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The Laguerre functions in the inversion of the Laplace 
transform 

Cristina Cunha and Fermin Viloche 
Departamento de MatemAtica Aplicada, Universidade de Campinas-UNICAMP, 
13081 Campinas, SBo Paulo, Brazil 

Rmived 18 October 1992 

Abslraci I& present a numerical invenion method for the Laplace transform based 
on the Fourier series of laguerre functions. We assume that the values of the Iaplace 
transform are given in a finite intemal and that they contain noise. The domain of 
the restored function is (0, m). The mnvergence of the algorithm is eiamined and 
we present a mle for the choice of the laguerre function parameter. The algorithm is 
applied to test problems and the resulfs confirm that our algorithm is competitive with 
otherr recently presented for this ill-posed problem. 

1. Introduction 

Spectral methods have become increasingly popular in recent years, with applications 
to the numerical solution of differential equations and to automatic computations for 
a wide class of physical problems. These methods appear to be competitive with finite 
difference and finite element methods. The spectral methods are essentially of Ria- 
Galerkin type: they involve representing the solution of a problem as a truncated 
series of known functions of independent variables. The convergence properties of 
spectral methods are due to the rapid convergence of expansions of smooth functions 
in series of some orthogonal functions. 

Methods based on expanding the solution in a Fourier series of orthogonal 
functions of polynomials have also been used in integral equations. For example 
Selezov ef a1 use the Fourier-Legendre series in [lo], and the Chebyshev polynomials 
are used in [7]. 

It seems to us that the use of orthogonal polynomials with domain ( 0 , ~ )  in 
the numerical inversion of Laplace transforms is a more natural choice. In 131 we 
employed the Laguerre polynomials in an iterative method for this problem. It was 
mentioned in that paper that the strong oscillations of this orthogonal set of functions, 
that appear when the degree is large, are responsible for the poor results when 
the independent variable increases. As is known, the Laguerre expansion requires 
many more terms to resolve functions of a given complexity than either Chebyshev 
or Legendre expansions (see [SI for example); the reason is that significant weight is 
given to large values of I in Laguerre series. However, as we will see in this paper, in 
some situations it is possible to find a compromise solution: we obtain approximations 
(0, CO) with relatively little effort. 
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2. An implicit scheme for the Laplace inversion problem 

Let us write the Laplace transform problem in the following form 

( A z ) ( s )  = Lme-"z(i)dt  (2 1) 

where A : X 3 Y, X = L2( R,) and Y = L2( [c, d ] ) ,  c > 0; in the inversion 
problem the data are given in [c ,d ] .  By direct calculations we can see that the 
adjoint of A in this case is A' :Y -+X 

d 

( A * v ) ( t )  = e-jsv(s)ds. (2.2) 

Let 

be the classical Laguerre polynomials and 

+g(t) = J Z ; ; e - ~ * ~ ~ ( 2 p t )  (2.3) 

the Laguerre functions. Here the constant p > 0 is a shift parameter. The functions 
+g(t) constitute an orthonormal basis for Lz(R+) [12]. 

We assume that only an approximation to y(s), yc E Y, is available and this 
approximation is such that 

IIY - Yel l  < E (2.4) 

where E > 0 is a known error bound. 
The inversion of the Laplace transform is an example of the so-called 'ill-posed 

problem'; for this reason there is no universal algorithm to solve it. In solving this 
problem numerically one is faced with the question of numerical instabilities: small 
perturbations of the data produce large fluctuations in the output data. 

To obtain an approximation for the solution of (2.1) we must discretize the 
problem. Let VN be the finite dimensional subspace of X spanned by @ ( t ) ,  i < N, 
we set A, = AP,, where P, is the orthogonal projection of X onto V,. 

A very interesting approach to this kind of problem is the use of regularization 
methods that are generated by certain suitable functions [9]. Implicit schemes are 
methods in this class: if we take 
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where B = ALA. It can be shown that xh,k = R N , , y ,  -is given by the iterations 

= xu = 0 

0.5) 
(A;VANfpI)xN,k=px,,k-,+A;yy, k = 1 , 2  ,... . 

We define @(s) = &me-sf4p(t)dt, Le. the Laplace transform of the Laguerre 
functions &‘(t). As we know 

and by direct calculations we obtain 

.. . 
In the finite dimensional space VN the solution of (2.5) can be written in the 

form 

If we construct a matrix M with entries 

and a vector f with components 

where cc is a suitable smooth version of the data y ,  in the discrete case, then (2.5) 
is equivalent to the following sequence of systems of equations for determining the 
coeficient vector ak = (a?),  j = 1 , .  . . , N + 1 and k = 1,. . .: 

( M  + p I ) a k  = pak-‘  + f. (2.7) 

Observe that the matrix of this system does not change as we perform successive 
iterations, therefore the Cholesky decomposition is carried Out only once. The next 
step is to obtain the convergence rate for this procedure. The following theorem 
gives us an estimate for IIA - ANII. 
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Theorem 21. Let A be the Laplace transform operator and P,.., the orthogonal 
projection onto the subspace spanned by the Laguerre functions (2.3), i < N .  Then 
there exists a 6, with 101 < C < 1 such that 

C Cunha and F Eloche 

where bi = J:z(t)+T(t)dt are the Laguerre-Fourier coeficients. In other words, 
we need the asymptotic rates of convergence, in &-sense, of the Laguerre function 
expansion for functions z ( t )  = (A*v)(t), for some U E Y. 

