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Abstract Discrete ill-posed problems where both the coefficient matrix and the right hand
side are contaminated by noise appear in a variety of engineering applications. In this paper
we consider Tikhonov regularized solutions where the regularization parameter is chosen
by the generalized discrepancy principle (GDP). In contrast to Newton-based methods often
used to compute such parameter, we propose a new algorithm referred to as GDP-FP, where
derivatives are not required and where the regularization parameter is calculated efficiently
by a fixed-point iteration procedure. The algorithm is globally and monotonically convergent.
Additionally, a specialized version of GDP-FP based on a projection method, that is well-
suited for large-scale Tikhonov problems, is also proposed and analyzed in detail. Numerical
examples are presented to illustrate the effectiveness of the proposed algorithms on test
problems from the literature.

Keywords Discrete ill-posed problems · Tikhonov regularization · Projection method ·
Generalized discrepancy principle · Noisy operator · Noisy right hand side

1 Introduction

We consider linear problems of the form

A f = g, A ∈ R
n×n (1)

where the coefficient matrix A arises from the discretization of ill-posed problems such as
first kind Fredholm integral equations with smooth kernel. Such matrices are severely ill-
conditioned and may be singular. Linear problems possessing such a matrix are frequently
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referred to as linear discrete ill-posed problems. In these cases the solution of (1) is very
sensitive to perturbations in the data such as measurement or approximation errors, and thus
regularization methods are essential for computing meaningful approximate solutions. In this
paper we consider the problem of computing stable approximations to the solution of (1) for
the case where the data obey the following assumptions:

A1: Problem (1) is consistent, ie., g belongs to the column space of A, R(A),
A2: Instead of g and A we are given a noisy vector g̃ and a noisy matrix ˜A with available

noise levels δg and δA, respectively, such that

‖g̃ − g‖2 ≤ δg, and ‖˜A − A‖2 ≤ δA. (2)

Discrete ill-posed problems with data satisfying (2) appear in a number of applications such as
potential theory, image processing and inverse scattering [1,8,9,17,22], among others. There
are at least two well-distinguished approaches for these problems: (i) the classical Tikhonov
regularization method, for which abundant literature exists, see, e.g., [11,23,30], and (ii)
regularized total least squares methods [12,18,20,22,27–29]. Both approaches work well
when the noise level in A and g are known accurately. However, since Tikhonov regularization
is less expensive and simpler, we will concentrate only on this method.

The regularized solution determined by the method of Tikhonov is defined by

fλ = argmin
f ∈Rn

{‖˜A f − g̃‖22 + λ2‖L f ‖22
}

, (3)

where λ > 0 is the regularization parameter and L ∈ R
p×n is referred to as the regularization

matrix. Notice that taking λ = 0 in (3) we obtain the ordinary least squares problem

fLS = argmin
f ∈Rn

‖˜A f − g̃‖22. (4)

A regularization Tikhonov problem is said to be in standard form if the matrix L is the identity
matrix In , otherwise the Tikhonov regularization problem is said to be in general form. The
regularization matrix L depends on the problem and is very often chosen as some discrete
approximation to a derivative operator. The regularization parameter determines how close
the regularized solution fλ is to the solution of (1), and should be chosen carefully.

The goal of the present paper is to construct Tikhonov regularized solutions for problem
(1) with data satisfying A1–A2, using the generalized discrepancy principle (GDP) [23]
as parameter choice rule. GDP is very popular due to its rigorous theoretical foundation;
for a detailed analysis of GDP in a Hilbert space setting, which gives rise to error bounds
including convergence rates and algorithms, the reader is referred to [21]. GDP chooses the
regularization parameter as the solution of the nonlinear equation, called the discrepancy
equation,

G(λ) = ‖˜A fλ − g̃‖22 − (δg + δA‖L fλ‖2)2 = 0. (5)

The function G is increasing and has a unique root under appropriate conditions. Additionally,
it is convex for small λ and concave for large λ. As a result, global and monotone convergence
of Newton’s method cannot be guaranteed [29]. To overcome this difficulty, Lu et al. [21]
transform the Eq. (5) into an equivalent one that depends on two free parameters (η, ν) and
perform an analysis to determine the set of parameters that ensure global convergence of
Newton’s method. Numerical examples reported in [21] suggest that among the pairs (η, ν)

that guarantee convergence, there must be a pair for which the iteration converges faster, but
the determination of such a pair is still lacking.
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In this work, we propose a fixed-point type derivative-free algorithm for computing the
regularization parameter chosen by GDP which we refer to as GDP-FP. The algorithm is
shown to be globally and monotonically convergent and has convergence properties that do
not depend on additional parameters as required by the algorithms proposed in [21]. GDP-
FP can be readily implemented using the generalized singular value decomposition (GSVD)
of the matrix pair (˜A, L) when ˜A and L are small or of moderate size. For large scale-
problems, a specialized version of GDP-FP based on a projection method is also proposed
and discussed in detail. The main idea of the method introduced here is to approximate
the regularized solution fλ by using a sequence of regularized solutions f (k)

λ in appropriate
Krylov subspaces of increasing dimension, in such a way that the regularization parameter
for the projected problem is chosen as the solution of “the projected discrepancy equation”:

G(k)(λ) = ‖˜A f (k)
λ − g̃‖22 − (δb + δA‖L f (k)

λ ‖2)2 = 0. (6)

Analogous to G(λ), G(k)(λ) increases as λ increases and has a unique solution under appro-
priate conditions.

The rest of the paper is organized as follows. Section 2 summarizes properties regarding
Tikhonov regularization and some technical results to be used later on. The theoretical and
computational aspects of GDP-FP are developed and discussed in Sect. 3. Section 4 starts
with a review of the Golub-Kahan bidiagonalization (GKB) algorithm [4,6], and proceeds
with our specialized version of GDP-FP for large-scale problems. The proposed approach
combines GKB with Tikhonov regularization in the generated Krylov subspace, where the
regularization parameter for the projected problem is chosen by GDP-FP, following the ideas
of the algorithm GKB-FP proposed in [4]. Again, the convergence properties of the proposed
approach do not depend on user specified parameters. In Sect. 5 we provide numerical results
that illustrate the effectiveness of our algorithm on test problems from the literature, including
an inverse scattering problem. The paper ends with some concluding remarks.

