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ABSTRACT

We consider a 2D bioheat model on a domain with curvilinear polygonal
boundary and boundary conditions involving heat transfer between blood
vessels and tissue. Based on elliptic regularity on polygons and semigroup
theory, we obtain a Fourier series representation for the solution in H

2

settings. The results become useful in that they provide theoretical support
for numerical approaches recently published in the literature.
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1. Introduction

Modeling of thermal energy transport in living tissues has become crucial in applications such as
cancer treatment, burn therapy, cryosurgery, laser irradiation, and others.[1–5] As a result, several
analytical and numerical methods have appeared dealing with initial boundary-value problems
involving bioheat transfer equations for different geometries and boundary conditions.[3,5–8] In
particular, after the seminal paper by Pennes [9], there have been several studies to characterize the
thermal tissues properties, which gave rise to various bioheat transfer equations with applications in
distinct scenarios. However, despite the efforts of researchers to analyze and describe solutions for
certain problems inmedical applications, e.g. [2,4,10–12], rigorous analyses concerning existence and
uniqueness are still lacking. The goal of this note is to partially fill in this gap by providing a Fourier-
based analysis approach for a 2D bioheat transfer equation with convective boundary conditions on
a rectangle, whose numerical treatment and application in perfusion coefficient inverse estimation
problems have been given in [7,13]; related work concerning inverse estimation problems involving
the bioheat model can be found in [1,3,5,14–17]. Our existence and uniqueness analysis is based on
elliptic regularity theory on polygons in H2(O) settings for a domain O with curvilinear polygonal
boundary [18] and internal angles equal to π/2, along with semigroup theory. By assuming so, our
approach covers the traditional case where the tissue occupies a rectangular region.[3]

The rest of the note is organized as follows. In Section 2, the boundary conditions are taken into
account to transform the original problem into a standard Cauchy problem involving an elliptic
operator. In Section 3, the spectral problem for the elliptic operator associated with Pennes’ equation
is solved and an analytical semigroup of contractions on L2(O) is generated. Proceeding this way, it
is established not only a computable Fourier series representation for the bioheat solution problem,
but also a rigorous theoretical treatment is provided in order to justify eigenfunction expansions
methods very often seen in the literature.[5,7] In particular, a highly accurate method for computing
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eigenvalues and eigenfunctions of the associated elliptic operator is also introduced and illustrated
by way of several numerical examples. The note ends with some conclusions in Section 4.

Throughout the paper, Hs(O) stands for the Sobolev space of functions with derivatives of order
less than or equal to s in L2(O), with respective norm denoted by ‖.‖s,2,O .

2. Bioheat equation

Let O ⊂ R
2 denote an open, bounded, and connected domain with boundary Ŵ = ∪4

i=1Ŵi, where
Ŵi (the closure of the open arc Ŵi) is a C

∞ curve.[18] Let si := Ŵi ∩ Ŵi+1, 1 ≤ i ≤ 3, s4 =: Ŵ4 ∩ Ŵ1

and assume that Ŵi follows Ŵi+1 in an anticlockwise direction. Also, assume that for each 1 ≤ i ≤ 4,
ωi = π/2, where ωi is the internal angle of the polygon with the vertex in si. Let x = (x, y) and let
νi = (νx , νy), τi = (−νy , νx) be the unit outward normal vector field toŴi and the tangent vector field
to Ŵi, respectively. The assumption on ωi is purely technical and introduced to avoid the presence of
singular solutions.[19] Let the temperature of a perfused tissue occupying the region O be denoted
by U = U(x, t) where t stands for the time variable. The boundary Ŵ1 represents the upper skin
surface, while the boundary Ŵ3 corresponds to a wall between the tissue and an adjoint large blood
vessel.[6,7] The Pennes’ bioheat model with convective boundary conditions that we are interested
is given by

ρc Ut − κ	U + wbcb(U − Ua) = qm + qe in O ×]0,+∞[, (1)

