as far as the FP algorithm is judiciously
initialized. To make this statement precise, note that because of observation (a), it is reasonable

to expect ¢;(Xg) < Ag for Ag ~ %gyp. When this is the case, Ay = ¢1(Mp), k > 0, is a
decreasing sequence, as ¢; increases with A, which always converges either to a fixed-point
located to the left of Ay when 8y # 0, or to zero when §y = 0 and ¢; has no nonzero fixed-point
on the interval (0, Ap). Although the latter case is very difficult to happen in the context of
discrete ill-posed problems, in case FP converges to zero we shall say that FP diverged.

Thus, assuming that 1y ~ «/§yp /3 satisfies ¢1(1g) < Ao, the first variant starts by setting
u = 1 as a default value, and proceeds by computing subsequent iterates until convergence
is reached or until divergence is detected. When convergence is reached, a fixed-point A* is
computed and a test for convexity of the L-curve at A* is made. When divergence is detected
or when convergence is reached and the convexity test is not satisfied, the parameter p is
adjusted and the iterations restart.

This variant of the FP algorithm will be denoted by FPJS (which stands for the fixed-point
algorithm with judicious starting value). A more or less detailed description of FPJS is as
follows:

Fixed-point algorithm with judicious starting value (FPJS)
Input: y,, tol, €
1. Setu =1,k =0,k ~ +/3y,/3 such that ¢, (o) < Ao
2. Compute so = ¢, (Ao)/Ao.
3. while (|sy — 1] > tol & Ay > €) do
M1 <= G (Ai),s Skt < Agr1/ Ak
k<—k+1
end while
4. if (e > € & ¢, () < 1/p) do
A= A,
elseif (A > € & ¢ (Ax) = 1/p) do
Set Lo = 0.9A, k = 0, and go to step 2
else do
Find k* such that s;- = min sy.
Select u < 1, set Ag = A=, k = 0, and go to step 2
end if

Although the choice of ;< 1 at step 4 is rarely required when solving discrete ill-posed
problems, for completeness we have to consider it. Indeed, this choice is by no means unique
and can be made in several ways. Our suggestion is to follow the procedure in [1], or some
criterion that takes into account the convexity results of the previous section the user finds
appropriate.

In order to describe the second variant of FP, note that while for & > ¥p the function
¢ satisfies ¢ (X)) > X, for the inverse d)l_l we have ¢]_1():) < X (see observation (b) and
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Figure 5. Graphs of ¢ and ¢5;l, and two steps of inverse sequence (3.1).

figure 5). Now consider the sequence
Tt = o7 R, k=0,1,2,... 3.1

and call it the ‘inverse sequence’. Then, due to observation (b), it follows that the sequence
(3.1) is well defined and Jiay is the unique solution of the nonlinear equation

De(h) = 1 (L) — A = 0. (3.2)

Yet, if ¢, (Xk) > X, then X4, is located to the left of X, (see figure 5 again). An immediate
generalization of this result is that if ¢; is guaranteed to have fixed-points, then the inverse
sequence converges to a fixed-point of ¢; that is to the left of Yo if ¢1(Xo) > Ao, OF tO a
fixed-point of ¢, that is to the right of Ko if b1 (%) < Xo. Therefore, if ¢1 has at least one
fixed-point and the inverse sequence starts with 5\0 > Yu, then limg_, o ik = )\, Where A, is
the largest fixed-point of ¢, .

With regard to the computation of X, it can be done in several ways. If we choose a
variant of the secant method, for instance, with y satisfying ¥4 (y) < 0 and Y as mentioned
before (which ensures the root XM € [y, Xk]), this computation can be done as follows:

Inverse sequence via the regula falsi method
Input: tol, y such that 9;(y) < 0, and X, such that ¢; (X¢) > Ax
1. Setu =Xk,j <0

2. while |9 (y)| > tol do
q = 2W—a

y—u
di=y— ¢1(V(3—5~k
if 9;(d;) < 0do
y <dj,j<j+1
else do
u<dj, j<j+1
end if
The second variant, which we denote by FPIS, combines the inverse sequence (3.1) and
FPJS. More precisely, we propose to determine the largest concave fixed-point via the inverse

11
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sequence, and then proceed with FPJS in order to compute the sought convex fixed-point. By
convex (resp. concave) fixed-point we mean a fixed-point of ¢; at which the L-curve is locally
convex (resp. concave). FPIS can be roughly described as follows:

Fixed-point algorithm with inverse sequence as preliminary step (FPIS)

Input: y,, tol, €
1. SetX; ~ v, and apply inverse iteration to determine A, such that ¢} (%,) > 1.
2. Set Ag = 0.9A, and resort to FPJS

Note that because every iteration step of the inverse sequence requires solving a nonlinear
problem, the inverse sequence should be used not to compute the largest concave fixed-point
to high precision, but just as a mean to approximately locate it. Note also that in cases
where ¢; has a unique convex fixed-point, all versions of FP (i.e., the original one and
corresponding variants) are able to capture it; the only difference is the type of sequence used
in its computation: while the original version uses an increasing sequence, the variants use a
decreasing one.

