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ABSTRACT

In this paper a new numerical method for the shape reconstruction
of obstacles in elastic scattering is proposed. Initially, the direct
scattering problem for a rigid body and the mathematical setting
for the corresponding inverse one are presented. Inverse uniqueness
issues for the general case of mixed boundary conditions on the
boundary of our obstacle, which are valid for a rigid body as well
are established. The inversion algorithm based on the factorization
method is presented into a suitable form and a newnumerical scheme
for the reconstruction of the shape of the scatterer, using far-field
measurements, is given. In particular, an efficient Tikhonov parameter
choice technique, called Improved Maximum Product Criterion (IMPC)
and its linchpin within the framework of the factorization method is
exploited.Our regularizationparameter is computedvia a fast iterative
algorithm which requires no a priori knowledge of the noise level in
the far-field data. Finally, the effectiveness of IMPC is illustrated with
various numerical examples involving a kite, an acorn, and a peanut-
shaped object.
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1. Introduction

A lot of work has been done for direct scattering problems as well as for inverse ones. The

latter problems require the determination of the physical and/or geometrical properties of

the elastic obstacle, from a knowledge of the asymptotic behaviour of the scattered field,

the so-called far-field pattern.

In this work the inverse elastic scattering problem of shape reconstruction of scattering

objects will be studied. Emphasis on the numerical treatment of the above problem, using

far-field pattern of the scattered wave, will be given. In particular, our aim is to extend

the combination of the well-known factorization method [1,2], originally developed in the

acoustic context by Colton and Kirsch [3], and an improved version of the maximum

product criterion (MPC) developed by Bazán et al. [4] to the more complicated elastic

scattering case. In particular, we will provide reconstructions of two-dimensional rigid

bodies irradiated by incident elastic plane waves. The main idea of the method is that

the support of the scattering obstacle is obtained by solving a vector integral equation of
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the first kind and noting that a specific norm becomes unbounded as a point lying on a

rectangular grid containing the scatterer approaches its boundary.

Factorization method (the so-called (F⋆F)1/4-method), is well known to yield an ill

posed far-field equation customarily solved via Tikhonov regularization with the regular-

ization parameter computed viaMorozov’s discrepancy principle [5]. However,Morozov’s

discrepancy principle requires the computation of the zeros of the discrepancy function at

each point of the grid, a process that is time-consuming. Moreover, the noise level in the

data should be known a priori, something that in real-life applications is not the case in

general. In order to avoid these problems, we employ a variant of the MPC, the so-called

Improved Maximum Product Criterion (IMPC), which computes regularized solution

norms and corresponding residual norms, and chooses as regularization parameter the

critical point associated with the largest local maximum of the product of these norms as a

function of the regularization parameter. In addition, as withMPC, IMPCdoes not depend

on user specified input parameters (like subspace dimension or truncating parameter)

and requires no a priori knowledge of the noise level. As we mentioned before, IMPC

extends in a very elegant way the maximum product criterion, and it has been applied

with great success in reconstructing three-dimensional obstacles in acoustics [6] and in

electromagnetic scattering applications [7].

We organize our paper as follows. In Section 2, the direct scattering problem for a

rigid body irradiated by an incident elastic plane wave is considered. The corresponding

inverse elastic scattering problem, taking into account the general case of mixed boundary

conditions, which covers the Dirichlet case (rigid body) as well, is also presented. Further,

uniqueness results are established, based on a mixed reciprocity relation using incident

plane waves as well as point-sources. In Section 3, the factorization method is considered

and its linchpin with the inversion scheme is presented. Finally, in Section 4 a numerical

technique called IMPC will be presented. Using IMPC, the regularization parameter will

be computed via a fast iterative algorithm which requires no a priori knowledge of the

noise level in the data. Various numerical results concerning the reconstruction of a kite,

an acorn and a peanut-shaped object are given, showing the applicability of the method.

2. Formulation of the problem

2.1. The direct scattering problem

We formulate our problem by considering the scattering process of a given time-harmonic

elastic plane wave ũinc by an impenetrable obstacle D ⊂ R
2
which is open, bounded and

simply connected domain. Its smooth boundary ∂D is of classC2, and we assume thatR
2
is

filled upwith a homogeneous and isotropic elasticmediumwith Lamé constant coefficients

µ, λ and mass density ρ. We assume the strong elliptic conditions

µ > 0, 2µ + λ > 0. (1)

We denote by n̂r the outward unit normal vector on the boundary ∂D almost everywhere

at point r, and the complement of our scatterer D, will be referred as the exterior domain,

denoted byR
2 \D. The total displacement elastic field ũ is viewed as the sumof the incident
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Figure 1. The elastic rigid scatterer D.

field ũinc and the scattered field ũsct , i.e.

ũ(r) = ũinc(r) + ũsct(r), r ∈ R
2 \ D, (2)

where ũinc is the dyadic elastic plane wave of the form

ũinc(r) = d̂ ⊗ d̂ eikpr·d̂ + ( Ĩ − d̂ ⊗ d̂ ) eiksr·d̂, (3)

where kp is the longitudinal wave number, ks the transverse one, Ĩ is the 2 × 2 identity

matrix, d̂ = ( cos θ , sin θ) the direction of propagation,

Ĩ − d̂ ⊗ d̂ = d̂⊥ ⊗ d̂⊥ (4)

with d̂
⊥
being the polarization vector and d̂ ∈ S1 := {d̂ ∈ R

2 : | d̂ |= 1}. At this point,
we mention that our scatterer could also be irradiated only by an incident plane P-wave

(longitudinal wave) given by the first term of the right-hand side of (3), i.e.

ũincp (r) = d̂ ⊗ d̂ eikpr·d̂ , (5)

or, only by a plane S-wave (transverse wave) given by the second term of the right-hand

side of (3) of the form

ũincs (r) = ( Ĩ − d̂ ⊗ d̂) eiksr·d̂ (6)

(recall this later in the numerical examples, see Section 4). In relations (2)–(6) the ‘∼’ sign

denote dyadic fields. We use this notation for two reasons: the first one is due to the dyadic

nature of the free-space Green’s function of the Navier equation. The second one arises

from the fact that dyadic’s symmetry formulation for a scattering problem is higher than the

corresponding vector formulation [8], and therefore the propagation vector alone suffices

to specify the incident field. As an excellent source of reference concerning properties of

dyads we give the book by Tai [9].