Changing the variables in the Laguerre polynomials we can see that 

so 

Using (2.2), the Laguerre-Fourier coefficients are 

By successive integration by parts we get 

Now we can change the order of integration, thus obtaining 

We recognize the inner integral as a shifted Laplace transform of ti. Finally 



The Laguerre functions in the inversion of the Laplace transform 61 

If we use the Schwarz inequality, noting that 1 1 0 1 1  = 1, we obtain 

[ - -  1 [( d -p ) "+1-  ( e -  - p)z i i1]}1 /2  
2 i + 1  d + p  C + P  

Then, there exists a 8 ( i ) ,  with 

such that 

The next corollary tells us that taking into account (2.8) it is possible to determine 
the parameter p.  

Corollary 2.1: If the data are in the interval [ c , d ]  then if we choose p' = ( c d ) 1 / 2  
the estimates in (2.8) will be minimal. 

PrmJ The function f(z) = ( z  - p ) / ( z  + p )  is increasing, so f(c) < 8 < f ( d ) ;  
also g ( p )  = ( c -  p ) / ( c +  p )  and h ( p )  = ( d  - p ) / ( d  + ~ p )  are decreasing functions, 
therefore for each p 2 0 

P(P)I  < " I l h ( P ) l > l d P ) I } .  

Let p* be such that Ih(p)l  = Ig(p) l .  There are two possibilities: 

(0 If P < P* then le(P)I < Ih(p)l  and h ( p )  > h ( p * )  > 0. 

This shows that p = p" is the best choice. But p* = ( cd ) ' l 2  is the unique mot of 
(E) If P > P' then lQ(P)I < 1 d P ) l  and d P * )  < d P )  < 0. 

( C - P ) / ( c + p ) = ( d - p ) / ( d + p ) .  0 
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Now, if we take p = p' = ( &)'I2 in (2.7) we will have 

The first part of the following corollary provides a convergence resulq in the 
second part a convergence rate is given for solutions of @.I), which are smooth in 
some sense. The proof follows from theorem 3.1 in 191. 

Coroliay 22. Let x,,~ be given by (2.5) (which is equivalent to (27)) and let +' 
be a solution of (2.1). 

(i) If IC = ~ ( N , E )  is such that 0, ON& < c and k -, 03 as N -* CO and 
E + 0 then x,,~ + 2'. 

(ii) If +* -I" = (A*A)q/2z,  llzll 6 p, +* = (A*A)qI2v, 1 1 ~ 1 1  < p and 

with some positive constants C, and C;, then 

II+,,~ - +*[I < e , { ( p a q ) l / ( ~ + l )  + pp""('") N I  (2.9) 

e, is independent of E ,  N and p and q - e is bounded in (0, qO] for any P 
90 n/2  > 0. 

The convergence speed of x, ,~  towards x* depends on the iteration number 
IC, whose choice depends on the noise level e and the finite dimensional operator 
approximation A,. The central question for regularization methods is the problem of 
how to choose the regularization parameter; it depends on the quantities that appear 
during the calculations, like the residue. The earliest methods of this type are based 
on the discrepancy principle, ie. matching the error of the approximate solution to 
the accuracy of the initial data of the problem; this was first done by Morozov [SI 
and Arcangeli [l]. The principle was later extended to iterative methods. In [9,11] 
convergence-rate estimates were obtained, according to which the method has optimal 
order if the iterations are stopped in accordance with the discrepancy principle. We 
used rule 2 proposed in [9J in our final algorithm. The convergence rate for this 
parameter selection is given in theorem 3.3 of that paper. 

3. Numerical examples 

The examples presented in this section will give some idea of the performance of the 
algorithm proposed in this paper. We will take some examples used in [2,4] but we 
Will present only the results obtained from data with noise. The level of noise in the 
data was simulated by 

y r ( s ) = ~ ( s ) + 6 s i n ( 1 0 0 s )  0 . 1 < s < 4  
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with the values 6 = and 
E = 1.39 x lo-' respectively. As the data are taken on the interval 0.1 < s < 4, 
corollary 2.1 in this paper leads us to the best choice for the parameter p of 
p* = 0.6324. The approximations were calculated using finite dimensional spaces, 
V,, with N < 15. 

The three first examples are presented in tables and figures in which we plotted 
the results. In these tables and io the fourth example we use the following notation. 

and 6 = lo-', which correspond to E = 1.39 x 

Data parameters: 

N = maximal degree of the polynomials in V'. 
To1 = TE (T and E were given in the algorithm). 

Measured parameters: 

Res = residuals when the iteration process stopped. 

Err = approximation error (Err = Ilz(t) - ~ , , ~ ( t ) l j ~ ~ ( ~ + ) ) .  

Iter = number of'iterations required to get the residual tolerance. 