We end the section with some observations which should be taken into account in order
to fully exploit the potentiality of the FP algorithm.

(O1) Input parameters tol and € play the role of convergence test parameters and are to be
fixed by the user. As for the input parameter y,,, it must be estimated efficiently when
the G(SVD) is not available, and a way to do this is by using the Lanczos method applied
to [ATLT]T.

(02) In some problems the condition ¢ (o) < Ao for Ag near \/gy,, /3, as required at step 1 of
FPJS, may not be satisfied. Indeed, this can happen either because ¢; has no fixed-point
(see the analysis of the test problem helio in [1]) or because the condition ¢;(A) < A
is satisfied only near the smallest singular value. In order to handle this difficulty two
approaches are suggested. The first one is to apply FPIS as described above. We believe
this is the most efficient way to capture the largest convex fixed-point, but extra work is
needed. However, numerical experiments show that the extra work spent with FPIS is not
substantial provided that the chosen zero finder ‘works’ at low precision. A numerical
example that illustrates the approach and the work spent when applied to the test problem
Phillips from [10] is displayed in figure 6. In this case, we consider data corrupted by
additive zero mean random noise scaled so that the relative noise level is 10%, and we
use regula falsi as zero finder with a convergence test parameter 0.1; inverse iterations
terminated as soon as the relative change of consecutive iterates was 0.01. The amount
of work required for the computation of the sought largest convex-fixed point via FPIS
comprises 5 inverse iterations at a cost of 13 evaluations of ¢; plus 10 FIPS iterations
(i.e., plus 10 evaluations of ¢;). This test problem is representative of the convergence
behavior of FPIS we have observed with other test problems and for several noise levels.
Despite this, we do not have a precise recipe which indicates when and under which
circumstance one must start with FPIS.

The second one, is to evaluate ¢, at a few values of A to the left of Ay, say at
Al, ..., Ag, in order to know whether the function ¢(A) — A changes sign along these
values, and in case the difficulty persists, our recommendation is resorting to the original
version of the FP algorithm. A similar observation applies for FPIS.

12



Inverse Problems 25 (2009) 045007 F S Viloche Bazan and J B Francisco

7

O Inverse iterates
i O FPJS iterates R
o

0 1 2 3 4 5 6

Figure 6. Computation of the largest convex fixed-point of ¢; via FPIS for the test problem Phillips
from [10].

4. Numerical results

To evaluate the effectiveness of one of the proposed variants, we have solved the test problem
heat with a noisy right-hand side, § = g + e, where e is a zero mean random vector. This test
problem was chosen because its L-curve very often exhibits more than one convex corner (see
figure 4), in which case both LC and FP (original version) tend to fail. Our intention is thus
to illustrate the performance of the FP variants on a problem with difficulties not encountered
in the test problems addressed in [1], where the L-curve (resp. function ¢;) is shown to have
a unique convex corner (resp. a unique convex fixed-point), and where a comparison with LC
and GCV is made.

We report average values and standard deviations of 100 realizations with distinct right-
hand sides such that ||g — gll»/llgll2 = 0.01,0.05 and N = 256. For comparison, we also
report results obtained by L-curve, GCV, DP and OPT. OPT stands for a method that calculates
the optimal regularization parameter via exhaustive search (which is always possible since
the exact solution is known). It is instructive to recall that DP can be considered in two
distinct circumstances: one in which DP is almost optimal in the sense that the solution error
norm, || £ — f; |2, is almost minimized (which is known to occur when the error norm
lle]l2 is provided as an input parameter [4, 17]), and another one in which only an estimate
of the error norm is available. Thus, in order to evaluate the effectiveness of FP against DP,
two cases are considered. In the first case we provide the error norm as input data, and in
the second case we provide an error norm estimate given by 1.05]|e||,. On the other hand,
because LC failed constructing reasonable solutions several times, average value computation
for LC was done using successful runs only: an LC-based solution was considered successful
when the corresponding error did not exceed 1.5 times the maximum error obtained by DP.
A similar comment applies for GCV. All computations were carried out in MATLAB using
the regularization toolbox described in [10]. As in [1], we use a convergence test parameter
defined by the relative change in Ax: |Are1 —Arl/Ax = sk —1| < 107* (i.e., weuse tol = 107).
The other convergence test parameter used in the simulation was € = 1078,
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Table 2. Numerical results for the test problem heat. Itermax = 12, Itermin = 11.