2 Preliminaries

This section describes some technical results and the notation used throughout the paper. We
start by noting that the regularized solution fλ can be equivalently defined as the solution of
the linear least squares problem

min
f ∈Rn

∥

∥

∥

∥

(

˜A
λ L

)

f −
(

g̃
0

)∥

∥

∥

∥

2
. (7)

Hence it follows that the regularized solution fλ is unique when the coefficient matrix in (7)
has full column rank, which means the null spaces N (˜A) and N (L) intersect trivially, i.e.,

N (˜A) ∩N (L) = {0}, (8)

and the regularized solution fλ solves the normal equations for (7)

(˜AT
˜A + λ2 LT L) f = ˜AT g̃. (9)

To analyze properties of fλ and related quantities, we need to introduce the generalized
singular value decomposition (GSVD) of the matrix pair (˜A, L) [15]. For this, as usual, we
assume that L is p × n, rank(L) = p ≤ n, and that the pair (˜A, L) have a GSVD

˜A = U

[

� 0
0 In−p

]

X−1, L = V [M; 0]X−1. (10)
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Here both U = [u1, . . . , un] ∈ R
m×n and V = [v1, . . . , vp] ∈ R

p×p have orthonormal
columns, and X ∈ R

n×n is nonsingular. Moreover, � and M are diagonal matrices defined
by � = diag(σ1, . . . , σp) , M = diag(μ1, . . . , μp), whose entries are nonnegative and
normalized such that

σ 2
i + μ2

i = 1, i = 1, . . . , p.

Then the generalized singular values of the matrix pair (˜A, L) are defined by

γi = σi/μi , i = 1, . . . , p (11)

and we shall assume them to appear in nondecreasing order. With the GSVD at hand, the
regularized solution can be expressed as

fλ =
p

∑

i=1

γ 2
i

γ 2
i + λ2

uT
i g̃

σi
xi +

n
∑

i=p+1

uT
i g̃ xi . (12)

Here xi denotes the i-th column of matrix X . Define also αi = |uT
i g̃|2 (the squared Fourier

coefficient of g̃) and δ0 = ‖(I − UU T )g̃‖2 (the size of the incompatible component of g̃
that lies outside the column space of ˜A). Further, let

y(λ) = η2(λ)
.= ‖L fλ‖22, (13)

x(λ) = ρ2(λ)
.= ‖b − ˜A fλ‖22. (14)

In terms of the GSVD these functions reduce to

x(λ) =
p

∑

i=1

λ4αi

(γ 2
i + λ2)2

+ δ2
0, y(λ) =

p
∑

i=1

γ 2
i αi

(γ 2
i + λ2)2

. (15)

Hence, for λ > 0, the derivatives with respect to λ of x(λ) and y(λ), respectively, become

x′(λ) = 4λ3
p

∑

i=1

γ 2
i αi

(γ 2
i + λ2)3

> 0, y′(λ) = −4λ

p
∑

i=1

γ 2
i αi

(γ 2
i + λ2)3

< 0. (16)

Thus, the squared residual norm increases with λ and the squared seminorm decreases.
Additionally, we can exploit (16) to obtain

dy/dx = −1/λ2 (17)

which implies d2y
dx2 > 0. So y = y(x) (i.e., ‖L fλ‖22 as a function of ‖˜A fλ − g̃‖22) is a

monotonically decreasing convex function of x. The following theorem shows that a similar
result holds for the norms themselves.

Theorem 2.1 Let fλ denote the Tikhonov regularized solution of problem (3). Then ‖L fλ‖2
is a monotonically decreasing convex function of ‖˜A fλ− g̃‖2. Moreover, the extreme residual
norms (resp. extreme solution seminorms) corresponding to zero and infinite regularization
satisfy the following properties

δ0 ≤ ‖˜A fλ − g̃‖ ≤ ‖g̃‖2, 0 ≤ ‖L fλ‖ ≤ ‖L fLS‖2, (18)

with

lim
λ→0
‖˜A fλ − g̃‖ = δ0, lim

λ→∞‖˜A fλ − g̃‖ = ‖g̃‖2 (19)

lim
λ→0
‖L fλ‖ = ‖L fL S‖, lim

λ→∞‖L fλ‖ = 0 (20)

where fLS is the unregularized solution of (3).
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Proof See [15, Theorem 4.6.1].

Lemma 2.2 Let �(λ) = ‖˜A fλ−g̃‖2
‖L fλ‖2 . Then � is a monotonically nondecreasing function, and

∀λ > 0 we have

�′(λ) < 2
�(λ)

λ
. (21)

Proof To prove that � increases as λ increases it suffices to use (16), (17) and the derivative
of �. For the second part, using the notation introduced in (13), (14) note that

x′(λ) = 2ρ(λ)ρ′(λ), and, y′(λ) = 2η(λ)η′(λ).

This implies

dy
dx
= 1

�

dη

dρ
⇔ dη

dρ
= −�(λ)

λ2 ,

where the last equality is because of (17). Taking derivative with respect to λ on the right
equality leads to

d2η

dρ2 ρ′(λ) = 2λ�(λ)− λ2�′(λ)

λ4 .

Now since ρ′(λ) = x′(λ)/ρ(λ) > 0 by (16), and since by Theorem 2.1, η is a monotonically

decreasing convex function of ρ, it follows that d2η

dρ2 ρ′(λ) > 0, and the the desired inequality
follows. ��

3 Fixed-Point Approach for Computing the Tikhonov Regularization Parameter
Chosen by GDP

As already commented, in the GDP errors δA and δg are taken into account and the regu-
larization parameter is chosen as the unique solution of the nonlinear equation G(λ) = 0.
Existence and uniqueness of such solution can be explained by noting that G is a monotoni-
cally increasing continuous function of λ, which is immediate to see since G ′(λ) > 0 due to
(16). From this observation it is clear that G will have a unique root as long as

lim
λ→0+

G(λ) = δ2
0 − (δg + δA‖L fL S‖2)2 < 0, and lim

λ→∞G(λ) = ‖g̃‖22 − δ2
g > 0,

where the limit values are because of (19), (20) in Theorem 2.1. Consequently, the discrepancy
equation G(λ) = 0 will have a unique solution as long as the noise δg and δA satisfy

δ0 − δA‖L fL S‖2 < δg < ‖g̃‖2. (22)

If the noisy matrix ˜A is nonsingular, as seen frequently when the noise is random, then δ0 = 0
and hence the left inequality is satisfied automatically. When ˜A is singular, a reasonable
condition that ensures the left inequality is δ0 < δg . As for the right inequality, it holds true
when the amount of noise in g satisfies δg 
 ‖g‖2.

Having explained the issue of existence and uniqueness of the regularization parameter
chosen by GDP, we shall now concentrate on the algorithmic aspects of methods for its
computation. The special case δA = 0 has been extensively studied by several authors and
often treated with Newton’s method. An implementation of the Discrepancy principle for
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this very especial case is available as the Matlab function discrep in Regularization Tools
by Hansen [14]. For the general case the situation is quite different. The only algorithms
we are aware of are the Newton-based algorithms by Lu et al. [21] developed in a Hilbert
space setting. The convergence and performance of these algorithms depend on user specified
parameters.

