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1. Introduction

Many applications from science and engineering require the solution of optimization problems for which the objec-
tive function has to satisfy a number of constraints imposed by physical reasons. A great deal of work has been done on 
algorithms which generate sequences of iterates (feasible or not) hopefully approximating an optimal solution to the op-
timization problem. Global optima are hard to obtain in general (except in special cases, such as convex programming or 
some restricted least square problems). Hence, instead of looking for global optimization algorithms, one very often devel-
ops algorithms capable of generating sequences converging to local minima (or even to stationary points). In this paper, we 
propose a non-monotone globally convergent algorithm for solving the problem,

minimize f (x)
s.t. x ∈ �,

(1)

where � ⊆ R
n is a closed set and the objective function f : Rn → R is continuously differentiable on some open con-

vex set �̂ ⊇ �. Usually, � is characterized by equality and inequality constraints of the form � = {x ∈ R
n | hi(x) = 0, i =

1, . . . , m and c j(x) ≤ 0, j = 1, . . . , p} where hi , ci are differentiable functions in Rn .
Non-monotone optimization schemes are interesting as they allow the iterates to jump through several basins of attrac-

tion, so that this class of methods is meaningful in problems with local minima lying in a narrow valley and consequently 
with a higher expectation for attaining a global minimum. Furthermore, since non-monotone conditions are less restrictive 
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in the step length than the monotone ones, these methods are interesting to globalize optimization methods with fast local 
convergence [6,19,26,34].

As for the algorithm proposed in this work, given a current point xk ∈ �, a proper ρk > 0 and symmetric matrices Ak, Bk
(with Ak symmetric positive definite), we minimize the quadratic model Q k(x) ≡ 〈∇ f (xk), x − xk〉 + 1/2(x − xk)

T (Bk +
ρk Ak)(x − xk) over the subset � and then take the computed minimizer as the next iterate xk+1, i.e., the point xk+1 is 
computed by solving the subproblem

minimize Q k(x) ≡ ∇ f (xk)
T (x − xk) + 1

2 (x − xk)
T (Bk + ρk Ak)(x − xk)

s.t. x ∈ �.
(2)

In this formulation, ρk acts like a regularization parameter, that is, it controls the stepsize, and so it plays a crucial role 
in the convergence of the generated sequence: if ρk is too large it can lead to slow convergence, whereas ρk too small 
can result in divergence. Therefore, it is convenient to choose ρk small enough when xk is close to the solution in a 
way that Q k of (2) is a more reliable quadratic model for f around xk . In such a case, the local convergence can be 
accelerated with a suitable choice for Bk (e.g., Bk ≈ ∇2 f (xk)). In our algorithm, this trade-off is adjusted gradually in such 
a way that convergence to a stationary point is always guaranteed. Recently, several papers have appeared highlighting the 
effectiveness of non-monotone sufficient decrease conditions [6,9,10,12,13,18,19,28–31,34,37]. Essentially, most of them are 
concerned with the scheme devised in [18] or the one proposed in [35], both for unconstrained optimization. In this paper, 
we gradually increase ρk in order to satisfy the non-monotone sufficient decrease condition of [35] and, because the iterate 
xk+1 is computed by solving problem (2), the proposed algorithm can be regarded as a variation of that described in [12]
where the authors used a non-monotone scheme of Grippo et al. [18] to obtain global convergence. Furthermore, when 
Ak = I , subproblem (2) is equivalent to

minimize ∇ f (xk)
T (x − xk) + 1

2 (x − xk)
T Bk(x − xk)

s.t. x ∈ � and ‖x − xk‖ ≤ �k,
(3)

for a proper �k depending on ρk (in fact, �k = ‖x∗(ρk) − xk‖ wherein x∗(ρk) is a solution of (2)). In addition, ρk → ∞ in 
subproblem (2) is equivalent to �k → 0 in (3). Therefore, our algorithm can be seen as a variation of Algorithm 2.1 devised 
in [22] for solving (1).

It is worth remarking that when ρk is sufficiently large so that (Bk + ρk Ak) is symmetric positive definite, problem (2)
can be rewritten as a constrained least squares problem:

min‖G T
k x − (G T

k xk − G−1
k ∇ f (xk))‖2

2 subject to x ∈ �, (4)

where GkG T
k is the Cholesky factorization of (Bk + ρk Ak). Therefore, our method becomes more attractive whenever (4) is 

easy to solve. As examples of such problems we cite the linearly constrained minimization problem, minimization over the 
symmetric matrices set [20] as well as minimization under orthogonality constraints [7,8,23,25,32,33,36].

To illustrate how this new algorithm can be employed, we propose a particular version of it that is well suited for 
solving large-scale orthogonal Procrustes problems (OPP). Given A ∈ R

m×m and B ∈ R
m×p , the OPP consists of finding a 

matrix X ∈ R
m×q with orthogonal columns such that the residual ‖A X − B‖2

F is minimum. When m = p this problem has 
a closed-form solution obtained from the singular value decomposition (SVD) of the matrix AT B [14]. The case is different 
when p < m because we do not know the solution in closed form or because the objective function may have several local 
minima. Existing algorithms for these problems are iterative and require a sequence of SVD computations of m ×q matrices, 
which can be prohibitive when m is large [1,12,36]. To circumvent possible difficulties with SVD computations in large-scale 
problems, we follow well known strategies for solving linear systems with multiple right-hand sides [21] which exploit 
the approximation properties of the block Lanczos bidiagonalization process. The basic idea of this approach is to project 
the OPP onto a Krylov subspace of small (but increasing) dimension, generated by the block Lanczos bidiagonalization 
process [14,21]. Proceeding this way the large-scale problem is transformed into a computationally much more tractable 
problem involving matrices of order kp × p, k ∈ {1, 2, . . .}. Numerical examples will illustrate that good approximate solutions 
to the OPP are obtained with fairly small k.

Our paper is organized as follows: In Section 2 we describe our algorithm. The theoretical analysis of the algorithm is 
addressed in Section 3. More precisely, we give a global convergence proof, that is, we prove that sequence {xk} converges to 
stationary points irrespective of the initial guess taken. Numerical results on nonlinear optimization problems involving lin-
ear constraints are presented in Section 4. Further, a numerical scheme to solve large-scale Orthogonal Procrustes Problems 
based on our algorithm is also presented. The article ends with some conclusions in Section 5.