∂U

∂νi
= 0 on Ŵi ×]0,+∞[, i = 2, 4 (2)

κ
∂U

∂ν3
+ hU = hU∞ on Ŵ3 ×]0,+∞[, (3)

U = Ub on Ŵ1 ×]0,+∞[, (4)

U = U0 in O × {0}, (5)

where ρ, c, h and κ are positive constants that stand for the density, the specific heat, the heat transfer
coefficient, and the thermal conductivity of the tissue, respectively; cb is a positive constant denoting
the blood specific heat,wb is themass flow rate of blood per unit volume of tissue such thatwb ≥ 0 a.e.
inO, wb ∈ L∞(O), andUa ∈ L∞(O) is the temperature of arterial blood. Additionally,U0 ∈ L2(O),
Ub ∈ H3/2(Ŵ1) and U∞ ∈ H1/2(Ŵ3), are the initial temperature of the tissue, the skin surface
temperature and the environmental temperature (in the adjacent blood vessel), respectively. Finally,
for each T > 0, qm, qe ∈ Cσ

(
]0,T]; L2(O)

)
, 0 < σ < 1, stand for the metabolic heat generation

per unit volume and the volumetric rate of external heat, respectively. The boundary condition (3)
attempts to simulate the heat transfer between the tissue and the adjoint blood vessel in Ŵ3, while (2)
is an adiabatic condition. In the upper skin surface, the temperature is prescribed and gives rise to
the boundary condition (4).

The key idea behind our existence and uniqueness analysis is to transform the original initial
and boundary value problem (6)–(10) into a Cauchy problem through a suitable change of variables
involving a function Uext ∈ H2(O) satisfying (2)–(4). The existence proof of

such a function depends on mild conditions on function Ub (the skin surface temperature) and is
postponed to Section 3 (see Lemma 3.4). In fact, settingV = U −Uext, the original problem (6)–(10)
can be expressed as

Vt + LV = f in O ×]0,+∞], (6)

∂V

∂νi
= 0 on Ŵi ×]0,+∞[, i = 2, 4 (7)

κ
∂V

∂ν3
+ hV = 0 on Ŵ3 ×]0,+∞[, (8)
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V = 0 on Ŵ1 ×]0,+∞[, (9)

V = U0 − Uext in O × {0}, (10)

where L : A ⊂ L2(O) → L2(O) is the elliptic operator given by L = (ρc)−1( − κ	 + cbwbI), with

A := {v ∈ H2(O), v satisfying (7)–(9)} (11)

and f = (ρc)−1(qm + qe + cbwbUa) − LUext. Proceeding this way, problem (6)–(10) can be
reformulated as the following Cauchy problem:

P: Find V ∈ C([0,+∞[; L2(O)) ∩ C1(]0,+∞[;H2(O)) ∩ A such that

dV

dt
+ LV = f, t > 0; V(0) = U0 − Uext, (12)

where f : [0,+∞[→ L2(O) is given by f(t) = f (., t), for all t ≥ 0.

3. Existence and uniqueness

For our existence and uniqueness analysis, we will show that −L is the infinitesimal generator of an
analytical semigroup of contractions on L2(O). We start by deriving a set of technical results.

Lemma 3.1: Given any γ0 ∈ C such that Re(γ0) ≥ 0 and any complex-valued g ∈ L2(O), there
exists a unique complex-valued Ũ ∈ A such that

(− L − γ0I)Ũ = g a. e. in O. (13)

Proof: In the context of complex-valued functions, let H1
Ŵ1

(O) := {ϕ ∈ H1(O), ϕ|Ŵ1 = 0}. As a
preliminary Step, we first prove that the weak formulation of (13) admits a unique solution. For this,
we recall that such a formulation reads: find Ũ ∈ H1