In the following, we will develop a globally convergent algorithm for solving the discrep-
ancy equation, with convergence properties that do not depend on any extra parameter. We
will show, by means of numerical experiments, that this algorithm is capable of capturing
the solution of the discrepancy equation very quickly.

We start with the following technical result.

Lemma 3.1 For λ > 0 let ϑ(λ) = ‖˜A fλ−g̃‖2
δg+δA‖L fλ‖2 and ξ(λ) = λ2

ϑ(λ)
. Then both ϑ(λ) and ξ(λ)

are monotonically increasing functions of λ. Moreover, the following properties hold

lim
λ→0+

ξ(λ) =
{

0 if δ0 �= 0,

C > 0 if δ0 = 0
(23)

for some constant C.

Proof The proof that ϑ increases as λ increases is analogous to the proof what � is increas-
ing, see Lemma 2.2. Therefore we will prove the assertion for function ξ only. In fact,
differentiation of ξ(λ)ϑ(λ) = λ2 with respect to λ yields

ξ(λ)ϑ ′(λ)+ ξ ′(λ)ϑ(λ) = 2λ.

Hence

ξ ′(λ)ϑ(λ) = 2λϑ(λ)− λ2ϑ ′(λ)

ϑ(λ)
. (24)

Further, since ϑ(λ) = c(λ)�(λ) with c(λ) = η(λ)
δb+δA η(λ)

, and−ϑ(λ)

λ2 = c(λ)
(

−�(λ)

λ2

)

, taking

derivative with respect to λ in this last equality we have

2λϑ(λ)− λ2ϑ ′(λ)

λ4 = c(λ)

(

2λ�(λ)− λ2�′(λ)

λ4

)

−
(

�(λ)

λ2

)

c′(λ). (25)

Since c′(λ) < 0, which follows from the definition of c, and since 2λ�(λ) − λ2�′(λ) > 0
by Lemma 2.2, using these inequalities in (25) we obtain ξ ′(λ) > 0, which proves that ξ is
increasing.

The limit values in (23) are immediate consequences of (15) together with (19), (20). This
concludes the proof. ��

We are in a position to describe the main results of this section.

Theorem 3.2 Let ϑ and ξ be the functions defined in Lemma 3.1 and let ζ(λ) = √ξ(λ).
Assume that (22) holds true. Then the following properties hold

(a) The parameter chosen by GDP, λGDP , is the unique solution of the nonlinear equation
ϑ(λ) = 1.

(b) ζ is a monotonically increasing function having a unique nonzero fixed-point at λ = λGDP

such that ζ(λ) ≥ λ if 0 < λ ≤ λGDP , and ζ(λ) ≤ λ if λ ≥ λGDP . Additionally,

λGDP ≤ γ1

√

δb

ρ(γ1)
+ δA

γ1
(26)

as long as δgγ1 + δAρ(γ1) ≤ ρ(γ1)γ1.
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(c) For given λ0 > 0 consider the sequence {λ j } defined by

λ j+1 = ζ(λ j ), j ≥ 0. (27)

Then lim
j→∞ λ j = λGDP irrespective of the initial guess chosen.

Proof The equation ϑ(λ) = 1 comes as another way of writing (5) and item (a) holds true
because ϑ(λ) is a monotonically increasing function by Lemma 3.1.

We start the proof of item (b) with the observation that ζ increases monotonically because
of its definition and Lemma 3.1. Now since λGDP is a solution of ϑ(λ) = 1, then

ζ(λGDP ) =
λGDP

√

ϑ(λGDP )
= λGDP ,

and thus λGDP is a fixed-point of ζ . Conversely, if λ∗ is a fixed-point of ζ , which means
ζ(λ∗) = λ∗, then it follows that ϑ(λ∗) = 1 and, due to item (a), we obtain λ∗ = λGDP . This
implies that ζ has a unique nonzero fixed-point at λ = λGDP .

We now proceed with the observation that ζ ′(λGDP ) < 1. We shall prove this by contra-
diction. In fact, assume ζ ′(λGDP ) ≥ 1. Then since ϑ(λGDP ) = 1 by item (a) and since

ζ ′(λ) = (ϑ(λ))−1/2 − λ

2
ϑ ′(λ)(ϑ(λ))−3/2, (28)

taking λ = λGDP we obtain

1 ≤ ζ ′(λGDP ) = 1− λGDP

2
ϑ ′(λGDP ),

or equivalently ϑ ′(λGDP ) ≤ 0, which is a contradiction as ϑ is increasing. Therefore we must
have ζ ′(λGDP ) < 1. Using this property, the monotonicity of ζ and the fact ζ has a unique
nonzero fixed-point, we conclude that ζ(λ) ≥ λ if 0 < λ ≤ λGDP and ζ(λ) ≤ λ if λ ≥ λGDP .

To prove the last part of item (b) we use the monotonicity of ϑ and Theorem 2.1 and
deduce that for all λ > 0

ζ(λ) ≥ λ

√

δb

‖g̃‖2 . (29)

We now recall from [2, Lemma1] that for λ ≥ γ1 we have ρ(λ)/η(λ) ≥ λ. Thus, for λ ≥ γ1

we have

1

ϑ(λ)
= δb + δAη(λ)

ρ(λ)
≤ δb

ρ(λ)
+ δA

λ
≤ δb

ρ(γ1)
+ δA

γ1
, (30)

where the last inequality is because ρ is increasing, see (17). Combination of (29) and (30)
shows that for λ ≥ γ1 we have

√

δb

‖g̃‖2 λ ≤ ζ(λ) ≤
√

δb

ρ(γ1)
+ δA

γ1
λ. (31)

We now use the assumption δgγ1 + δAρ(γ1) ≤ ρ(γ1)γ1 and deduce that the slope of the
upper bound in (31) is not larger than 1. This proves inequality (26) and ends the proof of
item b).

Finally, since ζ is also an increasing function it follows that {λk}will be either an increasing
sequence if λ0 < λGDP or a decreasing sequence if λ0 > λGDP . This concludes the proof. ��
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From Theorem 3.2 we conclude that the regularization parameter chosen by GDP can be
determined by a monotonically and globally convergent fixed-point iteration procedure as
defined in (27). We will refer to this algorithm as GDP-FP. Moreover, from the nearly linear
behavior of ζ for λ ≥ γ1 and the small slope of the bounds as described in (31), we deduce
that the sequence (27) can converge rapidly when the iterative procedure is initialized either
with λ0 ≈ γ1 or with λ0 chosen as the a priori upper bound (26), the latter option being valid
for relatively low noise levels. Finally, we note that if δg = 0

λGDP ≤
√

γ1

√

δA, (32)

while if δA = 0, the upper bound (26) reduces to

λGDP ≤ γ1

√

δg

ρ(γ1)
, (33)

which is closely related to one given by Vinokurov [31].
The statements of Theorem 3.2 as well as the comments above are illustrated in Fig. 1.
We close the section with a description of our fixed-point algorithm for determining the

regularization parameter λGDP and the corresponding regularized solution fλGDP

GDP-FP algorithm :
Input data : ˜A, L , g̃, ε, δg and δA.