Wenow state the direct scattering problemwhich is describedby the followingboundary

value problem: For a given incident dyadic elastic plane wave ũinc, find the total elastic
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field ũ ∈
[
C2(R2 \ D)

]2 ∩
[
C1(R2 \ D)

]2
, such that

µ �ũ(r) + (λ + µ) ∇∇ · ũ(r) + ρ ω2 ũ(r) = 0̃, r ∈ R
2 \ D (7)

ũ(r) = 0̃, r ∈ ∂D (8)

lim
r→∞

√
r

(
∂ũsctβ (r)

∂r
− ikβ ũsctβ (r)

)
= 0̃, β = p, s, r := |r|, (9)

where ω ∈ R+ is the frequency. Relation (8) is the Dirichlet boundary condition which

corresponds to a body whose surface cannot be deformed by the stresses generated by

the incident displacement field. Such a body is called rigid scatterer and the scattering

configuration is shown in Figure 1. The Sommerfeld-Kupradze type radiation conditions

(9) [10,11] holds uniformly in all directions r̂ = r/r for both P and S-components of the

scattered field ũsctp , ũscts , respectively. In addition, the well-known Helmholtz decomposi-

tion for the displacement field holds and is expressed as [10]:

ũ(r) = ũp(r) + ũs(r) with (� + k2p) ũp(r) = 0̃, (� + k2s ) ũs(r) = 0̃, (10)

kp = ω

√
ρ

2µ + λ
, ks = ω

√
ρ

µ
, (11)

where ũp(r) is the longitudinal part (P-wave being rotational-free), ũs(r) the transverse

part (S-wave divergence-free) and kp, ks are the corresponding wave numbers (see also

relations (3), (5) and (6)).

From now on, and in order to write equation (7) in an abbreviation form, we employ

the notation for the differential operator �∗:

�∗ = µ � + (λ + µ) ∇∇·, (12)

with � being the Laplace operator. In addition, we will also need the stress operator T on

the boundary ∂D defined as follows:

T(r) = 2µ n̂r · ∇ + λ n̂r∇ · + µ n̂r × ∇×, (13)

where ‘·’ and ‘×’ denote the scalar and the vector product, respectively. The superscript

in (13) denotes the action of the differential operator on the indicated variable and will be

omitted from now on.

Remark 2.1: The above direct scattering problem (7)–(9) can be reformulated in integral

form, following either the direct method, based on Betti’s formulae [10], or the indirect

method using single and double layer potentials. Solvability issues can be treated with

analogous arguments (boundary integral equation approach) as those used in [12] and

[11]. Our aim in the work at hand is the study of the corresponding inverse elastic problem,

and therefore, we do not present these solvability results for the sake of brevity.

In what follows, we now present the free-space Green’s dyadic Ŵ̃(r, r′) of the Navier
equation (7). It satisfies the following equation

�∗Ŵ̃(r, r′) + ρ ω2 Ŵ̃(r, r′) = −̃I δ(r − r′), r, r′ ∈ R
2 (14)
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with δ(r − r′) being the Dirac measure concentrated at the point r, and is given, [13], by

Ŵ̃(r, r′) = i

4

{
1

µ
Ĩ H

(1)
0 (ks|r − r′|)

− 1

ρ ω2
∇r ⊗ ∇r

[
H

(1)
0 (kp|r − r′|) − H

(1)
0 (ks|r − r′|)

]}
, (15)

where H
(1)
0 (·) is the cylindrical Hankel function of the first kind and zero order, and ‘⊗’ is

the juxtaposition between two vectors which gives a dyadic.

From the numerical point of view (see later Section 4), we want to avoid the dyadic

nature of the fundamental solution. Hence, if p ∈ S1 denotes the polarization of an elastic

point-source at any yo ∈ R
2, then u(r) = Ŵ̃(r, yo) · p. In what follows, we will adopt the

notation Ŵ̃(r, yo) · p ≡ Ŵ(r, yo; p), r ∈ R
2 \ {yo}. For the dyadic approach for elastic

scattering problems we refer to [14] and the references therein.

Using asymptotic analysis for Ŵ(r, yo; p) we can arrive at

Ŵ(r, yo; p) = Ŵ∞,p(r̂, yo; p) r̂
eikpr√

r

+Ŵ∞,s(r̂, yo; p) r̂
⊥ eiksr√

r
+ O(r−3/2), r → ∞ (16)

with r̂⊥ being the perpendicular vector to r̂. In the latter case, the far-field patterns

Ŵ∞(·, yo; p) = (Ŵ∞,p(·, yo; p), Ŵ∞,s(·, yo; p)) (17)

of this elastic point source of the P and S-part of Ŵ(r, yo; p) are given by [13]

Ŵ∞,p(r̂, yo; p) = 1

λ + 2µ

i + 1

4
√

πkp
e−ikp r̂·yo r̂ · p, (18)

Ŵ∞,s(r̂, yo; p) = 1

µ

i + 1

4
√

πks
e−iks r̂·yo r̂

⊥ · p, (19)

respectively. In addition, the surface traction (see (13)) of the fundamental solution for

r ∈ 
R = {d ∈ R
2 : |d| = R} can be computed, and after some calculations we can get

the following asymptotic formula [15]

TŴ(r, yo; p) = TŴ∞,p(r̂, yo; p) r̂
eikpr√

r

+TŴ∞,s(r̂, yo; p) r̂⊥
eiksr√

r
+ O(r−3/2), r → ∞ (20)

where

TŴ∞,p(r̂, yo; p) = i − 1

4

√
kp

π
e−ikp r̂·yo r̂ · p, (21)