Ŵ1
(O) such that

aγ0(Ũ ,ϕ) :=κ(ρc)−1
[
(∇Ũ ,∇ϕ)O + h(Ũ ,ϕ)Ŵ3

]
+ (((ρc)−1cbwb + γ0)Ũ ,ϕ)O = −(g ,ϕ)O (14)

for all ϕ ∈ H1
Ŵ1

(O), where (·, ·)� denotes the standard (complex) inner product in L2(�). Having

introduced the bilinear form aγ0 , Poincaré’s inequality in H1
Ŵ1

(O), Hölder’s inequality and the trace
theorem yield

Re[aγ0(Ũ , Ũ)] ≥ C1‖Ũ‖21,2,O , |aγ0(Ũ ,ϕ)| ≤ C2‖Ũ‖1,2,O‖ϕ‖1,2,O , (15)

where C1, C2 depend on (O, h, cb,wb, γ0, κ , ρ, c). As (15) ensures that the bilinear form aγ0 is
bounded and coercive, Lax-Milgram theorem shows that problem (14) has a unique solution and
our preliminary result is proved. Proceeding analogously, given arbitrary real-valued f̃ ∈ L2(O)

and ψ ∈ H1/2(Ŵ3), there exists a unique (real-valued) ũ ∈ H1
Ŵ1

(O) that is the weak solution of the
boundary-value problem

− L̃u = f̃ in O, (16)

∂ ũ

∂νi
= 0 on Ŵi, i = 2, 4 (17)

∂ ũ

∂ν3
= ψ on Ŵ3, (18)

ũ = 0 on Ŵ1. (19)
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Also notice that for all ϕ ∈ H1
Ŵ1

(O) such ũ satisfies

a0(̃u,ϕ) − h(ρc)−1κ(̃u,ϕ)Ŵ3 = −(̃f ,ϕ)O + ((ρc)−1κψ ,ϕ)Ŵ3 . (20)

Based on these results, the regularity of Ũ can be improved. In fact, for the case of dealing with
real-valued functions, consider the spaces D1, D2 defined by

D1 = {ϕ ∈ H1(O), Lϕ ∈ L2(O), ϕ satisfying (17)–(19) for ψ = 0},

D2 = {ϕ ∈ H2(O), ϕ satisfying (17)–(19) for ψ = 0}.

We now observe that elliptic PDE theory on polygons ensures that there exists ur ∈ H2(O) and
{σi}ℓi=1, σi ∈ D1\D2, ℓ being the codimension of D2 as a subspace of D1, such that ũ = ur +∑ℓ

i=1 ciσi [19, Theorem 3.2.4]. Let ϑj = 0 if j ∈ {2, 3, 4}, ϑ1 = π/2 and λj,m = (ϑj −ϑj+1 +mπ)/ωj,
for j ∈ {1, 2, 3, 4} andm ∈ Z. As wj = π/2, it is easy to check that for each j ∈ {1, 2, 3, 4} andm ∈ Z,
λj,m /∈] − 1, 0[. As a result, from [19, Proposition 3.2.1], it follows that D2 is a closed subspace of
D1 with ℓ = 0, thus ũ ∈ H2(O). Let ũ1 ∈ H2(O) be the solution of (16)–(19) corresponding to
f̃ = Re(g + γ0Ũ) and ψ = Re( − hŨ); analogously let ũ2 ∈ H2(O) be the solution of (16)–(19)
corresponding to f̃ = Im(g+γ0Ũ) andψ = Im(−hŨ). Letting ũ = ũ1+ ĩu2, ϕ = Ũ− ũ, subtracting
(14) from (20), Poincaré’s inequality yields

‖Ũ − ũ‖20,2,O ≤ (κ(ρc)−1/C1)‖∇(Ũ − ũ)‖20,2,O = 0.