1. Compute the GSVD of the matrix pair (˜A, L).

2. Set j = 0 and take, e.g., λ0 = γ1.
3. Compute λ j+1 = ζ(λ j ) with ζ being defined in Thm. 3.2.
4. If |λ j+1 − λ j | ≥ ε|λ j |

do j ← j + 1 and go to 3.
else stop.

5. Compute fλ by using (12).

The computation of the GSVD of the matrix pair (A, L) is quite expensive and for this
reason, the GSVD is of interest only for small to medium-sized problems. For large-scale
problems, we will see in the next section that projection methods are reliable options.

10
−6

10
−4

10
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z=ϑ(λ)→

z=1
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10
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λ
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1

λ
2

z=ζ(λ)→

z=λ →

Fig. 1 Functions ϑ and ζ (left) and behavior of sequence {λk } for λ0 > λGDP (right) with the choice λ0 = γ1.
This example corresponds to deriv2 test problem from [14] with n = 512. To simulate noise we take g̃ = g+e
and ˜A = A+ E , were e is Gaussian random vector such that ‖e‖2/‖g‖2 = 0.01, and E is a Gaussian random
matrix such that ‖E‖2/‖A‖2 = 0.01
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4 Projection Approach for Large-Scale Problems

In this section we show how to construct regularized solutions fλ for the case where the
dimensions of ˜A and L are such that the computation of the GSVD of the matrix pair (˜A, L)

is infeasible or unattractive. The idea here is to construct approximate solutions to fλGDP
by

“projecting” the large-scale problem onto a subspace of small dimension. More precisely,
let {Vk}, k ≥ 1, be an appropriate nested family of k-dimensional subspaces in R

n . Then the
idea is to determine approximations f (k)

λ ∈ Vk to fλ by solving the constrained Tikhonov
problem

f (k)
λ = argmin

f ∈Vk

‖˜A f − g̃‖22 + λ2‖L f ‖22 (34)

where the regularization parameter is chosen in a proper way. Problem (34) is often referred
to as the projected problem and methods which use f (k)

λ as approximations to fλ are referred
to as projection methods. For the moment, we assume that the Tikhonov problem is in
standard form and we will concentrate on a projection method based on the Golub-Kahan
bidiagonalization (GKB) algorithm [6] where the regularization parameter for the projected
problem is chosen by GDP. A projection approach for Tikhonov regularization in general
form will be addressed at the end of the section.

4.1 Review of GKB and LSQR

Application of k < n GKB steps to ˜A with initial vector g̃/‖g̃‖2 yields three matrices: a
lower bidiagonal matrix Bk ∈ R

(k+1)×k and two matrices Uk+1 ∈ R
m×(k+1) and Vk ∈ R

n×k

with orthonormal columns, such that

β1Uk+1e1 = g̃ = β1u1, (35)
˜AVk = Uk+1 Bk, (36)

˜AT Uk+1 = Vk BT
k + αk+1vk+1eT

k+1, (37)

where ek denotes the k-th unit vector in R
k+1. The columns of Vk provide an orthonormal basis

for the generated Krylov subspace Kk(˜AT
˜A, ˜AT g̃}, an excellent choice for use when solving

ill-posed problems [6,7,14]. GKB iterations constitute the basis for the LSQR method [24,
25]. LSQR is designed to construct approximate solutions to the least squares problem (4)
defined by f (k) = Vk y(k), where y(k) solves the projected least squares problem

min
y∈Rk
‖Bk y − β1e1‖2. (38)

In practical computations f (k) is computed via a QR factorization of Bk which allows for
an efficient updating of the LSQR iterates; the reader is referred to [24] for details. LSQR is
also well suited for solving the “damped least squares problem” [24]

fλ = arg min
f ∈Rn

∥

∥

∥

∥

(

g̃
0

)

−
(

˜A
λIn

)

f

∥

∥

∥

∥

2
, (39)

where λ is a fixed regularization parameter. In this case, the kth approximate solution is taken
to be

f (k)
λ = Vk y(k)

λ , (40)
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where y(k)
λ solves the regularized projected problem

y(k)
λ = arg min

y∈Rk

∥

∥

∥

∥

(

β1e1

0

)

−
(

Bk

λIk

)

y

∥

∥

∥

∥

2
(41)

which can be handled efficiently using the QR factorization of

(

Bk

λIk

)

. As for f (k)
λ , it can

be computed using (40). Alternatively, as shown by Paige and Saunders [24], for fixed λ

the regularized solution f (k)
λ can be computed through an updating formula which does not

require any storage of Vk . Note that due to (35) and (36), the residual vector r (k)
λ = g̃−˜A f (k)

λ

and the regularized solution f (k)
λ satisfy

‖r (k)
λ ‖ = ‖U T

k+1(β1e1 − Bk y(k)
λ )‖ = ‖β1e1 − Bk y(k)

λ ‖, (42)

‖ f (k)
λ ‖ = ‖y(k)

λ ‖. (43)

In addition, if we let the singular value decomposition of Bk be

Bk = Pk

(

�k

0

)

QT
k =

k
∑

i=1

σ
(k)
i pi q

T
i , (44)

where Pk ∈ R
(k+1)×(k+1) and Qk ∈ R

k×k are orthogonal, and �k = diag(σ
(k)
1 , . . . , σ

(k)
k )

with σ
(k)
1 ≥ σ

(k)
2 ≥ · · · ≥ σ

(k)
k > 0. Then it is immediate to check that

‖y(k)
λ ‖22 = β2

1

k
∑

i=1

[σ (k)
i ]2ξ2

1i

([σ (k)
i ]2 + λ2)2

, ‖r (k)
λ ‖22 = β2

1

k
∑

i=1

λ4ξ2
1i

([σ (k)
i ]2 + λ2)2

+ δ
(k)
0

2
(45)

where ξ1i denotes the i-th component of the first row of matrix Pk , and δ
(k)
0 is the 2-norm of

the incompatible part of β1e1 that lies outside R(Bk). Moreover, analogous to the squared
residual norm x(λ) and the squared solution norm y(λ), ‖r (k)

λ ‖22 is a monotonically increasing

function and ‖y(k)
λ ‖22 is a monotonically decreasing function.

The following technical result will be used in the sequel.

Theorem 4.1 For fixed λ > 0 the norm of the solution f (k)
λ and corresponding norm of the

residual vector r (k)
λ satisfy

‖ f (k+1)
λ ‖ ≥ ‖ f (k)

λ ‖, ‖r (k+1)
λ ‖ ≤ ‖r (k)

λ ‖, k = 0, . . . , n − 1. (46)

Proof See [4, Theorem 2.1].

