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MATHEMATICS OF COMPUTATION
VOLUME 64, NUMBER 211
JULY 1995, PAGES 1193-1198

AN ITERATIVE METHOD FOR THE NUMERICAL
INVERSION OF LAPLACE TRANSFORMS

CRISTINA CUNHA AND FERMIN VILOCHE

ABSTRACT. We present an algorithm for the numerical inversion of Laplace
transforms that is a particular case of the iterated regularization method pro-
posed by Vainikko in 1982. To construct the finite-dimensional space, we use
Laguerre polynomials. Error bounds for the approximations are derived.

1. INTRODUCTION

Let X = L%(R*) be the weighted Lebesgue space associated with w(t) =
e, Y =L*[c,d]), d >c >0 and 4: X — Y the Laplace transform
operator,

(1) (4x)(s) = /0 " emtx(t)di = y(s).

As is known, the problem of solving (1), for a given y € Y, is ill-posed. The
problem of determining A%y, where A" is the generalized inverse of A4, is
still ill-posed: the solution depends discontinuously upon y .

If we only know the perturbed data ys, with

(2) ly —yslly <9,

then one must use “regularization methods”. This is a family of operators Ry:
Y — X, indexed by some regularization parameters N, together with some
strategy to choose the parameter such that Ryys; is an approximation to A*y.
There are also other kinds of perturbations when, instead of the operator A4,
we use an approximation Ay such that ||Ay — A|| < By .

In this paper, we use the arguments presented by Vainikko, in [6], to design
an algorithm for the inversion of the Laplace transforms of data with noise. The
Laplace transform methods are helpful techniques for differential and integral
equations; however when discretization is required to solve the problem in the
Laplace domain, errors are introduced. Similar situations arise when we deal
with the Laplace inversion of scientific measurements or observations.

2. THE LAGUERRE APPROXIMATIONS

If the data are only imprecisely known, that is, only ys € Y is available
satisfying (2), we can use the implicit successive approximation method [4]
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1194 CRISTINA CUNHA AND FERMIN VILOCHE

(3) xk = (AL +A*A)" 1 (Ax*1 + 4*ys), A>0,

where A* is the adjoint operator of 4.

Let V; C V5 C --- be a sequence of finite-dimensional subspaces of X where
Vn is spanned by the Laguerre polynomials of degree < N [1]. The Laguerre
polynomials, ¢;(¢), are such that

/Ooo e_t¢i(t)¢j(t) dt = 5,'1-

and they form a complete set in L2 (R*) [2, for example]. We will denote by
Py the orthogonal projection of X onto Vy and Ay = APy .
In the finite-dimensional subspace Vy , we define the approximation

N
Xy =Y aidi(t)
i=1
such that
(AL + Ay AN)xK @) = (Axk + Ayys, ¢5),  j=0,...,N,i>0,

where (-, -) is the usual inner product in X .
Let w;(s) € Y be the Laplace transform of ¢;(¢). As we know,

~ (i) (=0*
$i(t) = L),
> (k)
so that

. _ oo —Std)'ldt— d i (_l)k_l l—l '
vils) = | eoil) —EO k) =3U0-5)
With these functions we construct a matrix M,
d d i+ Fiti+l _ Jiti+l
1 1 FiHi+l _ Jitj+
Mij—/c '//i(S)'//j(S)dS—/c ) (1 ) ds = ST TS

where ¢ =(1-c)/c and d = (1 —d)/d . If we define a vector f,

d
fi= [ vsowids.
c
the variational formulation of the implicit scheme (3), in Vy, will be
(4) (AL +M)a* = 2a*~! +f.

For a given A > 0, we can state the Procedure
1. Do the Cholesky decomposition LLY = M + AI;
2. a°=0
solve the system LL7ak = Aak-1 +f, k=1,2,....

We must observe that, in this process, the regularization is an important
feature. The condition number of M becomes insupportable as N increases;
for example, if N = 15, the condition number of M is O(109).

By direct calculations we can show that the adjoint operator A* is, in this
case,

§

b

(A*0)(1) = ¢! /c ! eou(s) ds.
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NUMERICAL INVERSION OF LAPLACE TRANSFORMS 1195

Under the limitation ¢ > 1 it can be shown that A*v € L2(R*). Also, we
can see that z(t) = (4*v)(t), v(s) € Y, is an analytical function, and for
k=0,1,

d
(5) z(")(t)=/ e~ 111 — s)kv(s) ds

(4

3. ERROR BOUND ESTIMATES

Assume that the data are on the interval (c, d), with ¢ > % , and, as before,
let ¢=(1-c)/c and d = (1 —-d)/d.