TŴ∞,s(r̂, yo; p) = i − 1

4

√
ks

π
e−iks r̂·yo r̂

⊥ · p. (22)
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We also want to obtain the asymptotic form of the radiating solution ũsct of the Navier

equation (7). Exploiting Betti’s formulae, through asymptotic analysis and taking into

account (16) and (18)–(22), we arrive at

ũsct(r) = ũ∞,p eikpr√
r

+ ũ∞,s(r̂)
eiksr√

r
+ O(r−3/2), (23)

uniformly with respect to r̂ = r/r and r = |r| → ∞. The functions ũ∞,p and ũ∞,s (coeffi-

cients of the terms eikβ r/
√
r, β = p, s) are the corresponding far-field patterns, defined on

the unit circle inR
2, and are known as the longitudinal and the transverse far-field patterns,

respectively. The latter functions are also analytic functions and are considered as elements

of L2(
). From the point of view of the investigation of the inverse scattering problem, the

far-field patterns, which consists a measure of the scattered field at the radiation zone, are

essential and useful on the numerical reconstructions of obstacles. Various formulas and

expressions for elastic far-field patterns can be found in [16,17] and [18].

In what follows we deal with the corresponding inverse elastic scattering problem of

(7)–(9). In particular, the inverse problem consists in the determination of the unknown

boundary ∂D of the rigid scatterer D, from the knowledge of the far-field pattern of the

scattered field. For such an inverse problem, a modification of the factorization method

is needed, and an inversion algorithm combined with a new numerical reconstruction

method for rigid bodies will be presented.

2.2. Inverse scattering problem: the general case ofmixed boundary conditions

In this subsection we will establish the unique determination of an elastic scattererD (rigid

obstacle) using the far-field pattern for all incident waves. Our methodology is based on

an essential mixed reciprocity relation. From the point of view of applications, we will

focus on the more general case. i.e. the case of having mixed boundary conditions on the

boundary ∂D of our obstacle.We consider that our simply connected boundary is consisted

by two parts, a Dirichlet (rigid) one and a Robin (impedance) one. On the Dirichlet part

of ∂D the displacement is given, whereas on the impedance part, a specific combination

physically expressing the proportionality relation between the displacement and its surface

stress, is given. Obstacles characterized by boundary conditions of this type are often called

partially coated (see [12, p.184]) and there is a lot of study and active research on inverse

problems for elastic, acoustic and electromagnetic media. Partially coated obstacles have

various applications on elastic materials and are very extensive. In particular, we give the

following examples: (a) Cases of high temperatures concerning non destructive tests for

coating imperfections due to thermal shock [19]. (b) Cases of non destructive evaluation

which use elastic waves for the measurement of elastic properties in solid specimens [20].

(c) Cases of engineering mechanics in medicine, see, e.g. [21] a stent coated with a drug

which is constructed to control the release of the drug into surrounding tissue. This process

has the property to slow down the growth of unwanted cells and gives the opportunity the

blood vessel to heal.We alsomention thatwe can find a lot of other applications concerning

partially coated obstacles, such as inmaterials science, in civil andmechanical engineering,

in nanomechanics [22,23], etc.
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Figure 2. The partially coated obstacle D. The case ŴI = ∅ corresponds to the rigid scatterer.

We continue our study by considering the boundary ∂D consisting of two parts, the

so-calledDirichlet partŴD and the impedance partŴI such that ∂D ≡ Ŵ = ŴD∪ŴI , where

ŴD, ŴI are two disjoint, relatively open subsets of the boundary Ŵ. We can also consider

that our scatterer D is embedded in a piecewise-constant background medium B ⊂ R
2

with a C2-boundary ∂B.

Therefore, we next deal with the inverse elastic scattering problem concerning a mixed

partially coated obstacle embedded in a piecewise homogeneous background medium.

It is described by the following mixed impedance transmission boundary value problem:

Determine uniquely the partially coated obstacle D and its physical properties if the following

conditions hold

�∗ũ(r) + ρ0 ω2 ũ(r) = 0̃ in R
2 \ B, (24)

�∗ũ(r) + ρ1 ω2 ũ(r) = 0̃ in B \ D, (25)

ũ(r) = 0̃ on ŴD, (26)

Tũ(r) + iω c ũ(r) = 0̃ on ŴI , (27)

lim
r→∞

√
r

(
∂ũsctβ (r)

∂r
− ikβ ũsctβ (r)

)
= 0̃, β = p, s, (28)

where ũ(r) = ũinc(r) + ũsct(r) in (R2\B)∪(B\D). Relation (27) is the impedance (Robin

type) boundary condition in the field of elasticity. The part ŴI of the boundary in Figure 2,

is due to a coating on the Robin part of the boundary with a material of surface impedance.

Such a surface with finite impedance has an intermediate behaviour between the rigid

surface and the cavity (stress-free surface) [24]. Impedance expresses (intensity× stiffness)

in relation towavediffraction, reflection, etc. andmeasures the contrast between twomedia.

The notion for impedance in elasticity is discussed with details in [25]. Throughout this

paper c (the surface impedance for the boundary ŴI ) will be considered a positive constant

and ω ∈ R+ is the frequency. We also assume that on the discontinuity interface ∂B, we

have to consider transmission conditions, requiring the continuity of the displacement
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and stress vector across ∂B, i.e.

ũext = ũint, Te ũ
ext = Ti ũ

int on ∂B (29)

where ũint , ũext denote the interior and exterior one sides limits (traces) on the inter-

face ∂B, respectively, and the notations Ti ũ
int , Te ũ

ext are given by relation (13), if we

replace the Lamé constants λ, µ with the appropriate values λj, µj, j = 0 or 1. The above

piecewise-constant functions, λj and µj are the Lamé constants, ρj are the densities of the

elastic layers, satisfying the relations µj > 0, 2µj + λj > 0, ρj > 0, j = 0, 1 with λ0, µ0

and ρ0 stand for the domain R
2 \ B, whereas λ1, µ1 and ρ1 for the domain B \D. Further,

the kj,p, kj,s, j = 0, 1 (as before, see (11)), are the corresponding wave numbers for the

longitudinal and the transverse waves, respectively, given by

kj,p = ω

√
ρj

λj + 2µj
, kj,s = ω

√
ρj

µj
, j = 0, 1. (30)

In relation (28) we indicate that kβ = k0,β , β = p, s.