We finish this section with the notation used throughout the paper. The gradient ∇ f will be denoted by g . C1[a, b] is the 
set of continuously differentiable functions in [a, b]. N = {0, 1, 2, . . .}. Let K ⊆ N be an infinite subset of N. K1⊆∞K means 
that K1 is an infinite set as well. Further, if {xk}k∈K1 is an infinite sequence, limk∈K1 xk denotes limk→∞ xk restricted to k ∈
K1. ‖ · ‖ denotes the euclidean norm in Rn , 〈·, ·〉 the euclidean inner product and ‖ · ‖F the Frobenius norm in Rm×n . Given 
A ∈ R

n×n , Tr(A) means the trace of matrix A and diag(A) ∈ R
n means its diagonal. Let us define Sn = {A ∈ R

n×n | AT = A}
and S+

n = {A ∈ Sn | xT Ax > 0 for all x ∈ R
n}, that is, the subset of symmetric and symmetric positive definite matrices, 

respectively.
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2. Model algorithm

In this section, the main steps of our model algorithm are presented. As previously mentioned in the introduction, we 
incorporate a non-monotone scheme due to Zhang and Hager [35]. To summarize, by starting with an initial guess x0, 
C0 = f (x0), q0 = 1, ηk ∈ [ηmin, ηmax] ⊆ [0, 1] and δ ∈ (0, 1), our algorithm generates a sequence {xk} such that

f (xk+1) ≤ Ck + δ�k(xk+1) (5)

where

�k(x) = g(xk)
T (x − xk) + 1

2
(x − xk)

T B(x − xk), (6)

for a proper matrix B ∈ Sn , and Ck being updated as

Ck+1 = ηkqkCk + f (xk+1)

qk+1
, (7)

with

qk+1 = ηkqk + 1. (8)

Thus the algorithm proposed in this work corresponds to a variation of an algorithm by Francisco and Bazán [12], who 
use the non-monotone scheme of Grippo et al. [18]. In that case, a starting parameter M ∈ N is chosen and a sequence 
m(k) is updated such that 0 ≤ m(k) ≤ min{m(k − 1) + 1, M}, for every k ≥ 1 (with m(0) = 0). Finally, instead of (7), Ck =
max{ f (xk− j) | j ∈ {0, 1, . . . , m(k)}} in equation (5). We will show in Section 4 a brief comparison of both strategies through 
a performance profile.

Taking the aforementioned facts into account, the algorithm proposed in this work can be established as follows:

Algorithm 1. Initialization: Choose x0 ∈ �, μ ∈ (0, 1], δ ∈ (0, 1), 0 < ρa ≤ ρb < +∞, 1 < ζ1 ≤ ζ2 < +∞, 0 ≤ ηmin ≤ ηmax ≤ 1
and η0 ∈ [ηmin, ηmax]. Set q0 ← 1, C0 ← f (x0) and k ← 0.

Step 1. Compute g(xk), Ck according to (7) and set ρ ∈ [ρa, +∞).
Step 2. Pick A ∈ S

+
n . If ρ < ρb , pick B ∈ Sn , otherwise, pick B = ρ I .

Step 3. Define

Q k(x) = g(xk)
T (x − xk) + 1

2
(x − xk)

T (B + ρ A)(x − xk) (9)

and let x̄k be the global solution of

minimize Q k(x)
s.t. x ∈ �.

(10)

Step 4. Compute x+
k ∈ � such that

Q k(x+
k ) ≤ μQ k(x̄k). (11)

If Q k(x+
k ) = 0, terminate the execution declaring xk as a stationary point of (1).

Step 5. Define �k(x) as (6).
If

f (x+
k ) ≤ Ck + δ�k(x+

k ), (12)

define ρk = ρ , xk+1 = x+
k , Ak = A, Bk = B , choose ηk ∈ [ηmin, ηmax], set k ← k + 1 and go back to Step 1.

Else, choose ρnew ∈ [ζ1ρ, ζ2ρ], set ρ = ρnew and go back to Step 2.

Notice that μ = 1 means that x+
k ∈ � computed at Step 4 is the exact solution of subproblem (10). Notice also that such 

x+
k becomes an inexact solution whenever μ ∈ (0, 1): the closer μ is to 0 the more inexact x+

k is. The possibility μ ∈ (0, 1)

is suitable when subproblem (10) is hard or computationally expensive. With respect to Step 4, if Q k(x+
k ) = 0 it follows that 

Q k(x̄k) = 0 = Q k(xk) and so xk is a solution of (10) as well. Therefore, since ∇ Q k(xk) = ∇ f (xk), xk is a stationary point in 
the sense of Bouligand cones (or even as mentioned in [12, Definition 1]); in other words, we have that 〈∇ f (xk), d〉 ≥ 0 for 
all d ∈ B�(xk), wherein B�(xk) denotes the Bouligand cone of � in xk (see [27] for further details).
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3. Convergence analysis

Let the subsets of matrices chosen at Step 2 of Algorithm 1 be denoted by B = {B} ⊆ Sn and A+ = {A} ⊆ S
+
n . Our 

convergence analysis relies on the following assumptions:

A1. �0 = {x ∈ � | f (x) ≤ f (x0)} is a bounded subset.
A2. The subsets of matrices B and A+ are uniformly bounded, that is, there exists M̃ ≥ 0 such that ‖B‖F ≤ M̃ and 

‖A‖F ≤ M̃ for all matrices B and A chosen at Step 2.
A3. There exists γ > 0 such that xT Ax ≥ γ ‖x‖2 for all A ∈A

+ and x ∈ R
n .

A4. We assume that the gradient of f is Lipschitz continuous in �̂. In other words, there exists L f ∈R such that

‖g(y) − g(x)‖ ≤ L f ‖y − x‖, (13)

for all x, y ∈ �̂ ⊇ �.

Inequality (13) is met in a wide class of applications, e.g. when f has Hessian bounded in some norm or it is a twice 
continuously differentiable function in some compact set containing �̂ . For later use, we notice that

| f (y) − f (x) − 〈g(x), y − x〉| =
∣∣∣∣∣∣

1∫
0

〈g(x + t(y − x)) − g(x), y − x〉dt

∣∣∣∣∣∣ ≤ L f

2
‖y − x‖2,

for all x, y ∈ �̂, that is,

f (y) ≤ f (x) + 〈g(x), y − x〉 + L f

2
‖y − x‖2, (14)

for all x, y ∈ �̂. Assumption A1 is often assumed in minimization algorithms; it ensures that {xk} has at least one 
accumulation point. Assumption A2 is essential to maintain the stability of the iterates. Assumption A3 ensures that 
(ρ/2)(x − xk)

T A(x − xk) in (9) is a regularization term whose role is similar to the trust region in the trust-region like 
algorithms. Note that both A2 and A3 are user-controlled assumptions.

The next Lemma shows that Algorithm 1 is in fact non-monotone and {Ck}k∈N is a decreasing sequence. These properties 
will be essential to prove the main results of this section.

Lemma 1. For k ≥ 0 let xk+1 ∈ � be generated by Algorithm 1 and suppose that Ck+1 is updated according to (7) and (8). Then, 
f (xk+1) ≤ Ck+1 ≤ Ck.

Proof. Notice that

Q k(xk+1) = �k(xk+1) + (ρk/2)(xk+1 − xk)
T Ak(xk+1 − xk) < 0.