Noise level 1%

FPJS L-curve GCV DP Dp* OPT

SR 100% 24% 59 % 100% 100% 100%
E 0.11702 x 10°  0.11816 x 10° 0.11047 x 10° 0.10043 x 10° 0.11261 x 10° 0.96652 x 107!
Emax  0.12675 x 10°  0.12688 x 10°  0.12524 x 10° 0.12710 x 10° 0.13793 x 10° 0.12452 x 10°

Emin 096533 x 107! 0.10208 x 10° 0.84526 x 10~ 0.70843 x 10~ 0.82050 x 10~ 0.65607 x 10~!
A 0.18024 x 1072 0.17488 x 1072 0.21472 x 1072 0.41274 x 1072 0.52252 x 1072 0.34109 x 1072
STDg 0.78588 x 1072 0.71573 x 1072 0.10758 x 10~! 0.12898 x 10~' 0.11369 x 10~! 0.13023 x 10~!
STD; 0.23506 x 10™% 0.76203 x 10~% 0.15354 x 1073 0.28550 x 10~3 0.20097 x 1073 0.34275 x 103

Table 3. Numerical results for the test problem heat. Itermax = 14, ltermin = 12.

Noise level 5%

FPJS L-curve GCV DP DP* OPT

SR 100% 66% 72 % 100% 100% 100%
E 0.20371 x 109 0.19894 x 10° 0.21610 x 10° 0.20436 x 10° 0.26717 x 10° 0.19446 x 10°
Emax 025656 x 10°  0.26343 x 10° 0.26204 x 10° 0.26537 x 10° 0.31212 x 10° 0.25655 x 10°
Emin  0.14647 x 10°  0.13150 x 10° 0.13650 x 10° 0.13418 x 10° 0.22332 x 10° 0.12944 x 10°
A 0.10083 x 107! 0.73912 x 1072 0.54287 x 1072 0.10292 x 10~! 0.17141 x 107! 0.81209 x 1072
STDg 0.21774 x 10~! 0.30421 x 10~! 0.26778 x 10~! 0.25995 x 10~! 0.17835 x 10~! 0.26225 x 107!
STD; 0.16764 x 1073 0.33940 x 1073 0.50376 x 1073 0.96734 x 10~3 0.60831 x 1073 0.91910 x 103

To describe the results we use the following notation:

e SR: successful runs,

e E, i: average values of relative error in f; and in Tikhonov parameters, respectively,

® Eiax, Emin: maximum and minimum error, respectively, occurring in all realizations,

e STDg, STD,: standard deviations of computed errors and Tikhonov parameters,
respectively.

The results of the experiment using FPJS with an initial guess Ay = ﬁyp /3 are shown
in tables 2 and 3. Results of DP for the case where we used an error norm estimate instead of
the exact error norm are denoted by DP¥. From this table, we see that both L-curve and GCV
have difficulties computing acceptable solutions, and that if we consider successful runs only,
on average FP, L-curve, GCV and DP, all yield solutions with approximately the same quality
and close to that yielded by OPT. Further, we see that among the tested methods, the one that
estimates more consistently (smallest variance) the regularization parameters is FP, while the
one in the opposite direction (largest variance) is DP. This is also illustrated in figure 7. Apart
from this, we also see that the error norm in f; for DP# is in agreement with what is known
from theory: the error associated with DP-based solutions grows approximately in the same
proportion as the estimate for the error norm || e||, does [4, 17]. Also, in order to illustrate how
expensive FPJS is, we report the maximum/minimum number of evaluations of ¢; required
in the experiment; this is denoted by Itermax, Ifermin, respectively. The remaining quantities,
namely Eax, Emin and, STDg, do not change very much from a method to another one and no
further comments are required.

We end the section with the observation that an implementation of FPIS with regula falsi
as zero finder produced solutions with the same precision as that of FPJS, with the difference
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Figure 7. Regularization parameters determined by FP, L-curve, GCV and DP on a logarithmic
scale. For L-curve and GCV are considered successful runs only.

that the work spent with the former was about twice the work spent with the latter. This
difference can be reduced provided another zero finder is used.

5. Conclusions

Using a model problem with associated L-curve displaying several convex corners, we showed
numerically that both the L-curve method (as implemented in [10]) and the FP algorithm
(original version) tend to fail. In order to circumvent this difficulty, we investigated the
convexity properties of the L-curve in a log—log scale, obtaining results that provide insight
into the Tikhonov parameter choice problem and that can be used for improvement of the L-
curve method in order to reduce failures. Specifically, new versions of the L-curve method that
search for the rightmost convex L-corner must be implemented and evaluated numerically. Our
main conclusion is that the proper Tikhonov parameter, in cases where the L-curve displays
more than one convex L-corner, is the parameter associated with the largest convex fixed-point
of ¢,.. This gave rise to two variants of the FP algorithm which were evaluated numerically
by comparing FP-based solutions with those provided by LC, GCV, DP and a method that
gives the optimal regularization parameter. The simulation results not only illustrate that the
improved versions of FP can give solutions with essentially the same quality as those provided
by well-respected methods such as DP (in its almost optimal version), LC and GCYV, but also
confirm the excellent performance of FP already shown in [1] where the method is shown to
work successfully in all rans when applied to other problems. This makes the FP algorithm
attractive for discrete ill-posed problems. In spite of this, we are aware that further numerical
simulation addressing other problems is needed in order to fully assess the performance of FP.
This is the subject of future research.
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