Concerning the direct scattering problem, corresponding to the inverse problem (24)–

(28), its solvability has been proved via the potential method [26]. In particular, we

reduced our problem to a system of pseudodiffential equations and established that the

corresponding boundary integral operators are invertible in appropriate Bessel potential

and Besov spaces [12]. In addition, regularity results were proved and the case of Lipschitz

surfaces was also treated.

Remark 2.2: Relations (26) and (27) constitute the mixed impedance boundary condi-

tions on the boundary Ŵ of the scatterer. The case ŴI = ∅ (Dirichlet case) corresponds

to an elastic rigid body (see boundary condition (8) and our following inverse uniqueness

result (corresponding to the direct scattering problem (7)–(9)) is still valid as well.

In order to establish uniqueness we have to prove mixed reciprocity relation (see later

relation (34)), which holds for a partially coated obstacle as well as for a rigid body. Its

worthmentioning here, that the derivation of mixed scattering relations are essential for

the point-source method [27].

Wewill establish such a relation relatingplanewave incidence topoint-source incidence.

Therefore, we need to consider incident-plane-waves as well as point-sources, and for the

reader’s convenience we recall the following notation: For incident plane waves

ũtot(r; d̂) = ũinc(r; d̂) + ũsct(r; d̂), (31)

whereas, for point-sources

ũtotyo
(r) = ũincyo

(r) + ũsctyo
(r), (32)

with d̂ ∈ S1 and yo ∈ R
2 the point-source. We recall that our incident point-source field is

given by ũincyo
(r) := Ŵ̃(r, yo), r �= yo (this is actually similar to the fundamental solution

(15)) and that ũ∞(r̂; d̂) and ũ∞,yo(r̂) are the far-field patterns of ũsct(r; d̂) and ũsctyo
(r),

respectively.
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The proof of the following result is based on a special functional form, the so-called

Elastic Reciprocity Gap Functional (RGF) defined as [15]:

RGF(̃u, ṽ) = [ ũ, ṽ ]∂B :=
∫

∂B

[
(T ṽ(r))⊤ · ũ(r) − ṽ(r)⊤ · T ũ(r)

]
ds(r) (33)

which is also employed in the study of various inverse problems, see, [15,28,29].

We are now ready to prove the following theorem.

Theorem 2.3: For the scattering of an incident point-source wave field ũincy0
(r) := Ŵ̃(r, yo)

and an incident plane wave ũinc(r; −b̂) propagating in the direction −b̂, by a rigid obstacle

D, the following relation holds:

ũ∞,yo(b̂) =
(
ũsct(yo,−b̂)

)⊤
, yo ∈ R2 \ B. (34)

Proof: Let yo ∈ R
2 \ B. Using relations (31), (32) and the bilinearity of (33) we can easily

arrive at

[̃utyo(r), ũ
t(r; −b̂)]∂B = [̃uincyo

(r), ũt(r; −b̂)]∂B + [̃usctyo
(r), ũt(r; −b̂)]∂B. (35)

We now have to calculate the two surface integrals [̃usctyo
(r), ũt(r; −b̂)]∂B and

[̃uincyo
(r), ũt(r; −b̂)]∂B. Via Betti’s formulae, the Sommerfeld−Kupradze radiation con-

dition and the integral representation of the far-field pattern ũ∞, yo(b̂), we have that

ũ∞, yo(b̂) = [̃usctyo
(r), ũt(r; −b̂)]∂B, (36)

or, equivalently

ũ∞, yo(b̂) =
∫

∂B

[ (
T ũt(r; −b̂)

)⊤
· ũsctyo

(r) −
(
ũt(r; −b̂)

)⊤
· T ũsctyo

(r)

]
ds(r). (37)

With the aid of (32) and the boundary conditions (29) on ∂B, the latter can be written as

ũ∞, yo(b̂)

=
∫

∂B

[ (
T ũt(r; −b̂)

)⊤
· ũtyo(r) −

(
ũt(r; −b̂)

)⊤
· T ũtyo(r)

]
ds(r)

−
∫

∂B

[ (
T ũt(r; −b̂)

)⊤
· ũincyo

(r) −
(
ũt(r; −b̂)

)⊤
· T ũincyo

(r)

]
ds(r). (38)
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Taking now into account second Betti’s formula, relation (38) yields

ũ∞, yo(b̂)

=
∫

Ŵ

[ (
T ũt(r; −b̂)

)⊤
· ũtyo(r) −

(
ũt(r; −b̂)

)⊤
· T ũtyo(r)

]
ds(r)

+
∫

B\D

[ (
�∗ ũt(r; −b̂)

)⊤
· ũtyo(r) −

(
ũt(r; −b̂)

)⊤
· �∗ ũtyo(r)

]
dυ

−
∫

Ŵ

[ (
T ũt(r; −b̂)

)⊤
· ũincyo

(r) −
(
ũt(r; −b̂)

)⊤
· T ũincyo

(r)

]
ds(r)

−
∫

B\D

[ (
�∗ ũt(r; −b̂)

)⊤
· ũincyo

(r) −
(
ũt(r; −b̂)

)⊤
· �∗ ũincyo

(r)

]
dυ. (39)

Since ũt(r; −b̂) and ũtyo(r) are regular solutions of the Navier Equation (25) in B \ D,

Equation (39) yields

ũ∞, yo(b̂)

= −
∫

Ŵ

[ (
T ũt(r; −b̂)

)⊤
· ũincyo

(r) −
(
ũt(r; −b̂)

)⊤
· T ũincyo

(r)

]
ds(r)

+
∫

B\D
(ρ1 − ρ0) ω2

(
ũt(r; −b̂)

)⊤
· ũincyo

(r) dυ. (40)

Concerning the other surface integral [ ũincyo
(r), ũt(r; −b̂)]∂B, we have the following

manipulation:

[̃uincyo
(r), ũt(r; −b̂)]∂B

= [̃uincyo
(r), ũinc(r; −b̂)]∂B + [̃uincyo

(r), ũsct(r; −b̂)]∂B

=
∫

∂B

[ (
T ũinc(r; −b̂)