This and Assumption A3 imply �k(xk+1) ≤ −(ρkγ )/2‖xk+1 − xk‖2. By using this inequality in (5) we have that f (xk+1) ≤
Ck − (δρkγ )/2‖xk+1 − xk‖2. Thus, since qk ≥ 1 for all k, from (7),

Ck+1 ≤ Ck − δρkγ

2qk+1
‖xk+1 − xk‖2 < Ck. (15)

Now (7) and (8) imply f (xk+1) − Ck+1 = ηkqk(Ck+1 − Ck) ≤ 0. Therefore f (xk+1) ≤ Ck+1 ≤ Ck . �
Our following result shows that the loop defined from Step 2 to Step 5 in Algorithm 1 finishes after a finite number of 

cycles.

Lemma 2. Algorithm 1 is well defined.

Proof. Suppose xk ∈ � is not a stationary point. We will prove that condition (12) is fulfilled for all ρ ≥ max{ρb, L f }. To this 
end note that �k(x) = 〈g(xk), x − xk〉 + ρ/2‖x − xk‖2 for all ρ ≥ ρb . Then, for ρ ≥ max{ρb, L f } we have from (14) that

f (y) ≤ f (xk) + 〈g(xk), y − xk〉 + ρ

2
‖y − xk‖2 = f (xk) + �k(y)

for all y ∈ �. Then, since inequality Q k(x+
k ) ≤ μQ k(x̄k) < 0 always holds true, it follows that �k(x+

k ) < 0. Therefore, since 
f (xk) ≤ Ck (by Lemma 1 and the fact that C0 = f (x0)), we have that x+

k ∈ � computed at Step 4 fulfills

f (x+
k ) ≤ Ck + δ�k(x+

k ),

for all ρ ≥ max{ρb, L f }. �



J.B. Francisco et al. / Applied Numerical Mathematics 112 (2017) 51–64 55
The next technical results are essential to prove global convergence to stationary points. First, it is worth noting that 
sequence {xk} can be assumed to be infinite, otherwise, we would have that �(x+

k ) = 0 for some k and, since ∇�(xk) =
∇ f (xk), xk would be a stationary point.

Lemma 3. Sequence {ρk}k is bounded.

Proof. By contradiction, let us suppose that there exists N1⊆∞
N such that limk∈N1 ρk = ∞. Then, for every k ∈ N1, there 

exists ρ̄k ∈ [ρk/ζ2, ρk/ζ1] and x+
k ∈ � such that f (x+

k ) > Ck + δ�k(x+
k ). Since limk∈N1 ρ̄k = ∞ and �k(x+

k ) < 0, there exists 
k0 ∈ N1 such that ρ̄k ≥ max{ρb, L f }, B = ρ̄k I at Step 2 and consequently, from Lemma 1, f (x+

k ) > f (xk) + g(xk)
T (x+

k − xk) +
(ρ̄k/2)‖x+

k − xk‖2 for all k ≥ k0, which is in contradiction with (14). �
Lemma 4. Sequence {xk}k∈N ⊂ �0 .

Proof. Since C0 = f (x0), the proof follows straightforwardly from Lemma 1. �
Lemma 5. {Ck}k∈N is convergent.

Proof. From Lemma 4 and from the continuity of f , we have that { f (xk)} is bounded from below. From Lemma 1 we have 
that {Ck}k∈N is non-increasing and bounded from below and therefore convergent. �
Lemma 6. Let {xk}k∈N be a sequence generated by Algorithm 1. Then

(i) lim
k→∞

‖xk+1 − xk‖ = 0 if ηmax < 1;

(ii) lim
k→∞

f (xk) = lim
k→∞

Ck if ηmax < 1;

(iii) lim sup
k→∞

( f (xk+1) − Ck+1) = lim sup
k→∞

�k(xk+1) = 0 if ηmax = 1.

Proof. We note from (8) that

qk = 1 +
k∑

i=1

i∏
j=1

ηk− j

for all k ≥ 1. Hence we have that

1

1 − ηmin
≤ qk ≤ min

{
1 + k,

1

1 − ηmax

}
(16)

for all k ∈N (here 1/(1 − ηmax) = ∞ if ηmax = 1). Now, since by assumption ηmax < 1, from (15) and Lemma 5 we have that 
limk→∞ ‖xk+1 − xk‖ = 0 and thus (i) is proved.

On the other hand, from (5), (7) and (8), it follows that

ηmaxqk(Ck+1 − Ck) ≤ f (xk+1) − Ck+1 ≤ ηminqk(Ck+1 − Ck). (17)

Then, by supposing that ηmax < 1 and by (16) and (17), we obtain that

ηmax

1 − ηmax
(Ck+1 − Ck) ≤ f (xk+1) − Ck+1 ≤ ηmin

1 − ηmin
(Ck+1 − Ck),

and (ii) follows from Lemma 5. Also, since f (xk+1) ≤ Ck+1 for all k ∈ N (see Lemma 1), by Lemma 5 and (17) it turns out 
that

−∞ <

∞∑
k=0

f (xk+1) − Ck+1

qk
≤ 0.

Analogously, we prove from (5), (7) and (8) that

−∞ < δ

∞∑
k=0

�k(xk+1)

qk+1
≤ 0.

Thus, since qk ≤ k + 1 for all k (see (16)), it follows that

lim sup
k→∞

( f (xk+1) − Ck+1) = lim sup
k→∞

�k(xk+1) = 0,

which concludes the proof. �
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Remark 1. It is worth mentioning that Lemma 4 and Assumption A1 imply that {xk}k∈N has at least one limit point. In 
addition, if the number of limit points is finite, from Lemma 6-(i) and by a similar proof as given in [24, p. 476], we can 
show that {xk}k∈N is a convergent sequence.

The main theoretical result of the section assures that Algorithm 1 is globally convergent when ηmax < 1.

Theorem 7. Suppose that ηmax < 1. Then all accumulation points of {xk}k∈N are stationary points of problem (1). Furthermore, if f
has a finite number of stationary points in �0, then {xk} is convergent.

Proof. Let x∗ be an accumulation point of {xk} and consider N1⊆∞
N such that limk∈N1 xk = x∗ . From Assumption A2 it 

follows that there exist N2⊆∞N1 and Ā, B̄ ∈ Sn such that limk∈N2 Bk = B̄ and limk∈N2 Ak = Ā. Also, from Lemma 3 there 
exists ρ̄ such that ρk ≤ ρ̄ for all k ∈ N. Now, define Q 
(x) = ∇ f (x∗)T (x − x∗) + (1/2)(x − x∗)T (B̄ + ρ̄ Ā)(x − x∗) and let x̄ ∈ �

be a solution of

minimize Q 
(x)
s.t. x ∈ �.

(18)

Since f (xk+1) ≤ Ck + δ�k(xk+1) and ηmax < 1, Lemma 6-(ii) implies that limk∈N2 �k(xk+1) = 0. Thus, since �k(xk+1) ≤
Q k(xk+1) ≤ 0, it follows that

lim
k∈N2

Q k(xk+1) = 0.