4.2 Proposed Method

In order to introduce our projection method we shall assume that the GKB procedure is used
to compute the approximate solutions f (k)

λ and the corresponding residuals r (k)
λ . Based on

these functions let us consider the finite sequence of functions ϑ(k) : R+ → R, k = 1, . . . , n,
defined by

ϑ(k)(λ) = ρ(k)(λ)

δg + δAη(k)(λ)
, (47)
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where ρ(k)(λ) = ‖r (k)
λ ‖2, and η(k)(λ) = ‖y(k)

λ ‖2, and the finite sequence of functions
ζ (k) : R+ → R, k = 1, . . . , n, defined by

ζ (k)(λ) = λ
√

ϑ(k)(λ)
. (48)

Since ρ(k) and η(k) are monotonic, some calculations show that ϑ(k)′(λ) > 0 and ζ (k)′(λ) > 0.
Therefore, both ϑ(k) and ζ (k) are monotonically increasing functions. Our projected method
relies on the fact that we can construct a sequence of fixed-points λ(k)∗ of ζ (k) which approx-
imates λGDP as k increases. For this, due to the monotonicity of ϑ(k) and ζ (k) it is clear that
λ(k)∗ is a fixed-point of ζ (k) if and only if λ(k)∗ is the unique solution of the “projected
discrepancy equation” ϑ(k)(λ) = 1.

The following theorem describes how the sequence ζ (k) relates to the function ζ of the
original and large-scale problem and shows that ζ (k) always has a unique nonzero fixed-point.

Theorem 4.2 Assume that exact arithmetic is used and that the GKB procedure runs n steps
without interruption. Then for all λ > 0 it holds

ζ (k+1)(λ) ≥ ζ (k)(λ), k = 1, . . . , n − 1. (49)

Consequently, ζ(λ) ≥ ζ (k)(λ) for k = 1, . . . , n. Additionally, if the condition (22) is satisfied,
then ζ (k) always has a unique nonzero fixed-point that is the unique solution of the nonlinear
equation (6).

Proof The first inequality is straightforward from Theorem 3.2. The second inequality fol-
lows upon taking k = n − 1 in (49). To prove the last assertion we shall analyze the sign
of the function h(k)(λ) = ζ (k)(λ) − λ for λ > 0. In fact, if (22) is satisfied, then λGDP is a
nonzero fixed-point of ζ due to Theorem (3.2), and thus we must have ζ (k)(λ) < λ when
λ > λGDP as we have seen that ζ(λ) ≥ ζ (k)(λ) for λ > 0. Therefore, for λ > λGDP we have

h(k)(λ) < 0. (50)

Now notice that the behavior of h near the origin depends on the constant δ
(k)
0 �= 0, see

(45) and (48). Notice also that by Lemma 3.1 we have limλ→0+ h(k)(λ) = 0 if δ
(k)
0 �= 0 and

limλ→0+ h(k)(λ) > 0 if δ
(k)
0 = 0. This tells us that only the case δ

(k)
0 �= 0 must be considered

when analyzing the function h(k) for λ near zero and that this analysis requires information
about the derivative of h. We then use (28) and obtain

h(k)′(0) = ζ (k)′(0)− 1 =
√

√

√

√

δg + δA‖ f (k)
λ ‖2

δ
(k)
0

− 1 > 0, (51)

the inequality being valid as δ
(k)
0 ≤ δg . But this implies that ζ (k)′(0) > 1. This inequality

implies that there must be an open interval, say I = (0, λ) ⊂ (0, λGDP ), such that ζ (k)(λ) > λ

for all λ ∈ I , and thus we must have

h(k)(λ) > 0 ∀λ ∈ I. (52)

We now use (50)–(52) and conclude that h(k) has a root λ(k)∗, or equivalently that λ(k)∗ is
a nonzero fixed-point of ζ (k). Uniqueness of λ(k)∗ follows from the monotonicity properties
of ζ (k) and ϑ(k), and this concludes the proof. ��
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Fig. 2 Functions ζ and ζ (k) for
some values of k. This example
corresponds to deriv2 test
problem from [14] with the same
data as in Fig. 1
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z = ζ(λ)

z = ζ(5)(λ)

z=ζ(15)(λ)

To better explain the relevance of Theorem 4.2, it is instructive to note that as the GKB
algorithm proceeds, more and more information associated with the largest singular values
of ˜A is captured [6,15]. As a consequence, the sequence ζ (k)(λ) will quickly capture the
information of ζ(λ) for a range of values of λ inside the part of the singular values of A that
is captured by the GKB procedure in k steps. This is illustrated in Fig. 2 where are depicted
some functions ζ (k) as well as its limit value ζ(λ) for the deriv2 test problem. Notice that
in a wide range of λ values which include the parameter λGDP , the functions ζ (k) remain
remarkably close to ζ even for small k.

Now for given k ≥ 1 and arbitrarily chosen initial guess λ
(k)
0 > 0, consider the sequence

{λ(k)
j } defined by

λ
(k)
j+1 = ζ (k)(λ

(k)
j ), (53)

and assume it converges to a fixed-point λ(k)∗ of ζ (k); when this is true we prove that the
sequence λ(k)∗ converges to λGDP from below in at most n GKB steps. This is the subject of
the following theorem.

Theorem 4.3 Under the hypotheses of Theorem 4.2, for k ≥ 1 let λ(k)∗ be the unique
nonzero fixed-point of ζ (k). Then the sequence of fixed-points {λ(k)∗}k is nondecreasing and
λ(k)∗ converges to λGDP in at most n GKB steps.

Proof Let λ(k)∗ be a fixed-point of ζ (k)(λ). Due to Theorem 4.2 we have

ζ (k+1)(λ(k)∗) ≥ ζ (k)(λ(k)∗) = λ(k)∗. (54)

If λ(k)∗ is also a fixed-point of ζ (k+1) there is nothing to prove. Assume then that
ζ (k+1)(λ(k)∗) > λ(k)∗ and consider the sequence λ j+1 = ζ (k+1)(λ j ), j ≥ 0, with start-
ing value λ0 = λ(k)∗. Based on the fact that ζ (k+1) increases as λ increases, it follows that
λ j forms a nondecreasing sequence, and therefore {λ j } converges to a fixed-point of ζ (k+1),
i.e.,

lim
j→∞ λ j = λ(k+1)∗ = ζ(λ(k+1)∗)

with λ(k+1)∗ ≥ λ(k)∗. Now since after n GKB steps the Krylov space equals R
n , it follows

that ζ (n) equals ζ and so {λ(k)∗}must converge to λGDP in at most n GKB steps, and the proof
concludes. ��
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The main consequence of Theorem 4.3 is that we can construct approximations to λGDP

using a nondecreasing finite sequence of fixed-points λ(k)∗ of ζ (k), which as illustrated above
can converge very quickly due to the approximation properties of the Krylov subspace gen-
erated by the GKB procedure. From the practical point of view, this gives rise to an algorithm
for computing λGDP and the corresponding regularized solution which we will refer to as
PGDP-FP. The main steps of PGDP-FP can be summarized as follows:

PGDP-FP :
Input: ˜A, g̃, p > 1, ε.
Output: Regularized solution f (k)

λ∗
1. Apply p GKB steps to ˜A with starting vector g̃ and form the matrix Bp .
2. Set k = p. Compute the fixed-point λ(k)∗ of ζ (k) and set

λ0 = λ(k)∗, λold = λ0 , k ← k + 1.
3. Perform one more GKB step and compute the fixed-point

λ(k)∗ of ζ (k) taking λ0 as starting value.
Set λold = λ0, λ0 = λ(k)∗.

4. If stopping criterion is satisfied do
λ∗ = λold

else do
k ← k + 1
Go to step 3.

end if
5. Compute the regularized solution f (k)

λ∗

We will refer to each GKB iteration as an outer iteration and to iterations during fixed
computations for each k as inner iterations. For practical purposes, we note that computing
fixed-points for each k requires solving the projected problem (41) for several values of λ

and for increasing values of k. This can be done following the ideas of the LSQR algorithm
at a cost of approximately O(k) arithmetic operations [10,25]. Moreover, since very often
a fairly small number of steps is required for convergence, the overall cost of PGDP-FP
is dominated by k matrix-vector products with ˜A and ˜AT for some moderate number k. In
addition, to introduce savings for the algorithm to be efficient and competitive, the fixed-point
λ(k)∗ at stage k can be used as initial guess for computing the fixed-point at stage (k+1) since,
as demonstrated before, the sequence of fixed-points λ(k)∗ is nondecreasing. Taking into
account the monotonicity of λ(k)∗, we choose to stop the outer iterations when the relative
change of consecutive fixed-points,

∣

∣

∣λ
(k+1)∗ − λ(k)∗

∣

∣

∣ < ελ(k)∗, (55)

is sufficiently small, where ε is a tolerance parameter.

4.3 Extension to General Form Tikhonov Regularization

For some problems, standard-form Tikhonov regularization does not produce suitable regu-
larized solutions and it is convenient to consider instead general-form Tikhonov regularized
solutions. The purpose of this subsection is to briefly describe two approaches to extend GDP-
FP to general-form Tikhonov regularization: one approach which implicitly transforms the
general-form Tikhonov problem (3) into a related problem in standard form, and another
approach where such transformation is not necessary.
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For the first approach, note that the Tikhonov problem (3) can always be transformed into
a Tikhonov problem in standard form [10]

f λ = argmin
f ∈Rn

‖A f − g‖22 + λ2‖ f ‖22. (56)

For the case where L is invertible the standard-form transformation becomes A = ˜AL−1,

g = g̃, and the back-transformation is fλ = L−1 f λ.

When L is not invertible the transformation takes the form

fλ = L†
˜A

f λ + fN , A = ˜AL†
˜A
, g = g̃ − ˜A fN , (57)

where fN lies in the null space of L and

L†
˜A
=

(

In −
(

˜A
(

In − L†L
))†

˜A
)

L†,

is the ˜A-weighted generalized inverse of L . If we know a full rank matrix W whose columns

span the null space N (L), then fN = W
(

˜AW
)†

g̃, and the ˜A-weighted generalized inverse

of L reduces to L†
˜A
=

(

In −W
(

˜A W
)†

˜A
)

L†.

Therefore our first extension of GDP-FP to large-scale general-form Tikhonov regular-
ization is to apply PGDP-FP to the transformed problem (56) assuming that the transformed
matrix A is never explicitly formed. Once f λ is determined, the regularized solution fλ
is computed by using the back-transformation (57). This approach is well suited when the

matrix-vector products with A and A
T

are performed efficiently. That is, this approach works
well when the computation of matrix-vector products with L†

˜A
is feasible and performed effi-

ciently, as often occurs in applications involving sparse regularization matrices e.g., banded
regularization matrices with small bandwidth and regularization matrices defined via Kro-
necker products, among others. For examples and situations where the transformation to
standard form is feasible, the reader is referred to [5,26].

Our second approach considers the case where L is a regularization matrix such that
the computation of matrix-vector products with L†

˜A
is infeasible or unattractive. We follow

an approach suggested by Hochstenbach and Reichel [16] recently exploited in connection
with an extension of GKB-FP, an algorithm for large-scale general-form Tiknonov problems
discussed in [5]. The main idea here is to determine regularized solutions as defined in
(34) where the subspace Vk is chosen as the Krylov subspace Kk(˜AT

˜A, ˜AT g̃) generated
by GKB and the regularization parameter is chosen by GDP. In other words, we apply the
GKB procedure to ˜A, which produces the partial decomposition (35)–(37), and compute
regularized solutions as

f (k)
λ = Vk y(k)

λ , y(k)
λ = argmin

y∈Rk
{‖˜AVk y − g̃‖22 + λ2‖LVk y‖22}, (58)

where the regularization λ is determined as the unique solution of the nonlinear equation (6).
Note that if we use the QR factorization of the product LVk , LVk = Qk Rk , based on (35),
(36) the above least squares problem reduces to one of the form

y(k)
λ = argmin

y∈Rk
{‖Bk y − β1e1‖22 + λ2‖Rk y‖22} (59)

which can be computed efficiently in several ways, e.g., by a direct method or by first trans-
forming the stacked matrix [BT

k λRT
k ]T to upper triangular form, as done when implementing

GKB-FP [4]. We can now compute the functions ϑ(k) and ζ (k) as defined in (47), (48) and
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then follow the same ideas as PGKB-FP. That is, for chosen p > 1 and k ≥ p, we deter-
mine the solution λ(k)∗ of the nonlinear function ϑ(k)(λ) = 1, repeating the process until the
stopping criterion (55) is satisfied.

In practice the QR factorization LVk = Qk Rk is calculated only once at step k = p
and updated in subsequent steps. Algorithms for updating the QR factorization can be found
in [13, Chapter 12].

5 Numerical Examples

We illustrate the effectiveness of GDP-FP and PGDP-FP considering two test problems
involving first kind integral equations

∫ 1

0
K (s, t)f(t)dt = g(s), 0 ≤ s ≤ 1, (60)

which have been discussed in [21], and a third test problem from inverse scattering. Our
computations were carried out in Matlab with about 16 significant decimal digits. Since
the special case δA = 0 has been discussed and illustrated in several papers, we will only
concentrate here on the case δA �= 0.
Example 1:

In this test problem the kernel K (s, t) and the functions f and g are defined by

K (s, t) =
{

s(1− t) for s ≤ t,
t (1− s) for s ≥ t.