)⊤
· ũincyo

(r) −
(
ũinc(r; −b̂)

)⊤
· T ũincyo

(r)

]
ds(r)

+
∫

∂B

[ (
T ũsct(r; −b̂)

)⊤
· ũincyo

(r) −
(
ũsct(r; −b̂)

)⊤
· T ũincyo

(r)

]
ds(r). (41)

Using now the exterior integral representation (recall yo ∈ R
2 \ B) for the scattered filed

ũsct(yo; −b̂), the latter yields

−
(
ũsct(yo; −b̂)

)⊤

=
∫

∂B

[ (
T ũt(r; −b̂)

)⊤
· ũincyo

(r) −
(
ũt(r; −b̂)

)⊤
· T ũincyo

(r)

]
ds(r). (42)
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With the aid now of the boundary conditions (29) on ∂B and the second Betti’s formula,

Equation (42) takes the form

(
ũsct(yo; −b̂)

)⊤

= −
∫

Ŵ

[ (
T ũt(r; −b̂)

)⊤
· ũincyo

(r) −
(
ũt(r; −b̂)

)⊤
· T ũincyo

(r)

]
ds(r)

−
∫

B\D

[ (
�∗ ũt(r; −b̂)

)⊤
· ũincyo

(r) −
(
ũt(r; −b̂)

)⊤
· �∗ ũincyo

(r)

]
dυ. (43)

Since now ũt(r; −b̂) and ũincyo
(r) are regular solutions of the Navier equation in B \ D and

R
2 \ B, respectively, (43) can be written as:

(
ũsct(yo; −b̂)

)⊤

= −
∫

Ŵ

[ (
T ũt(r; −b̂)

)⊤
· ũincyo

(r) −
(
ũt(r; −b̂)

)⊤
· T ũincyo

(r)

]
ds(r)

+
∫

B\D
(ρ1 − ρ0) ω2

(
ũt(r; −b̂)

)⊤
· ũincyo

(r) dυ. (44)

Combining relations (35), (40) and (44) the assertion of the theorem easily follows.

Similar mixed reciprocity relations remain true for other boundary conditions of rigid

obstacles as well as for penetrable scatterers. We mention that general mixed reciprocity

relations between far-field patterns based on reciprocity relations for two point-source

incidences in two and three-dimensional linear elasticity are established in [16,30], whereas

a more straightforward proof for these mixed reciprocity relations has been established in

[31] (see also the references therein).

Theorem 2.4: Let D1 and D̆1 be two subsets of B, and letG be the unbounded component of

R
2 \

(
D1 ∪ D̆1

)
. Furthermore, let ũsct(r, d̂), ˜̆usct(r, d̂) be the scattered fields due to obsta-

cles D1 and D̆1 with corresponding far-field patterns ũ∞(r̂, d̂) and ˜̆u∞(r̂, d̂), respectively.

Assume

ũ∞(r̂, d̂) = ˜̆u∞(r̂, d̂), ∀ r̂, d̂ ∈ S1. (45)

Let ũsctyo (r) denotes the unique solution of the mixed impedance transmission boundary value

problem

�∗ũsct(r) + ρ0 ω2 ũsct(r) = 0̃ in R
2 \ B (46)

�∗ũsct(r) + ρ1 ω2 ũsct(r) = (ρ0 − ρ1) ω2 Ŵ̃(r, yo) in B \ D (47)

ũscte (r) = ũscti (r) Te ũ
sct
e (r) = Ti ũ

ext
i (r) on ∂B (48)

ũsct(r) = −Ŵ̃(r, yo) on ŴD (49)

T ũsct(r) + iωc ũsct(r) = −T Ŵ̃(r, yo) − iωc Ŵ̃(r, yo) on ŴI (50)

lim
r→∞

√
r

(
∂ũsctβ (r)

∂r
− ikβ ũsctβ (r)

)
= 0̃, β = p, s, (51)
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for yo ∈ D ∩ G. Simultaneously, denote by˜̆usctyo (r) theunique solutionof themixed impedance

transmission problem (46)–(51), but this time replacing B \ D1 and D1 by B \ D̆1 and D̆1,

respectively. Then

ũsctyo (r) = ˜̆usctyo (r), r ∈ G. (52)

Proof: Taking into account (45) and using Rellich’s lemma [32], we obtain

ũsct(r, d̂) = ˜̆usct(r, d̂) and T ũsct(r, d̂) = T˜̆usct(r, d̂), for r ∈ ∂B. Holmgren’s principle

[33] via the latter relations, yield

ũsctyo
(d̂) = ˜̆usctyo

(d̂), with yo ∈ D ∩ G. (53)

Combining the mixed reciprocity relation (34) and (53) we have ũ∞,y0(d̂) = ˜̆u∞,y0(d̂), for

all d̂ ∈ S1. From Rellich’s lemma, the latter relations imply ũscty0
(r) = ˜̆uscty0

(r) as well as

Tũscty0
(r) = T˜̆uscty0

(r), yo ∈ D ∩ G. Using again Holmgren’s uniqueness theorem the

assertion of the theorem follows.

The unique solution mentioned in Theorem 2.2 of the scattering problem (46)–(51)

is secured by the well-posedness of the boundary value problem (24)–(29), details can be

found in [12]. In the sequel, and taking into account the mixed reciprocity principle of

Theorem 2.1, with the aid of Theorem 2.2 we have the following uniqueness result. Its

proof is omitted for brevity and details with a more analytical study can be found in [34]

which is communicated separately.

Theorem 2.5: Assume that D1 and D̆1 are two scattering rigid bodies or two scattering

non-penetrable partially coated obstacles embedded in the same elastic piecewise-constant

background medium B ⊂ R
2 with c > 0, c̆ > 0 the corresponding surface impedance

constants. If the far-field patterns of the scattered fields for the same incident plane-wave

coincide at a fixed frequency, for all incident direction d̂ ∈ S1, and observation direction

r̂ ∈ S1, then

(i) for the rigid body case

D1 = D̆1 and Ŵ = Ŵ̆, (54)

and

(ii) for the partially coated case

ŴD = Ŵ̆D, ŴI = Ŵ̆I , c = c̆. (55)

3. The (F∗F)1/4-method and its linchpin with the inversion scheme

In this section and for the sake of reader’s convenience, we will review basic ideas for

finding approximations of the solution to the inverse elastic scattering Dirichlet problem.