Now, from the continuity of ∇ f , note that

0 ≥ μQ 
(x̄) ≥ lim
k∈N2

μ
[
∇ f (xk)

T (x̄ − xk) + (1/2)(x̄ − xk)
T (Bk + ρk Ak)(x̄ − xk)

]
≥ lim

k∈N2

Q k(xk+1) = 0,

that is, x∗ is also a solution of (18) and so it is a stationary point of (1) (in the sense of Bouligand cones). The second part 
of the theorem follows straightforwardly from Remark 1. �
Remark 2. Some comments concerning the case when ηmax = 1 are in order. By Lemma 6-(iii), we have that there exists 
N̄⊆∞

N such that limk∈N̄ �k(xk+1) = 0. Therefore, by a similar proof given in Theorem 7 we can prove that all accumulation 
points of {xk}k∈N̄ are stationary for (1). In other words, sequence {xk}k∈N̄ has at least one limit point that is a stationary 
point.

Remark 3. If x+
k (computed at Step 4 of Algorithm 1) is not in �0 defined in Assumption A1, from Lemma 1 we have that 

Ck ≤ C0 = f (x0) and thus certainly this point will not satisfy the non-monotone sufficient decrease condition (12). Hence, 
instead of set x+

k ∈ � at Step 4, we can set x+
k ∈ �0 and, consequently, without affecting the theoretical results of this 

section, Assumption A4 can be replaced by ∇ f being Lipschitz continuous in some open set containing �0; this can be of 
interest in certain problems where Assumption A4 holds true only in an open subset containing �0.

4. Numerical experiments

This section is divided into two parts. In the first part we consider a specialized version of Algorithm 1 that is well 
suited for solving minimization problems with linear constraints and apply it to a number of test problems taken from the 
CUTEst test collection [16]. The second part concerns a numerical method for large scale orthogonal Procrustes problem 
based on a combination of the above mentioned specialized version of Algorithm 1 and the block Lanczos bidiagonalization 
scheme [14,21].

Regarding the algorithm in the first part, we adopt a special choice for A and B as multiples of the identity matrix. 
This choice is based on experiments highlighting the behavior of the Barzilai–Borwein scheme [4] when combined with 
non-monotone line search techniques. As a result we obtain a non-monotone spectral projected gradient (NSPG) version to 
minimize continuous differentiable functions on arbitrary closed sets. For description purposes, let us define

σk =
⎧⎨
⎩

(g(xk) − g(xk−1))
T (xk − xk−1)

‖xk − xk−1‖2
, if k �= 0,

1, if k = 0.

(19)

So by setting B = (σk/2)I and A = I at Step 2 of Algorithm 1, the following scheme is established.

Algorithm 2 (Non-monotone Spectral Projected Gradient version). Choose x0 ∈ �, δ ∈ (0, 1), 0 < ρa ≤ ρb < +∞ and 1 < ζ1 ≤
ζ2 < +∞. Set q0 ← 1, C0 ← f (x0) and k ← 0.
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Fig. 1. Performance profiles in terms of number of iterations for the methods implemented, including the monotone, non-monotone following Grippo et al., 
and our strategy for varying values of ηk .

Step 1. Compute g(xk), Ck as (7), σk as (19) and set ρ = max{min{σk/2, ρb}, ρa}.

Step 2. Define wk = xk − 2

σk + 2ρ
g(xk) and let x+

k be the global solution of

minimize 1
2 ‖x − wk‖2

s.t. x ∈ �.
(20)

If ‖x+
k − wk‖2 = 2‖g(xk)‖2/(σk + 2ρ)2, terminate the execution declaring xk as a stationary point of (1).

Step 3. If

f (x+
k ) ≤ Ck + δ

(
g(xk)

T (x+
k − xk) + (σk/4)‖x+

k − xk‖2
)

, (21)

define ρk = ρ , xk+1 = x+
k , set k ← k + 1 and go back to Step 1. Else, choose ρnew ∈ [ζ1ρ, ζ2ρ], set ρ = ρnew and go 

back to Step 2.

In our numerical experiments with Algorithm 2 we consider a subset of the CUTEst test collection containing 127 prob-
lems with linear constraints. Most of the problems have quadratic objective functions, except for 28, which have general 
objective functions. Since our algorithm requires an initial feasible point, we chose not to include in our results problems 
which did not converge due to infeasible initial points; in these cases, all variants tested presented the same behavior. We 
also excluded from our experiments problems where the number of constraints and the number of variables was too large 
(n + m > 10000). For the quadratic subproblem, the solver can be chosen by the user, as our convergence theory accepts 
approximate solutions for the subproblem and this should not change the behavior of the method.

Our implementation was done in Fortran 2008, and our tests were run in a PC with a quad-core 3.30 GHz processor 
and 4 GB of RAM. The subproblems were solved using the QPC solver which is part of the GALAHAD package [15], with 
default parameters. We set a tolerance of ε = 10−5 for our criticality measure, and we chose δ = 0.1, ρa = 0.5, ρb = 105, 
ζ1 = ζ2 = 5, ηmin = 0 and ηmax = 0.9.

The problems, as well as their corresponding dimensions, are listed in Table 1.
The complete results for various ηk values are displayed in Table 2. For comparison, we also list results obtained with 

ηk = 0 for all k (which corresponds to a monotone method) as well as the number of iterations and the computational time 
in seconds (in parentheses) required to achieve convergence (denoted by CPU Time).

In our implementation, we have taken advantage of the flexibility allowed in the convergence theory and tested both 
constant and varying values of ηk . In the varying case, we have chosen to start with a value closer to one and gradually 
reduce the value of ηk as we approached the solution; this strategy has been described in [35], and appears to perform 
reasonably well in practice. Results obtained with this strategy are labeled as etavar. In our case we choose η0 = 0.9 and 
take ηk+1 = 0.9ηk at each successful iteration.

Figs. 1(a) and 1(b) show the performance profiles of two sets of tests; for details concerning performance profiles the 
reader is referred to [11]. Fig. 1(a) shows a comparison of the performance of the monotone method and the non-monotone 
one (with etavar parameter choice), denoted by new. Further, for the sake of comparison, we replace the non-monotone 
strategy of [35] with that described in [18] and we denoted its performance with GLL. Fig. 1(b) displays results obtained 
with the new strategy for different values of ηk .
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Table 1
Problems where Algorithm 2 was tested.