This implies that Ũ = ũ a. e. in O and hence Ũ ∈ A. �

Lemma 3.2: Under the assumption that v ∈ A, there exists C = C(O) such that

‖v‖2,2,O ≤ C(‖Lv‖0,2,O + ‖v‖1,2,O). (21)

Proof: We observe that the trace operators T1 : H2(O) → H3/2(Ŵ1), T1(ϕ) = ϕ|Ŵ1 , Ts : H1(O) →
H1/2(Ŵ3), Ts(ϕ) = ϕ|Ŵ3 , and Ti : H2(O) → H1/2(Ŵi), Ti(ϕ) = ∂ϕ

∂νi
|Ŵi , 2 ≤ i ≤ 4, are all linear,

continuous, and surjective [18, Theorem 1.5.2.1]. Hence,B := {ϕ ∈ H2(O),Ti(ϕ) = 0, i = 1, 2, 4} is
a closed subspace ofH2(O) and thus a Hilbert space with the induced inner product. In addition, for
allψ ∈ H1/2(Ŵ3), we can find a functionϕ ∈ B satisfying (18). It is not difficult to see that the operator
T̃ : B → H1/2(Ŵ3) given by T̃(ϕ) = T3(ϕ) is linear, continuous, surjective and has a continuous
right inverse T̃−1

R which is a bijection between H1/2(Ŵ3) and Ker(T̃)⊥ ⊂ B [20, Proposition 4.6.1].

As a consequence, for each v ∈ A and w := T̃−1
R (Ts( − κ−1h v)), for some constant C = C(O, h, κ),

we have

‖w‖2,2,O ≤ C‖Ts(v)‖1/2,2,Ŵ3 ≤ C‖v‖1,2,O. (22)

Now notice that u := w−v satisfies (17)–(19) withψ = 0. Notice also that Lemma 3.1 and the closed
range mapping theorem imply that the embedding I : D2 → D1 is continuous. Therefore, from the
open mapping theorem, I−1 : D1 → D2 is also continuous and we get (21) for u. Inequality (22) and
the definition of u yield (21) for v. �

In view of the Lemmas 3.1, 3.2 and well-known results from spectral theory for self-adjoint
operators with compact inverse [21, Theorems 7, p.39], there exists a non-decreasing sequence of
real positive eigenvalues {λk}+∞

k=1 of L such that limk→+∞λk = +∞ and an orthonormal basis

{ψk}+∞
k=1 of L2(O) consisting of real-valued eigenfunctions of L. Accordingly, for each ϕ ∈ L2(O),

we can write ϕ =
∑+∞

k=1 ckψk, where ck := (ϕ,ψk)L2(O), and we are able to characterize the elements
of the set A.
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Lemma 3.3: Let A be defined in (11) and ϕ ∈ L2(O). Then, ϕ ∈ A if and only if

+∞∑

k=1

c2kλ
2
k < +∞.

Proof: Let A be endowed with the inner product B(u, v) := ( − Lu,−Lv)O + a0(u, v). Notice
that due to Lemma 3.2, the corresponding induced norm is equivalent to the standard norm on A.
Now, since for each k ∈ N and u ∈ A, B(u,ψk) = (λk + λ2k)(u,ψk)O , it is clear that {ψk}+∞

k=1 is an
orthogonal basis for A. In particular, since ck = (ϕ,ψk)L2(O) = B(ϕ,ψk)/B(ψk,ψk), if ϕ ∈ A, we
have +∞∑

k=1

ckψk = ϕ,

where convergence is in the sense of H2(O), and hence

+∞∑

k=1

‖ckLψk‖20,2,O =
+∞∑

k=1

c2kλ
2
k < +∞.

Conversely, suppose that ϕ ∈ L2(O) and

+∞∑

k=1

c2kλ
2
k < +∞. (23)

From (14), taking γ0 = 0 and g = −λkψk, it is easy to check that

‖∇ψk‖20,2,O ≤ κ−1ρcλk. (24)

Then, combining (23) and (24), we have

+∞∑

k=1

‖ck∇ψk‖20,2,O ≤ κ−1ρc

+∞∑

k=1

c2kλk < +∞

and +∞∑

k=1

‖ckLψk‖20,2,O < +∞.