In particular, wewill review the factorizationmethod involving full far-field patterns, which

are used successfully for the reconstruction of boundaries of scatterers treated in a large

variety of inverse acoustic, electromagnetic and elastic problems [1,2,35]. In this paper,

we will apply this method to inverse elastic scattering problems, and we will deal with

reconstructions of the boundary ∂D of a rigid obstacle for which a homogeneous Dirichlet

boundary condition is considered.
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Adaptation of this sampling method in inverse elastic scattering problems [36], is

to determine a density g(·, yo; p) =
(
gp(·, yo; p), gs(·, yo; p)

)
that solves the far-field

equation

(F∗F)1/4g(·, yo; p) = Ŵ∞(·, yo; p) (56)

with p ∈ S1 being the polarization vector of an elastic point-source (see (16)), and

Ŵ∞(·, yo; p) is the far-field pattern of Ŵ(r, yo; p) given in (17)–(19). Similar to the linear

samplingmethod (LSM) [3], the L2-norm of the solution g of (56) characterizes the support

of the scatterer, with F∗ being the Hilbert adjoint operator of F. From the knowledge of the

density g(·, yo; p) ∈ L2(S1), the boundary of our obstacle can be recovered at the points

where the L2-norm of the solution has an extremely large value, or equivalently, is not

bounded.

At this point and in order to understand the notions in the far-field Equation (56), we

introduce the incident field

vincg (r) = e−iπ/4

[ ∫

S1

√
kp

ω
gp(d̂, yo; p) d̂ eikpr·d̂ ds(d̂)

+
∫

S1

√
ks

ω
gs(d̂, yo; p) d̂

⊥
eiksr·d̂ ds(d̂)

]
. (57)

The above relation refers to a superposition of plane waves over the unit circle S1 propa-

gating in every direction, and the components gp(d̂, yo; p), gs(d̂, yo; p) are known as the

longitudinal and transverse Herglotz kernels [24,37]. The far-field patterns of the scattered

fields corresponding to the incident wave field (57) are expressed via the elastic far-field

operator F : [L2(S1)]2 → [L2(S1)]2 given by

(Fg)(r̂) = e−iπ/4

[ ∫

S1

√
kp

ω
u∞(r̂, d̂, d̂) gp(d̂, yo; p) ds(d̂)

+
∫

S1

√
ks

ω
u∞(r̂, d̂, d̂

⊥
) gs(d̂, yo; p) ds(d̂)

]
(58)

where e−iπ/4
√

kα

ω
gα , α = p, s are the L2(S1)-kernels, and r̂, d̂ denote the observation

and incident directions, respectively. Concerning the far-field patterns u∞, we have the

following notation

u∞(·, d̂, d̂) = (u∞,p(·, d̂, d̂), u∞,s(·, d̂, d̂)) (59)

u∞(·, d̂, d̂⊥
) = (u∞,p(·, d̂, d̂⊥), u∞,s(·, d̂, d̂⊥

)). (60)

Basic known properties of the elastic far-field operator F hold [17,18,36,38]. In particular
the far-field operator F is normal, compact and injective. Indeed, since F : [L2(S1)]2 →
[L2(S1)]2 is an integral operator with weakly singular kernel, compactness of F is secured.

Concerning now injectivity, we have to deal with the existence of the so-called Dirichlet

eigenvalue of the operator −�∗ in the interior of the scatterer D, whereas for the norm-

ality of F, see details in [36] for the Dirichlet case, and in [18] for the transmission case

(Theorem 2, p.724).
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Wemove on with our analysis, by defining the auxiliary elastic Herglotz wave operator

H : [L2(S1)]2 → [H1/2(∂D)]2 as [13]

(Hg)(r) := e−iπ/4

∫

S1

[√
kp

ω
gp(d̂) eikpr·d̂ +

√
ks

ω
gs(d̂) eiksr·d̂

]
ds(d̂), (61)

for r ∈ ∂D (recall here that Hg is an entire solution of the Navier equation

�∗ν + ρω2ν = 0, in R
2 \ D. Hence, the adjoint H∗ : [H−1/2(∂D)]2 → [L2(S1)]2 of

operator (61) is given by

(H∗φ)(r̂) := e
iπ
4

∫

∂D

[ √
ω

kp
φp(r

′) e−ikpr
′·r̂ +

√
ω

ks
φs(r

′) e−iksr
′·r̂

]
ds(r′), (62)

where r̂ ∈ S1, and one can easily see that (62) is the far-field pattern of the weak solution

l(r) =
∫

∂D
Ŵ̃(r, r′) φ(r′) ds(r′), (63)

of the Dirichlet problem. In the latter relation Ŵ̃(r, r′) is the Green’s function

corresponding to the Navier equation, since now we have taken into account the

boundary value problem (7)–(9). Recall here that the far-field pattern

Ŵ∞(r̂, y0; p) =
(

Ŵ∞,p(r̂, y0; p), Ŵ∞,s(r̂, y0; p)
)
of Ŵ(r, y0; p) is given by (18) and (19).