Problem name Number of 
variables

Number of 
constraints

A0NSDSDS 6012 2004
A5NSDSDM 6012 2004
A5NSSNSM 6012 2004
ALLINQP 100 50
AUG2DQP 24 9
AUG2D 24 9
AUG3DCQP 7463 2000
AUG3DC 3873 1000
AUG3DQP 156 27
AUG3D 904 180
AVGASA 8 10
AVGASB 8 10
BLOCKQP1 25 11
BLOCKQP2 25 11
BLOCKQP3 2005 1001
BLOCKQP4 2005 1001
BLOCKQP5 2005 1001
BT3 5 3
CB 11163 244
CVXQP1 1000 500
CVXQP2 1000 250
CVXQP3 10 6
DALE 16514 405
DEGENQPC 50 125025
DEGENQP 50 19625
DEGTRIDL 1001 1
DTOC1L 5998 3996
DUAL1 85 1
DUAL2 96 1
DUAL3 111 1
DUAL4 75 1
DUALC1 9 215
DUALC2 7 229
DUALC5 8 278
DUALC8 8 503
EXPFITA 5 22
EXPFITB 5 102
EXPFITC 5 502
FCCU 19 8
GENHS28 10 8
GMNCASE2 175 1050
GOULDQP1 32 17
GOULDQP3 699 349
HATFLDH 4 7
HIER13 2020 3313
HONG 4 1
HS105 8 1
HS112 10 3
HS118 15 17
HS21 2 1
HS24 2 3
HS28 3 1
HS35 3 1
HS35MOD 3 1
HS36 3 1
HS37 3 2
HS41 4 1
HS44NEW 4 6
HS44 4 6
HS48 5 2
HS49 5 2
HS51 5 3

Problem name Number of 
variables

Number of 
constraints

HS52 5 3
HS53 5 3
HS55 6 6
HS62 3 1
HS76 4 3
HS86 5 10
HS9 2 1
HUBFIT 2 1
KSIP 20 1001
LEUVEN7 300 946
LISWET10 403 400
LISWET11 2002 2000
LISWET12 103 100
LISWET1 103 100
LISWET2 2002 2000
LISWET3 2002 2000
LISWET4 2002 2000
LISWET5 2002 2000
LISWET6 2002 2000
LISWET7 2002 2000
LISWET8 2002 2000
LISWET9 103 100
LOTSCHD 12 7
LSQFIT 2 1
MOSARQP1 2500 700
MOSARQP2 900 600
NCVXQP1 50 25
NCVXQP2 50 25
NCVXQP3 100 50
NCVXQP4 100 25
NCVXQP5 50 12
NCVXQP6 100 25
NCVXQP7 50 36
NCVXQP8 100 75
NCVXQP9 50 36
OSORIO 10201 202
PORTFL1 12 1
PORTFL2 12 1
PORTFL3 12 1
PORTFL4 12 1
PORTFL6 12 1
PORTSNQP 1000 2
PORTSQP 1000 1
POWELL20 10 10
PRIMAL1 325 85
PRIMAL2 649 96
PRIMAL3 745 111
PRIMAL4 1489 75
PRIMALC5 287 8
QPCBOEI1 384 351
QPNBAND 10000 5000
RDW2D52U 18 1
SOSQP2 20 11
STCQP1 4097 2052
STCQP2 4097 2052
STNQP1 4097 2052
STNQP2 4097 2052
TABLE7 624 17
TABLE8 1271 72
TARGU 162 63
TFI3 3 101
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Table 2
Results comparing the monotone and non-monotone algorithms.

Problem n. iterations (CPU time)

η = 0 η = 0.1 η = 0.5 η = 0.9 etavar

A0NSDSDS 23(16.32) 23(16.34) 23(16.34) 23(16.36) 14(16.38)
A5NSDSDM 23(16.38) 23(16.39) 23(16.50) 23(16.52) 14(16.54)
A5NSSNSM 23(16.46) 23(16.48) 23(16.46) 23(16.44) 14(16.56)
ALLINQP 267(0.34) 266(0.33) 187(0.34) 105(0.18) 160(0.45)
AUG2DQP 9(0.01) 9(0.01) 9(0.01) 9(0.01) 9(0.01)
AUG2D 12(0.01) 12(0.01) 12(0.01) 12(0.01) 12(0.01)
AUG3DCQP 1(0.27) 1(0.27) 1(0.27) 1(0.27) 1(0.27)
AUG3DC 1(0.02) 1(0.02) 1(0.02) 1(0.02) 1(0.02)
AUG3DQP 7(0.02) 7(0.02) 7(0.02) 7(0.02) 7(0.02)
AUG3D 11(0.02) 11(0.02) 11(0.02) 11(0.02) 11(0.02)
AVGASA 4(0.00) 8(0.01) 8(0.01) 8(0.01) 6(0.01)
AVGASB 4(0.00) 8(0.01) 8(0.01) 8(0.01) 6(0.01)
BLOCKQP1 4(0.00) 4(0.00) 4(0.00) 11(0.01) 1(0.01)
BLOCKQP2 3(0.00) 3(0.00) 3(0.00) 3(0.00) 3(0.01)
BLOCKQP3 8(0.32) 8(0.32) 8(0.31) 8(0.32) 8(0.31)
BLOCKQP4 10(0.40) 10(0.41) 10(0.40) 10(0.40) 10(0.42)
BLOCKQP5 8(0.26) 8(0.26) 8(0.26) 8(0.27) 8(0.26)
BT3 7(0.01) 7(0.01) 7(0.00) 7(0.00) 7(0.00)
CB 36(18.12) 17(16.17) 17(16.13) 17(16.11) 27(16.17)
CVXQP1 41(2.65) 41(2.61) 72(9.57) 72(9.58) 42(9.52)
CVXQP2 115(3.48) 111(3.36) 54(0.71) 54(0.70) 38(0.71)
CVXQP3 3(0.00) 10(0.01) 10(0.01) 10(0.01) 8(0.01)
DALE 27(14.20) 13(10.77) 13(10.78) 13(10.79) 10(10.83)
DEGENQPC 2(1.74) 2(1.76) 2(1.74) 2(1.73) 2(1.73)
DEGENQP 2(10.13) 2(10.16) 2(9.93) 2(9.95) 2(10.15)
DEGTRIDL 21(0.08) 21(0.07) 21(0.08) 21(0.07) 21(0.08)
DTOC1L 19(2.17) 19(2.13) 19(2.13) 19(2.16) 19(2.15)
DUAL1 70(0.08) 67(0.09) 10(0.01) 10(0.01) 64(0.01)
DUAL2 52(0.07) 40(0.07) 9(0.01) 9(0.01) 35(0.01)
DUAL3 65(0.10) 58(0.09) 10(0.02) 10(0.02) 47(0.02)
DUAL4 33(0.03) 32(0.03) 11(0.02) 11(0.02) 20(0.02)
DUALC1 84(0.67) 36(0.30) 56(0.24) 56(0.24) 40(0.23)
DUALC2 5(0.03) 18(0.07) 28(0.10) 55(0.18) 14(0.14)
DUALC5 20(0.07) 20(0.07) 25(0.10) 42(0.16) 18(0.16)
DUALC8 23(0.24) 26(0.28) 56(0.40) 56(0.41) 39(0.41)
EXPFITA 497(0.42) 497(0.44) 497(0.42) 497(0.43) 497(0.42)
EXPFITB 268(1.56) 268(1.57) 268(1.57) 268(1.57) 268(1.53)
EXPFITC 106(1.04) 106(1.04) 106(1.04) 106(1.05) 106(1.04)
FCCU 11(0.01) 11(0.01) 11(0.01) 11(0.01) 11(0.01)
GENHS28 12(0.01) 12(0.01) 12(0.01) 12(0.01) 11(0.01)
GMNCASE2 26(2.79) 30(4.07) 24(3.30) 26(2.80) 34(4.44)
GOULDQP1 30(0.03) 30(0.03) 30(0.03) 30(0.03) 30(0.03)
GOULDQP3 5(0.12) 5(0.12) 5(0.12) 5(0.12) 5(0.12)
HATFLDH 1(0.00) 1(0.01) 1(0.00) 1(0.00) 1(0.00)
HIER13 10(7.12) 36(20.21) 95(49.52) 405(198.68) 52(63.06)
HONG 8(0.01) 8(0.01) 8(0.01) 8(0.01) 8(0.01)
HS105 113(0.08) 38(0.05) 58(0.07) 57(0.05) 62(0.08)
HS112 171(0.11) 41(0.04) 109(0.09) 153(0.10) 83(0.09)
HS118 433(0.31) 433(0.30) 433(0.31) 433(0.30) 433(0.31)
HS21 35(0.02) 34(0.02) 35(0.02) 35(0.02) 34(0.02)
HS24 6(0.01) 6(0.01) 6(0.01) 6(0.00) 6(0.00)
HS28 14(0.01) 14(0.01) 14(0.01) 14(0.01) 13(0.01)
HS35 10(0.01) 9(0.01) 10(0.01) 10(0.01) 10(0.01)
HS35MOD 9(0.01) 10(0.01) 9(0.01) 9(0.01) 9(0.01)
HS36 1(0.00) 1(0.00) 1(0.00) 1(0.00) 1(0.00)
HS37 6(0.01) 6(0.01) 6(0.01) 6(0.01) 6(0.01)
HS41 1(0.00) 1(0.00) 1(0.00) 1(0.00) 1(0.00)
HS44NEW 3(0.00) 3(0.00) 3(0.00) 3(0.01) 3(0.00)
HS44 4(0.00) 4(0.01) 4(0.00) 4(0.01) 4(0.00)
HS48 7(0.01) 7(0.00) 7(0.01) 7(0.00) 7(0.01)
HS49 42(0.02) 72(0.04) 50(0.03) 42(0.02) 60(0.04)
HS50 13(0.01) 13(0.01) 13(0.01) 13(0.01) 13(0.01)
HS51 5(0.00) 5(0.00) 5(0.00) 5(0.00) 5(0.01)
HS52 4(0.01) 4(0.00) 4(0.00) 4(0.00) 4(0.00)
HS53 4(0.00) 4(0.00) 4(0.00) 4(0.00) 4(0.01)
HS55 3(0.00) 3(0.00) 3(0.00) 3(0.00) 3(0.00)
HS62 44(0.03) 83(0.07) 54(0.04) 62(0.04) 81(0.07)