Lemma. Let ¢ > 1 and o = max{|¢|, |d|}; then a <1 and

N+

ﬂN—"A AN”<\/_ )1/2

Proof. We know that
14— Anll = 14 = Pw)|| = (I = Pm)A™|| = "Slﬁpl{ll(l - Py)A™v| x}.
vl||=

Let z(t) = (A*v)(t), v € Y, such that ||v||ly = 1. Then

N
z(t) =) bii(2)

i=1

(I = Py)A™v]lx = I — Pn)z(D)llx =

b

X

where b; are the Laguerre-Fourier coefficients of z(¢). The next step is to
calculate the rate of convergence of the Laguerre-Fourier approximants. We
will use a basic property of the Laguerre polynomials [1]:

-t 1 d* ko=t
e gu(t) = pyor(the™),  k=0,1,....

By successive integration by parts, and the last equation, we get
by = / e~'z(t)pi(t) dt = ) l) “t"z(k)(t) dt.
0 0

Using (5) and the Laplace transform of ¥, we obtain

_(=k ok [T stk
(6) b = 7 /cv(s)(l s)/0 e 't*dtds

(7 =(—1)"/cd—;- (%)kv(s)ds.

By the Schwarz inequality,

d N2
(®) |bk|2s{ [+(59) ds} o1}

(9) = {Ek—l_;—l(ézk-n _ J2k+l)} — [y(k)]Zk(é;_d'),
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1196 CRISTINA CUNHA AND FERMIN VILOCHE

and y(k) € (d, &) from the mean value theorem. But —1 < (1 - x)/x < 1, if
x> %,s0that —1 < d < y(k) < &< 1. If we choose a = max{|¢|, |d|}, we
have a <1 and

2N+1)

00 ) N . o] s .«
Y obi<@E-d) Y oM =(-d)T—7,
k=N+1 i=N+1

and the lemma will follow. O

The method of successive approximations (3) is familiar for ill-posed prob-
lems [3-6]. In particular, Theorem 1 in [6] is concerned with “a priori” speci-
fication of k. It claims that if

(i) y€R(4),
(il) x* € R([4*A)"/?), where x* is the solution of (1) closest to 0,
(iil) k =d(d + By)~H?*) for some d; >0,
then for any 4 >0
lx* — x*lx < da(6 + Bn)P/P*D,  dy = const(p, dy).
Our final conclusion follows directly from this result and the previous lemma:
Proposition. Under the conditions (i)-(iii), the successive approximations (4),

with
N+ =2/(p+1)
k dl 9
(1 1=a?)2
d | = constant and o defined in the previous lemma, will give x; such that
aN+1 p/(p+1)
+
lxXe —x¥llx < da <5+m) )

where dy = d,(p, d,) .

4. NUMERICAL EXPERIMENTS AND CONCLUSIONS

The examples of this section will give a qualitative idea of the performance
of the proposed scheme. We choose 4 in such a way that the first iterate is an
approximation for x*; this is possible since the first iterate is the Tikhonov
regularization solution. In this case there are “a priori” estimates for 4, as is
shown in [3]. To stop the iterative process, we use a number of iterations k
such that

(10) |l AxK — 5|l < Tol,

where Tol = ¢;0, ¢, > 0 and J from (2). The a posteriori stop rules are
optimal but, in our case, they will demand excessive computational work.

In the numerical experiments we simulated the noise, taking y;(s) = y(s) +
esin(100s), € >0 and s € [1, 5]. The other parameters used in the examples
are: N = the maximal degree of the polynomials in Vy; k = the number of
iterations required by the stopping criterion.

Example 1. If y(s) = 1/(s + 1.5)?, then x(¢) = te~!5'. The noise on the data
was simulated using ¢ = 1072, The approximations were calculated taking
N = 10. In this example, k = 2 iterations were required, i.e., x7,(?) satisfies
(10) with Tol = 1.4x 1073 . The comparison between x(¢) and x?() is shown
in Figure 1.
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FIGUurE 1. Example 1

Example 2. If y(s) = arctan(%), then x(¢) = sint¢/t. In this case we tested
N =10 and N = 15, with noisy data corresponding to ¢ = 10~*. In the first
case, k = 4 iterations were performed to obtain (10) with a Tol = 1.4 x 1073
When N = 15, k = 3 iterations were required for a Tol = 1.4 x 10~3. The
results are shown in Figure 2.

The error bound presented here, as well as in the above numerical computa-
tions, encourage the use of the successive approximation method in the Laplace
inversion problem. In different tests we got similar results, but especially good
results were obtained when we used polynomials for x(z).

The increase of the error for ¢ > 5, exhibited in the figures, is compatible with
the norm used to measure the error: the weight e~’ allows these large absolute
errors. On the other hand, Laguerre polynomials exhibit strong oscillations
when N and ¢ increase [1]; we believe that this fact also produces damaging
effects.
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FIGURE 2. Example 2
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