We have considered the last two errors for sake of comparison with the results of [Z] 
and [4]. 

Finally we remark that the parameter p used in the algorithm was chosen in 
such way that the first iteration yields a reasonable approximation to the solution 
r( t ) ;  here we took advantage of the fact that ~ , , ~ ( t )  is the Thikonov regularization 
solution 161. 

Example 1. For this example we took 
1 

s + 0.5 
y(s) = -~ ' r ( t )  =e-*/' N = 10. 

In table 1 we present the results concerned with the two levels of noise. We do not 
plot the restored function in the case 6 = because it practically coincides with 
the original one; for 5 = 10W2 we obtain a good approximation as we can see in 
figure 1. 

Table L Results for example 1 where y(s) = 1/(s + O S ) ,  z ( t )  = e-t/z and N = 10. 

s = 10-2 s = 10-4 

lbl 1.5 x lo-* 1.5 x lo-' 
Res 1.39 x IO-* 1.39 x loM4 
Err 6.0 x IO-' 1.6 x 
L 7.47 x 10-4 3.49 x 10-5 
L,  2.98 10-3 1.44 x 10-4 
Iter 1 1 
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0 2 4 6 8 10 12 14 
-0.2 

Figure L Comparison of z( t )  = e-ti2 (full curve) with the recovery function using 
N = 10 and 6 = (broken cwe). 

Example 2. For this example we took 

The results are shown in table 2 and plotted in figure 2 

able  2. Rerulfs for example 2 where y(s) = l/(s + 1)2, z ( t )  = te-' and N = 10. 

6 = 6 = 10-4 
m 1.5 x 10-2 1.5 x 10-4 
Res 1.39 x 1.42 x 
~ r r  2 . 0 ~  10-2 8.1 x 10-3 
L 6.02 x lo-' 1.54 x 
L. 2.78 x 10-3 4.79 x 10-~ 
Iter 2 2 

fiumple 3. For this example we took 

z( t )  = e-t sin(t) N = 10. 1 
( s + 1 ) 2 + 1  

Y(S) = 

Table 3 and figure 3 give the results obtained. 
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0.4 i 

0 2 4 6 8 10 12 14 16 
-0.05 I 

Figure 2. 
6 = 

Comparison of z(t)  = e-& (full curve) with recoverig using N = 10, 
(broken culve) and 6 = lo-' (dotted cuwe). 

'hble 3. Results for example 3 where y(s) = l/((s + 1)* + l), z ( t )  = e-csin(t) and 
N = 10. 

6 = 10-2 s = 10-4 
m 1.5 x 10-2 1.5 x 10-4 
~ e s  1.40 io-* 1.42 x 10-4 
~ r r  2 . 4 ~  10-2 9 . 0 ~  10-3 
L 6.59 x 10-4 1.07 x 10-3 
L, 5.0 10-3 2.32 x 10-3 
Iter 2 2 

Example 4. In this example we used 

y(s) = tan-'(l/s) r( t )  = sin(t)/t 

and tested N = 10 and N = 15; we used noisy data with 6 = We can see in 
figure 4 that there was no significant improvement in going from N = 10 to N = 15; 
this fact still persists when N > 15. All this lead us suspect that the smoothness of 
z ( t )  is not enough to recover the function in a large interval. In fact d ( t )  6 Lz(R+) 
so P,r(t) is a poor appoximation for r( t )  [SI; as an illustration we plotted z ( t )  
and P12z(t) in figure 5. However a small number of iterations was needed to get 
Res = 1.5 x The error e ( t )  = ~ ( t )  - ~ , ~ , ~ ( t )  is plotted in figure 6. 

4 Conclusion 

is well !mown every Laplace transform numerical inversion method breaks down 
for some functions and therefore the verification by different methods can greatly 
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0 -  

-0.05 

1 t ".. ~~ .~~ . : .~ .~ .~ .~ .~ .~ .~ ,~ .~~ .~~- . - -  ..,_ -._ d-"."--."*--- 

Fwre 4 Comparison of z ( t )  = r i n ( t ) / t  (full c w e )  with mcoveries using 6 = 
N = 10 (broken cuwe) and N = 15 (dotted a"). 

increase confidence in the results achived. The method proposed in [3] was 
substantially improved with the aid of the Laguerre functions. The algorithm proposed 
in this paper was tested on a class of examples considered in the recent literature 
and they confirm that it is competitive with other algorithms recently presented for 
problems with noisy numerical data (for example, [Z]). 
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6 

Figure 5. Cornpalison of z ( t )  = s in ( t ) / t  (full curve) and the orthogonal projection of 
z(t)‘ (broken curve) on the lagueme functions subspace ( N  = 12). 

0 2 4 6 8 10 12 14 
-0.15’ 

Figure 6. Enor of the restored function ( N  = U) z s ( t ) .  

5 

Some words about the hypothesis of corollary 2.2 are needed. In fact we did not 
present examples in which z* E R(A*A)q/*: it is very difficult to lind such functions 
when A is the Laplace transform operator. Although we have not yet found any of 
these examples, the theoretical results presented in section 2 are very important in 
substantiating the convergence results of our algorithm. 
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