(continued on next page)
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Table 2 (continued)

Problem n. iterations (CPU time)

η = 0 η = 0.1 η = 0.5 η = 0.9 etavar

HS76 6(0.01) 6(0.01) 6(0.01) 6(0.01) 6(0.01)
HS86 10(0.01) 10(0.01) 10(0.01) 10(0.01) 10(0.01)
HS9 51(0.03) 51(0.03) 51(0.03) 51(0.03) 51(0.03)
HUBFIT 9(0.01) 9(0.01) 9(0.01) 9(0.00) 9(0.01)
KSIP 1(0.54) 1(0.56) 1(0.53) 1(0.54) 1(0.53)
LEUVEN7 1(5.67) 594(408.90) 422(266.06) 1(5.63) 1(5.69)
LISWET10 1(0.06) 1(0.06) 1(0.06) 1(0.06) 1(0.06)
LISWET11 1(0.31) 1(0.31) 1(0.31) 1(0.31) 1(0.31)
LISWET12 16(2.39) 16(2.43) 16(2.40) 16(2.39) 16(2.41)
LISWET1 1(0.01) 1(0.01) 1(0.01) 1(0.01) 1(0.01)
LISWET2 1(0.38) 1(0.38) 1(0.38) 1(0.38) 1(0.38)
LISWET3 1(0.16) 1(0.16) 1(0.16) 1(0.16) 1(0.16)
LISWET4 1(0.16) 1(0.17) 1(0.17) 1(0.16) 1(0.17)
LISWET5 1(0.17) 1(0.17) 1(0.17) 1(0.17) 1(0.17)
LISWET6 1(0.18) 1(0.19) 1(0.18) 1(0.19) 1(0.19)
LISWET7 1(0.59) 1(0.59) 1(0.60) 1(0.59) 1(0.59)
LISWET8 1(0.73) 1(0.72) 1(0.73) 1(0.71) 1(0.72)
LISWET9 32(6.11) 32(6.07) 32(6.02) 32(6.03) 32(5.98)
LOTSCHD 5(0.00) 12(0.01) 12(0.01) 12(0.01) 9(0.01)
LSQFIT 7(0.01) 7(0.01) 7(0.01) 7(0.01) 7(0.01)
MOSARQP1 8(0.25) 8(0.25) 8(0.25) 8(0.26) 8(0.25)
MOSARQP2 20(0.50) 23(0.74) 20(0.51) 20(0.49) 24(0.68)
NCVXQP1 3(0.02) 3(0.02) 3(0.02) 3(0.02) 3(0.02)
NCVXQP2 4(0.02) 4(0.02) 4(0.02) 4(0.02) 4(0.02)
NCVXQP3 13(0.11) 9(0.13) 15(0.13) 13(0.11) 18(0.15)
NCVXQP4 4(0.06) 4(0.06) 4(0.06) 4(0.06) 4(0.06)
NCVXQP5 3(0.02) 3(0.02) 3(0.02) 3(0.02) 3(0.02)
NCVXQP6 15(0.05) 15(0.11) 16(0.11) 15(0.05) 17(0.11)
NCVXQP7 2(0.02) 2(0.02) 2(0.02) 2(0.01) 2(0.02)
NCVXQP8 2(0.04) 2(0.04) 2(0.04) 2(0.04) 2(0.04)
NCVXQP9 10(0.03) 4(0.04) 10(0.03) 10(0.03) 10(0.03)
OSORIO 14(4.50) 7(4.33) 7(4.35) 7(4.31) 6(4.33)
PORTFL1 36(0.03) 36(0.03) 36(0.03) 36(0.03) 36(0.03)
PORTFL2 24(0.02) 24(0.02) 24(0.02) 24(0.02) 24(0.02)
PORTFL3 37(0.03) 37(0.03) 37(0.03) 37(0.03) 37(0.03)
PORTFL4 33(0.03) 33(0.02) 33(0.03) 33(0.03) 33(0.03)
PORTFL6 31(0.03) 31(0.02) 31(0.02) 31(0.02) 31(0.03)
PORTSNQP 2(0.01) 2(0.02) 2(0.02) 2(0.02) 2(0.02)
PORTSQP 2(0.01) 2(0.01) 2(0.01) 2(0.01) 2(0.01)
POWELL20 1(0.00) 1(0.00) 1(0.00) 1(0.00) 1(0.00)
PRIMAL1 1(0.11) 1(0.11) 1(0.11) 1(0.11) 1(0.11)
PRIMAL2 1(0.16) 1(0.15) 1(0.15) 1(0.15) 1(0.15)
PRIMAL3 3(1.51) 3(1.52) 3(1.49) 3(1.48) 3(1.48)
PRIMAL4 4(0.89) 4(0.89) 4(0.89) 4(0.89) 4(0.90)
PRIMALC5 329(4.12) 329(4.04) 329(4.08) 329(4.09) 329(4.11)
QPCBOEI1 40(3.97) 53(3.86) 53(3.85) 53(3.86) 27(3.86)
QPNBAND 6(2.52) 11(3.95) 11(3.96) 11(3.96) 11(3.96)
RDW2D52U 280(0.11) 280(0.11) 280(0.12) 280(0.11) 280(0.12)
SOSQP2 10(0.02) 10(0.02) 10(0.02) 10(0.02) 10(0.03)
STCQP1 1(19.77) 1(19.04) 1(18.83) 1(18.76) 1(18.89)
STCQP2 129(7.84) 109(9.59) 153(12.47) 142(9.58) 123(10.42)
STNQP1 5(2.12) 3(3.13) 5(2.04) 5(2.03) 5(2.03)
STNQP2 5(0.77) 3(1.71) 5(1.72) 5(0.76) 5(0.75)
TABLE7 33(0.61) 48(1.20) 99(2.30) 320(6.97) 65(3.08)
TABLE8 22(0.37) 10(0.14) 10(0.14) 10(0.14) 8(0.14)
TARGU 31(0.11) 40(0.14) 91(0.31) 285(0.89) 14(0.41)
TFI3 3(0.04) 3(0.04) 3(0.04) 3(0.04) 3(0.04)
ZECEVIC2 3(0.00) 3(0.00) 3(0.00) 3(0.00) 3(0.00)