Wealsodefine theoperatorA : [H1/2(∂D)]2 → [L2(S1)]2whichmaps anh ∈ [H1/2(∂D)]2
into the far-field pattern of the radiatingweak solution l (see (63)), of theDirichlet problem,

i.e. Ah = l∞ with l = h on the boundary ∂D. The definition now of operator A implies

that

A(l|∂D) = H∗(φ) (64)

with A(l|∂D) ≡ A(Sφ), where S : [H−1/2(∂D)]2 → [H1/2(∂D)]2 is given by

(Sφ)(r) =
∫

∂D
Ŵ̃(r, r′) φ(r′) ds(r′), r ∈ ∂D. (65)

We also observe that Fg is the far-field pattern of the solution to the Dirichlet problem

corresponding to the incident field −Hg(r), r ∈ D, and hence

F = −AH (66)

Via relations (64) and (66) we easily obtain the factorization

F = −A S∗A∗. (67)

Extended analysis for the later relation, concerning the elastic Dirichlet and transmission

problem, can be found in [36] and [13], respectively. Considering the above analysis,

recalling the definition of operator A, and taking into account the singular system of the

operator F we have the result [2]: If we assume thatω2 is not an interior Dirichlet eigenvalue

in D, then

Range(A) = Range
(
(F⋆F)1/4

)
. (68)
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Further it has been also proved [36] that: if we assume that D is simply connected and ω2 is

not an interior Dirichlet eigenvalue in D, then for any y0 ∈ R
2, the function

Ŵ∞(r̂, y0; p) ∈ Range(A) ⇐⇒ y0 ∈ D. (69)

The latter is concerned with the simple characterization of the support of the elastic

scatterer D. Therefore, we adapted the factorization method for inverse scattering by an

elastic rigid body concerning the case of full far-field patterns. A modified factorization

method was proposed in [31], where shape reconstructions using only one part (P or

S-part) of the far-field pattern were given, as well as they provided uniqueness results

[31] (Theorems 3.7 and 3.8) by considering only one type of elastic plane waves. Extra

uniqueness results on inverse elastic scattering problems can also be found in [39,40].

In what follows numerical results for two-dimensional elastic obstacles will be given.

We apply a new numerical technique (IMPC) under the framework of the factorization

method, in order to recover the shape of an elastic (rigid) body considering: full far-field

patterns, and P or S-part of the far-field patterns. Via IMPC we give various numerical

examples which illustrate the accuracy of our 2D shape reconstructions.

4. Numerical examples

For N longitudinal (pressure) waves or N transverse (shear) waves, incident from

N directions d̂j = (cosθj, sin θj) with θj = 2π j/N , we assume that the far-field equation

(56) is discretized as described in [31], giving rise to a system of 2N × 2N linear equations

(̃F∗F̃)1/4gyo = b(yo), F̃ ∈ C2N×2N , (70)

where b(yo) is a discrete version ofŴ∞
yo

and F̃ is a discretized version of the far-field operator

F. We shall consider the reconstruction problem in three cases:

(i) FF case based on the operator F (full far-field pattern),

(ii) PP case based on the operator Fp (part of the far-field pattern corresponding to N

incident plane longitudinal waves), and

(iii) SS case based on the operator Fs (part of the far-field pattern corresponding to N

incident plane transverse waves).

A discretized version of Fp (resp. Fs) denoted by F̃p (resp. F̃s) can be extracted from F̃

by taking rows 1 (resp. N + 1) throughN (resp. 2N) and columns 1 (resp. N + 1) through

N (resp. 2N).

In all cases, for some chosen polarization vector and for each sampling point yo ∈ R
2,

the profile of the object can be recovered by plotting the indicator function

W(yo) =




M∑

j=1

|αj|2
ηj


 (71)

where M = 2N in the FF case or M = N in the other cases, αj is the component of b(yo)

along the j-th right singular vector of F̃ in the FF case, or the component of b(yo,p) (resp.

b(yo,s)) along the j-th right singular vector of F̃p in the other case (resp. F̃s), and ηj is the
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corresponding singular value. Here, b(yo,p) (respectively, b(yo,s)) denotes the vector of N

first (resp. last) components of b(yo).

However, since the noisy data case is not covered in (71), our main purpose is to deal

with the reconstruction problem using noisy far-field data,

F̃ǫ = F̃ + ǫ‖F̃‖ N , (72)

where F̃ǫ is the noisy counterpart of the matrix F̃,N is a random noise matrix normalized

such that ‖N‖ = 1 and ǫ is an error parameter which determines the amount of noise in

the data. Thus, the results described below may be regarded as a complement of what is

described in [31] where only unregularized reconstructions are reported. Our strategy is

to consider a version of (71) based on Tikhonov regularization where the regularization

parameter is chosen by the generalized discrepancy principle (GDP) and the IMPC [4].

The regularized counterpart of (71) corresponding to the FF case becomes

W(yo, λ) =




M∑

j=1

ηj|αj|2
(λ2 + ηj)2


 (73)

which is nothing more than the reciprocal of ‖gλ, yo‖2, where gλ, yo is defined as

gλ, yo = argmin
g∈CN

{‖Ã g−b(yo)‖2

2 + λ2‖g‖2

2}, (74)

where λ is the regularization parameter and Ã = (̃F∗
ǫ F̃ǫ)

1/4. Indicator functions associated

to the PP and SS cases are defined similarly.

4.1. On GDP and IMPC

For efficiency, GDP and IMPC are implemented following the fast fixed point iteration

approaches from [6,41]. Recall that GDP chooses as regularization parameter the only root

of the nonlinear equation

G(λ) =‖Ã gλ,yo−b(yo)‖2

2 − δ
2

A ‖gλ,yo‖
2

2 = 0 (75)

where δA is an estimate for ‖E‖ = ‖Ã − A‖ such that ‖E‖ ≤ δA.

It is well known that G is convex for small λ and concave for large λ. As a result, global

andmonotone convergence of Newton’smethod cannot be guaranteed [42]. This difficulty

is circumvented by the GDP-FP algorithm introduced by Bazán [41], as we will see shortly.

Let us now consider

r(λ) =‖Ã gλ,yo−b(yo)‖ and s(λ) = ‖gλ,yo‖, (76)

and for λ0 > 0 we define the sequence

λk+1 := ξ(λk), k = 0, 1, 2, . . . , ξ(λ) = λ

√
δA s(λ)

r(λ)
. (77)
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Bazán [41] showed that the sequence above converges globally to the unique root of

G(λ) irrespective of the chosen initial guess. Thus, provided the solution norm and the

corresponding residual normare available, computing the regularizationparameter chosen

by GDP is easy. A difficulty with GDP is that it requires knowledge of the noise level δA:

poor quality solutions may be produced when the noise level is not accurately estimated.