, f(t) = 4t (t − 1), g(s) = s

3
(s3 − 2s2 + 1).

Discretization of (60) leads to a discrete ill-posed problem where A, f , and g depend on
how the approximation is made. In this example the matrix A ∈ R

n×n is generated by using
the Matlab function deriv2 from [14], the vector f has coordinates f j =

√
�t(t j −�t/2),

where t j = j�t , �t = 1/n, and g = A f . To simulate noisy data we take ˜A = A + E
and g̃ = g + e, where e and E are a scaled Gaussian random vector and a scaled Gaussian
random matrix, respectively, such that for chosen εA and εg we have ‖E‖2/‖A‖2 = εA and
‖e‖2/‖g‖2 = εg . In this example we take εA = εg = 0.03. GDP-FP is implemented by using
the SVD of A, which means we choose L = I , and PGDP-FP is implemented with complete
reorthogonalization, taking ε = 10−5 and p = 3. To simulate a medium sized problem we
choose n = 1,200.

Figure 3 displays the results obtained with GDP-FP and PGDP-FP, as well as the results
obtained with the L-curve method (LC) [15] which are included here for comparison purposes.
From the results we see that LC may not be a good option in cases where both the matrix A and
the vector b are noise-corrupted, and that the solutions produced by PGDP-FP and by GDP-FP,
respectively, are indistinguishable (albeit slightly oscillating), as seen in Fig. 3 (second row).
We also report important numbers such as the computed regularization parameters, relative
errors associated with each regularized solution, etc., see Table 1. This table shows that
GDP-FP converged in j = 6 iterations and that PGDP-FP spent k = 4 outer iterations, i.e.,
the regularized solution determined with PGDP-FP lives in a Krylov subspace of dimension
k = 4.

We now show that the small oscillations in the regularized solution can be suppressed
provided that a suitable regularization matrix is chosen. To this end we follow [21] and
choose an invertible regularization matrix defined by L = (n+1)

π
T 1/2 with
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Fig. 3 First row (left): solution produced by L-curve. First row (right): Exact solution f (solid line), solution

fλ determined by GDP-FP (dash-dotted line) and solution f (4)
λ determined by PGDP-FP (dotted line). Second

row: relative error in fλ (left) and relative error in f (4)
λ (right)

Table 1 Index j refers to the number of iterates spent by GDP-FP, and index k refers to the dimension of the
Krylov subspace used to approximate λG D P

LC GDP-FP PGDP-FP

λ 0.005457603 0.0303640471 0.0303640471

‖ f − fλ‖/‖ f ‖ 0.1529722780 0.08972004460 0.0897200529

j – 6 –

k – – 4

T =

⎛

⎜

⎜

⎜

⎜

⎝

2 −1

−1
. . .

. . .

. . .
. . . −1
−1 2

⎞

⎟

⎟

⎟

⎟

⎠

. (61)

With this choice of L we transform the general-form Tikhonov problem (3) into a problem
in standard form, as described in Sect. 4.3, and then determine the solution of the transformed
problem via PGDP-FP. The solution f (k)

λ obtained with PGDP-FP is then recovered using
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Fig. 4 f (solid line) and f (5)
λ

(dotted line) with the choice
L = n+1

π T 1/2. In this case we
obtain λ = 0.0096, and
‖ f − f (5)

λ ‖/‖ f ‖2 = 0.0339
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the corresponding back-transformation. Figure 4 displays results for the case n = 1,200 and
εA = εg = 0.003. In this case PGDP-FP performed k = 5 outer iterations. Note that the
choice of L yields a smooth regularized solution.
Example 2:

We now consider the first kind integral equation (60) with the same kernel K (s, t) as in
Example 1 but with the following two choices for f and g

(a) f(t) = t, g(s) = s
6 (s2 − 1).

(b) f(t) = et , g(s) = es + (1− e)s − 1

Although in many problems the matrix L is chosen as a scaled discrete differential operator,
the purpose of the above test problems is to illustrate that such a choice may not be appropriate
if the operator is not properly scaled. To this end we choose again n = 1,200 and use the
same noise level as in the previous example.

For the test problem with f and g defined in (a) we consider one case where L = I and two
additional cases where L �= I . Figure 5 (first row) displays the regularized solutions obtained
with GDP-FP and PGDP-FP for the first case, as well as the relative errors associated with
each solution. In this case both GDP-FP and PGDP-FP are implemented as in Example 1.
The solution produced by PGDP-FP lives in a Krylov subspace of dimension k = 5 and
remains very close to that produced by GDP-FP, as it is clearly visible in Fig. 5, first row
(left). However, the large relative errors in both solutions indicate that the choice L = I is
unsatisfactory and motivates the use of other regularization matrices.

The second part of the example considers two choices for the regularization matrix: L =
n+1
π

T 1/2 as defined in the previous example, and L = L2 where

L2 =
⎛

⎜

⎝

−1 2 −1
. . .

. . .
. . .

−1 2 −1

⎞

⎟

⎠
(62)

is a rectangular matrix of size (n − 2)× n.
For the case where L is invertible we use the extension of GDP-FP to general-form

Tikhonov regularization considered in Example 1, while for the case where L is rectangu-
lar, we use the extension of GDP-FP which performs computations with the ˜A-weighted
pseudoinverse of L , as described in Sect. 4.3, taking advantage of the fact that L has a known
null subspace.

The computed regularized solutions fλ (obtained with the GSVD of the matrix pair (˜A, L))
and corresponding relative errors are displayed in Fig. 5, second row. The solutions obtained
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Fig. 5 First row (left): Exact solution f (solid line), fλ obtained with GDP-FP (dash-dotted line) and f (5)
λ

obtained with PGDP-FP (dotted line). First row (right): relative error in fλ and relative error in f (5)
λ . Second

row (left): f (solid line), fλ for L = n+1
π T 1/2 (dash-dotted line) and fλ for L = L2 (dotted line). Second

row (right): relative errors associated with the solutions obtained with L = n+1
π T 1/2 (dash-dotted line) and

L = L2 (dotted line), respectively

with the projection approach are very similar to those obtained with the GSVD and therefore
are not shown here. Note that the results obtained with L invertible are very similar to those
obtained with L = I (same figure, first row) and therefore of poor quality. This does not
occur with the regularized solution obtained with L = L2 whose quality is apparent.