For this set of problems, we can see from the results that both non-monotone strategies are clearly superior to the 
monotone one. Among the non-monotone strategies, however, that of Grippo et al. [18] appears to perform slightly bet-
ter than the strategy of [35]. It is worth mentioning, however, that both nonmonotone strategies are expected to have 
similar behavior for most problems, which justifies our formulation as an alternative for the nonmonotone strategy used 
in [12].
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4.1. Application to large-scale orthogonal Procrustes problem

Let A ∈R
m×m and B ∈R

m×p . In this section we apply Algorithm 2 to solve the Orthogonal Procrustes Problem (OPP):

min‖A X − B‖2
F , s.t. X T X = I and X ∈R

m×p . (22)

Our decision to do so is motivated by numerical experiments reported in [12] where it is shown that this kind of problems 
can be solved successfully using non-monotone strategies. Some practical applications of this problem appear in factor 
analysis, structural identification, global positioning systems and others [5,17].

Since we are concerned with large-scale problems, our strategy here is use the block Lanczos bidiagonalization method 
(BLDM) for solving large-scale problems. The BLDM can be described as follows:

Algorithm 3 (BLDM). Starting from matrix B of (22):
Compute U1, V 1 with orthonormal columns such that U1 B1 = B and V 1 A1 = AT U1 (reduced QR factorization of B and 

AT U1).
For i = 1, 2, . . . , k

Ui+1 Bi+1 = AV i − Ui AT
i (reduced QR factorization)

V i+1 Ai+1 = AT Ui+1 − V T
i BT

i+1 (reduced QR factorization)

Notice that Ui, V i ∈ R
m×p are orthogonal matrices and Bi, Ai ∈ R

p×p are upper triangular matrices. Further, by defining,

Ūk ≡ [U1U2 · · · Uk] ∈ R
m×kp, V̄k ≡ [V 1 V 2 · · · Vk] ∈ R

m×kp and

Tk ≡

⎡
⎢⎢⎢⎢⎢⎣

AT
1

B2 AT
2

. . .
. . .

Bk AT
k

Bk+1

⎤
⎥⎥⎥⎥⎥⎦ ∈R

(k+1)p×kp,

after k BLDM steps the following recurrence relations hold true:

Ūk+1 E1 B1 = B; (23)

AV̄k = Ūk+1Tk, (24)

AT Ūk+1 = V̄k T T
k + Vk+1 Ak+1 E T

k+1, (25)

where Ei ∈ R
m×p is zero except for the lines from (i − 1)p + 1 to ip, which are the p × p identity matrix. In addition, 

V̄ T
k V̄k = I and Ū T

k+1Ūk+1 = I .
Block Lanczos bidiagonalization has been applied to efficiently solve large-scale linear systems and eigenvalue problems. 

For some applications, mainly for ill-conditioned large-scale problems, re-orthogonalization strategies in the columns of Uk
and Vk are required. For further details on Block Lanczos Bidiagonalization the reader is referred to [2,3,21].

Regarding the construction of approximate solutions to the OPP, after k BLDM iterations, our strategy is to construct 
approximate solutions defined by Xk = V̄kY . To describe how this is made notice that (23), (24) and (25) show that ‖A Xk −
B‖F = ‖TkY − Ū T

k+1 B‖F . Furthermore, since X T X = I if and only if Y T Y = I , the solution of (22) can be approximated by 
Xk = V̄kYk , where Yk is solution of

min‖TkY − Ū T
k+1 B‖2

F , s.t. Y T Y = I and Y ∈R
kp×p . (26)

Note that as k increases, the dimension of the column subspace of V̄k increases and hence, thanks to the excellent con-
vergence approximation properties of BLDM [14,21], the approximation Xk gets better. We expect to obtain convergence 
(within a proper tolerance) in a few BLDM iterations. Furthermore, in order to enhance performance, instead of (26) we 
solve

min‖kȲ − P T
k Ū T

k+1 B‖2
F , s.t. Ȳ T Y = I and Ȳ ∈R

kp×p

where Tk = Pkk Q T
k is the SVD of matrix Tk and Ȳ = Q T

k Y .
In order to overcome difficulties associated with the dimension of the problem, in this part of the work we propose 

a method for solving (22) by combining both Algorithms 2 and 3. Therefore, at each step k of BLDM we apply the Non-
monotone Spectral Projected Gradient version (Algorithm 2) for solving (26). This scheme will be called hereafter as PBLDM. 
At each iteration, the feasible initial guess for solving (26) is taken to be 

[
Y T

k−1 0
]T ∈ R

kp×p , except for k = 1 where we 
use the left singular vector of T1. It is worth mentioning that, for this class of problems, subproblem (20) can be exactly 
solved by computing a SVD decomposition of Tk (see [14] for further details).