An alternative parameter selection criterion that avoids knowledge of the noise level

and that have been shown to produce excellent 2D reconstructions is the MPC [4]. MPC

selects as regularization parameter a maximum point of the function

�(λ) =
[
r(λ)

]2 [
s(λ)

]2
(78)

which is relatively simple to compute inmost cases. However,MPC is not free of difficulties

and can fail when � has several local maxima. IMPC circumvents this by selecting the

regularization parameter as the largest maximum point of � and by introducing a fixed

point procedure for its computation. Thus, algorithmically, the regularization parameter

chosen by IMPC is computed as the limit value of the sequence

λk+1 = χ(λk), k = 0, 1, 2, . . . , χ(λ) = λ2 s(λ)

r(λ)
(79)

under the assumption that the initial guess is chosen in the interval
[√

3
3

√
η1,

√
η1

]
(see

[6], Theorem 3.2).

We emphasize that both fixed point approaches (77) and (79) require computing the

regularized solution norm s(λ) and the corresponding residual norm r(λ) and that both

of them can be efficiently implemented by using the SVD of the far-field matrix F̃ǫ . In

practice, the calculation of approximations λj should stop when they begin to stagnate in

order to keep small the computational cost of the entire process. In our implementation

we choose to stop the iterations when the relative change of consecutive values is small, i.e.

when

|λk+1 − λk| ≤ ν |λk|, (80)

where ν is a small tolerance parameter.

4.2. On the reconstruction

We now describe some reconstruction results corresponding to the three objects shown in

Figure 3, namely a kite-shaped object, an acorn-shaped object, and a peanut-shaped object.

For the numerical reconstructions we consider a uniform grid in the square [ −2, 2 ] ×
[ −2, 2 ] containing the object, with 100 points in each direction, and use noisy far-field

matrices of order 128 × 128, choosing error parameters ǫ = 0.01 (relative noise level 1%)

and ǫ = 0.1 (relative noise level 10%), see Equation (72). The synthetic ‘noise-free’ far-

field data used in the experiments are generated as in [31] using parametric forms of the

integrals that represent the P-part and S-part of the scattered field. Reconstruction results

based on exact far-field data obtained by plotting the indicator function (71), are displayed

in Figure 1. Note that, in general, the reconstructions corresponding to the FF case are

of superior quality when compared with those of the other cases. The reason is that, in

general, the far-field matrix associated to the FF case is less sensitive to noise than the
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Figure 3. Objects to be reconstructed.

Figure 4. Reconstruction results for 3 objects using exact far-field data.

matrices associated to other cases. For illustration, for the peanut-shaped object we have

cond(F) = 2.7173 × 1010, cond(Fp) = 3.0767 × 1010 and cond(Fs) = 9.3502 × 1015.

In our implementation ofGDP-FP and IMPCwe use the SVDof F̃ǫ and for the tolerance

parameter in (80) we choose ν = 10−4. The first point worth mentioning is that in all

numerical examples, the number of iterations spent until the stopping criterion is reached

never exceeded k = 12 for GDP-FP and k = 17 for IMPC. This not only verifies the

excellent performance of GDP-FPwhen applied to other problems, see [41], but also shows
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Figure 5. Reconstruction results for kite-shaped object obtainedwith GDP. Noise level 1% (top) and 10%
(bottom).

Figure 6. Reconstruction results for kite-shaped object obtained with IMPC. Noise level 1% (top) and
10% (bottom).

that it can be an effective tool in conjunction with linear sampling in inverse scattering

problems. The reconstructions of the kite-shaped object obtained with GDP-FP for the

three cases are displayed in Figure 5, while the reconstructions obtained with IMPC are

displayed in Figure 6.

As we can observe, both approaches identify the presence and shape of the object still

when the data is highly contaminated by noise, but with a remarkable advantage in favour

of the FF case. This was expected however, since the FF case carries more data and hence
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Figure 7. Reconstruction results for acorn-shaped object obtained with GDP. Noise level 1% (top) and
10% (bottom).

Figure 8. Reconstruction results for acorn-shaped object obtained with IMPC. Noise level 1% (top) and
10% (bottom).

more information about the scatterer. It iswell known that the LSMrequires a large number

of data to yield reliable reconstructions.

Reconstruction results for the acorn-shaped object shown in Figures 7 and 8 show a

similar trend: while the reconstructions in the FF case look fine, the same does not occur

with the reconstruction in the PP and SS cases which show poor quality. As it is also

mentioned in [31], a possible explanation is that the S-part and P-part of the scattered field

alone exhibit stronger singularities compared to the FF case where they are combined.
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Figure 9. Reconstruction results for peanut-shaped object obtained with GDP. Noise level 1% (top) and
10% (bottom).

Figure 10. Reconstruction results for peanut-shaped object obtained with IMPC. Noise level 1% (top)
and 10% (bottom).

Finally, reconstruction results of the peanut-shaped object are displayed in Figures 9

and 10. Again we see that the quality of the reconstructions obtained in the case FF exceeds

the quality of those obtained in the PP and SS cases.
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5. Conclusions-remarks

The paper at hand establishes new results concerning a numerical reconstruction method

in inverse scattering by elastic obstacles. Due to elastic plane waves (see (3)), the direct

and inverse scattering problem were introduced in order to present uniqueness results, as

well as to present an inversion algorithm concerning shape reconstructions via the new

numerical technique IMPC. We also make the following remarks:

(i) From the theoretical point of view, the general case of mixed boundary conditions

corresponding to the so-called partially coated obstaclewere considered.Our inverse

elastic scattering problem was described by the mixed impedance transmission

boundary value problem (24)–(28), and uniqueness results which are valid for the

Dirichlet case as well, were established.

(ii) Concerning our numerical treatment, incident elastic plane waves of the form (3)

were used. Our numerical reconstruction method also holds if only one type of

incident elastic plane wave (P or S-wave) occurs. In addition numerical experiments

were given, showing satisfactory results by using the P-part or S-part of the far-

field pattern. Further, a discussion concerning reconstruction and comparing issues

among the FF, PP and SS case were also given.
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