We now describe results for the test problem with f and g defined in (b). For this problem,
in addition to the choices for L used in the test problem with data in (a), we consider the
choice L = D, where D is a rank-deficient square matrix defined by

D = β(LT
2 L2)

1/4, β > 0, (63)

with scaling factor β = (n + 1)/π . This choice is motivated by a theoretical result by Lu et
al. [21] that, for invertible L, suggests choosing a scaling factor β such that L = βL satisfies
‖L−1‖2 ≤ 1, see Theorem 2.1 in [21], and justifies the choice of the square regularization
matrix L in Example 1 defined via the matrix T 1/2. In order to mimic this result inverse
is replaced by Moore-Penrose pseudo inverse and the scaling factor β is chosen so that
‖D†‖2 ≤ 1. The computed regularized solutions fλ obtained with the GSVD of the matrix
pair (˜A, L) are displayed in Fig. 6. Notice that, contrary to the excellent results obtained
with the regularization matrix L = L2 in Example 1, the results in this case are of poor
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Fig. 6 Exact solution (solid line) and regularized solution fλ obtained with GDP-FP (dash-dotted line). First
row (left): results for L = n+1

π T 1/2. First row (right): results for L = L2. Second row: results for L = D.
For this this example, the computed regularization parameters are λ = 0.00093, 0.00097 and 0.00019, while
the corresponding relative errors are ‖ f − fλ‖2/‖ f ‖2 = 0.3111, 0.6030 and 0.0091, respectively

quality; a similar observation applies to the results obtained with the square and invertible
regularization matrix. On the other hand, notice that the quality of the regularized solution
obtained with L = D is excellent.
Example 3: Inverse scattering

The propagation of time-harmonic acoustic fields in a homogeneous medium, in the pres-
ence of a sound soft obstacle D, is modeled by the exterior boundary value problem (direct
obstacle scattering problem) [8]

⎧

⎨

⎩

�u(x)+ k2u(x) = 0, x ∈ R
2 \ D

u(x)
.= us + ui (x) = 0, x ∈ ∂ D

( ∂us

∂r − ikus) = O( 1
r ), r = |x | → ∞

where k is a real positive wavenumber, ui is an incident wave, and us is the scattered wave
outside D. In addition, us has the following asymptotic behavior

us(x) = u∞(x̂)
eikr

√
r
+ O(r−3/2), (64)

where u∞ is defined on the unit circle � and called the far field-pattern of the scattered wave.
Our interest here is to identify the shape of D from measurements of u∞ by using a variant
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of the linear sampling method (LSM) [9]. The basis of LSM is the far-field equation

(F wz)(x̂) = eiπ/4

√
8πk

e−ik x̂ ·z, x̂ = x/|x |, z ∈ R
2, (65)

where F : L2(�)→ L2(�) is a linear compact operator, the Far-field operator, given by

(F w)(x̂) =
∫

�

u∞(x̂; d̂)w(d̂) ds(d̂), d̂ ∈ �. (66)

LSM is based on the the observation that the solution gz of (65) has a large norm for z outside
and close to ∂ D. Hence, characterizations of D are obtained by plotting the norm ‖wz‖.
However, a difficulty with LSM is that (65) is not always solvable. Kirsch [17] was able to
overcome this difficulty with the introduction of a variant of LSM based on the following
linear equation

(F�F)1/4wz = eiπ/4

√
8πk

e−ik x̂ ·z . (67)

In this variant, the shape of D is characterized analogously as in LSM, i.e., by inspecting for
which z the norm ‖gz‖ is large. In practice, Kirsch’s method deals with a finite dimensional
counterpart of (67) obtained by replacing F for a perturbed finite-dimensional far-field oper-
ator of the form ˜Fd = Fd + E ∈ C

n×n , where n denotes the number of observed incident
waves and the number of outgoing directions, and Fd has singular values decaying quickly to
zero, which means Fd is severely ill-conditioned. Hence, regularization is needed in order to
compute stable approximations to the solution wz of (67). Following [17], we approximate
wz by using a regularized solution wλ,z constructed by the method of Tikhonov:

wλ,z = argmin
w∈Cn

{‖rz − ˜Ad w‖22 + λ2‖w‖22} (68)

where the regularization parameter is chosen by the GDP. Here, rz denotes the discrete right
hand side of (67) and ˜Ad = (˜F∗d ˜F∗d )1/4. Regarding GDP, note that the discrepancy function
in this case becomes

Gz(λ) = ‖˜Ad wλ,z − rz‖22 − δ2
A‖wλ,z‖22,

which, in terms of the SVD of ˜Fd reads

Gz(λ) =
n

∑

i=1

λ4 − δ2
Aσi

(σi + λ2)2 αi (69)

where σi denote the singular values de ˜Fd and αi = |v∗i rz |2, the squared Fourier coefficients
of rz with respect to the singular vectors of ˜Fd .

Summarizing, the characterization of the object can be done as follows:

• For each z in a grid containing the object D, solve the Tikhonov problem (68) with the
regularization parameter being chosen by GDP.
• Characterize the object by using a plot of the map z→ W (z) = 1/‖wλ,z‖22.

To illustrate the efficiency of GDP-FP in this class of problems, we choose a test problem
which has been considered in [3,19]. In this case the object to be characterized is a kite located
in a grid of 50×50 points, the far field matrix ˜Fd is 32×32 (i.e., we use 32 incident observed
directions), and the relative noise level in ˜Fd is 5 % (which implied a relative noise level in ˜Ad
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Fig. 7 Kite and its reconstruction via Kirsch’s method with GDP as parameter choice rule

of approximately 15 %). To simulate perturbed data, we generate Gaussian random matrices
E1, E2 and use a far-field matrix defined by

˜Fd = Fd + δ(E1 + i E2)‖Fd‖2, δ > 0,

for given δ, where Fd is constructed by using the Nyström method [8].
To assess the efficiency of GDP-FP when compared to other method used to solve the

scattering inverse problem, we also compute the regularization parameter by using regula
falsi method as done in [17]. The tolerance parameter for stopping both GDP-FP and regula
falsi is set to ε = 10−5. For this example, the reconstruction obtained with GDP-FP is
about 12 times faster than the one obtained with regula falsi. The profile of the kite and its
reconstructed version are displayed in Fig. 7.

6 Conclusions

We derived a fixed-point algorithm for determining the Tikhonov regularization parameter
chosen by the GDP for discrete ill-posed problems. The algorithm is monotonically and
globally convergent and easy to implement using the GSVD of the coefficient matrix. A
special version of the algorithm based on the Golub-Kahan bidiagonalization procedure, that
is well suited for large-scale problem, is also developed and discussed in detail. The algorithms
are numerically illustrated using three test problems from the Regularization Tools [14] and an
additional test problem from inverse scattering [9]. In addition, the issue of selecting a proper
scaling in connection with discrete differential operators was also illustrated. The numerical
results indicate that the algorithms are quite fast and therefore promising for discrete ill-posed
problems with noisy operator and noisy data.
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