The matrices A and B used in the numerical tests for the OPP were generated as follows. We considered A = P S R T , 
where both P and R are randomly generated orthogonal matrices and S is diagonal. Three examples are considered:
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Table 3
Results for Example 1.

Size 
(p = 10)

PBLDM PSVD

CPU Residual Blk(k) Tk MaxI MinI CPU Its.

m = 500 0.14 4.4 × 10−10 6 60 8 6 0.72 12
m = 1000 0.57 1.6 × 10−10 6 60 7 6 5.28 12
m = 5000 14.25 1.1 × 10−10 6 60 9 6 592.49 12

Table 4
Results for Example 2.

Size 
(p = 5)

PBLDM PSVD

CPU Residual Blk(k) Tk MaxI MinI CPU Its.

m = 100 0.76 4.1 × 10−13 20 100 2000 42 0.19 782
m = 500 57.51 1.4 × 10−10 99 495 2000 28 5.65 1234
m = 1000 214.43 1.8 × 10−10 152 760 2000 41 31.05 1484

Table 5
Results for Example 3.

Size 
(p = 5)

PBLDM PSVD

CPU Residual Blk(k) Tk MaxI MinI CPU Its.

m = 50 0.03 1.2 × 10−8 10 50 30 6 0.02 127
m = 95 0.07 2.3 × 10−4 17 85 44 6 0.11 484
m = 500 0.54 3.4 × 10−5 21 105 30 6 4.69 1001

Example 1. The elements on the main diagonal of S are randomly and uniformly distributed in the interval [10, 12]. This 
is a well-conditioned problem.

Example 2. In this case, Sii = 1 + 99(i−1)
(m−1)

+ 2ri and ri are random numbers chosen from a uniform distribution on the 
interval [0, 1].

Example 3. Matrix S is defined using the MATLAB functions ones and rand, such that

diag(S) = [10∗ones(1,m1)+rand(1,m1), 5∗ones(1,m2)+rand(1,m2), 
2∗ones(1,m3)+rand(1,m3), rand(1,m4)/1000]

with m1 + m2 + m3 + m4 = m. Thus, A has several small singular values and it is ill-conditioned.

The above test problems were solved for several dimensions with η = 0.85. Tables 3, 4 and 5 display the results obtained 
with PBLDM (including re-orthogonalizations in Uk and Vk). Also, for the sake of comparison, we display results obtained 
with the original algorithm, i.e., with Algorithm 2 applied to (22) with no Lanczos scheme, which we will refer to as PSVD. 
For Example 3 we use three different values of m, namely, m = 50 (m1 = 15, m2 = 15, m3 = 12, m4 = 8), m = 95 (m1 = 30, 
m2 = 30, m3 = 30, m4 = 5) and m = 500 (m1 = 160, m2 = 160, m3 = 160, m4 = 20). In all cases the iterative process stops 
when the first order optimality condition is satisfied with tolerance 10−3 with respect to Frobenius norm (see [12] for 
details on stopping criteria). The tables also include the CPU time (in seconds) as well as the final residuals obtained for 
each instance, i.e. the value of ‖A X − B‖2

F . In the PSVD case we list the total number of iterations performed, but in the 
PBLDM case we chose to list the number of BLDM steps needed to solve the problem (labeled as Blk). Column Tk lists the 
number of columns of matrix Tk of (26) at the last PBLDM iteration. Further, for every test problem we display both the 
maximum (MaxI) and the minimum (MinI) number of iterations of Algorithm 2 for solving (26) (in this case the tolerance 
parameter to declare convergence was set to 10−4). Regarding Algorithm 3, we note that the lower k is, the lower the order 
of matrix Y and therefore the lower the computational effort required to solve the problem (26).

From the tables it is seen that the performance of our approach improves significantly as the number of variables (m) 
gets larger. In this regard, it is worth observing that the number of BLDM steps required for convergence is closely related 
to the singular value distribution of matrix A, and an interesting conclusion drawn from our numerical experiments is 
that PBLDM works well on problems where the singular values of matrix A are clustered. Fig. 2(a) shows the singular value 
distribution (normalized by the maximum singular value) and Fig. 2(b) displays the performance of PBLDM for each example 
tested with m = 500 (y-axis shows the Frobenius norm of the first-order optimality condition). In Example 2 the singular 
values are uniformly distributed and, in fact, in this case PBLDM does not work well; on the other hand, in Example 1 and 
Example 3, for which matrix A has clustered singular values (Example 1 with one cluster and Example 3 with four clusters), 
our approach performs well for large problems. We observe that the presence of ill-conditioning in Example 3 (about 105) 
does not harm convergence of PBLDM; this is not the case with PSVD whose convergence speed is deteriorated, as seen 
from the number of iterations required for convergence. The close relationship between the number of steps of the PBLDM 
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Fig. 2. Singular values distributions versus performance of Algorithm PBLDM with m = 500. (Condition numbers of A. Example 1: k2(A) = 1.99. Example 2: 
k2(A) = 5.33 × 10. Example 3: k2(A) = 1.38 × 106.)

and the number of clusters is illustrated in Fig. 2(b). Summarizing, the conclusion drawn from the numerical experiments 
is that in general the block strategy accelerates convergence and uses less computational resources. By way of illustration, 
for Example 1 with m = 500, while PSVD deals with 50 × 104 variables, the last PBLDM iteration deals only with 6 × 102, 
which results in a reduction in the number of variables of about 99%. In Example 2 with m = 500, the reduction is about 
79%. However, this is not the case with Example 3 for which significantly more blocks are required until useful information 
about the problem is captured. In conclusion, the block strategy appears to work better than the original full strategy (PSVD) 
for a number of problems, which we feel justifies this investigation and might contribute to the development of faster and 
more efficient methods for OPPs.

5. Conclusions

In this paper we proposed a non-monotone algorithm to minimize a continuous differentiable function over an arbitrary 
closed set. Our strategy combines regularization techniques and the non-monotone approach of Zhang and Hager [35]. Un-
der some usual nonlinear programming assumptions we have proved globally convergence to stationary points, irrespective 
of the initial guess. As a particular case of the proposed algorithm, we obtained a Non-monotone Spectral Projected Al-
gorithm for minimization over closed sets. It is worthwhile mentioning that the non-monotone strategy was essential to 
reduce the number of subproblems resolutions (projection onto feasible set for the especial case) as well as to avoid local 
minima. Numerical results confirmed the theoretical properties on a class of problems from CUTEst collection. Furthermore, 
a numerical technique for large-scale orthogonal Procrustes Problem based on Block Lanczos bidiagonalization has been 
proposed with promising perspective as shown by preliminary numerical results.
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