Hence, in view of Lemma 3.2, ϕ ∈ A. �

Before establishing the main result of the section regarding existence and uniqueness of solutions
for (6)–(10), we address the existence of Uext ∈ H2(O) satisfying (2)–(4).

Lemma 3.4: For Ub ∈ H3/2(Ŵ1), let

Ũb(x) :=
{
0 if x ∈ Ŵi, i = 2, 3, 4
∂Ub
∂τ1

(x) if x ∈ Ŵ1
. (25)

Then for Ũb ∈ H1/2(Ŵ), there exist Uext ∈ H2(O) satisfying (2)–(4).

Proof: We first observe that the geometric assumptions on Ŵ, the definition (25) and [19, Theorem
2.1] imply that there exists Uext ∈ H2(O) such that

∂Uext

∂νi
= 0 on Ŵi, i = 2, 4
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∂Uext

∂ν3
= hκ−1U∞ on Ŵ3,

Uext = Ub on Ŵ1.

Now it is easy to check that the weak formulation of the problem

−LÛ = 0 in O,

∂Û

∂νi
= 0 on Ŵi, i = 2, 4

κ
∂Û

∂ν3
+ hÛ = −hUext on Ŵ3,

Û = 0 on Ŵ1

(26)

is analogous to problem defined by (14). As a consequence, arguing as in Lemma 3.1, there exists a
unique Û ∈ H1

Ŵ1
(O) which is the weak solution of (26). Notice also that the problem

−LU∗ = 0 in O,

∂U∗

∂νi
= 0 on Ŵi, i = 2, 4

κ
∂U∗

∂ν3
= −h(Uext + Û) on Ŵ3,

U∗ = 0 on Ŵ1.

(27)

is analogous to problem defined by (16)–(19). Then, proceeding again as in the Lemma 3.1, there
exists a unique U∗ ∈ H2(O) satisfying (27). From the weak formulation of (26) and (27), we obtain

‖Û − U∗‖20,2,O ≤ (1/C1)‖∇(Û − U∗)‖20,2,O = 0.

This implies that Û = U∗ a. e. in O and Û ∈ H2(O). The lemma holds if we consider the function
Uext = Û + Uext . �

The assumption Ũb ∈ H1/2(Ŵ) includes the relevant cases where Ub is constant everywhere or
Ub is constant in a neighborhood of each vertex si. In view of the assumptions on O, we are able
to generalize Lemma 3.4 to the case where the heat fluxes vary along the boundaries Ŵ2 and Ŵ4.
However, this requires suitable compatibility conditions involving the data on the boundariesŴ1,Ŵ2,
and Ŵ4, as seen in [19, Theorem 2.1]. It is worth emphasizing also that the assertion of Lemma 3.4 is
not a straightforward consequence of the trace theorem in [22] as (2)–(3) can be regarded as a Robin
condition with discontinuous coefficients. Similar results for rectilinear polygonal regions obtained
throughout a different procedure can be found in [23].

Proceeding with our analysis, now for each t ≥ 0, consider the map E(t) : L2(O) → L2(O) such
that E(t)ϕ =

∑+∞
k=0 cke

−λktψk. It is not difficult to check that the family {E(t)}+∞
t=0 is a C0 semigroup

of contractions on L2(O) (see [24, Section 2.1]). In addition, for each t > 0 and ϕ ∈ L2(O), we have

‖∇(E(t)ϕ)‖20,2,O ≤ κ−1ρc

+∞∑

k=1

c2ke
−2λktλk ≤ κ−1ρct−2

+∞∑

k=1

c2kλ
−1
k < +∞ (28)

and

‖L(E(t)ϕ)‖20,2,O ≤
+∞∑

k=1

c2ke
−2λktλ2k ≤ t−2

+∞∑

k=1

c2k < +∞. (29)
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Thus E(t)ϕ ∈ A because of Lemma 3.2. In particular, this implies that for t > 0 and ϕ ∈ L2(O),

d

dt
(E(t)ϕ) = −

+∞∑

k=1

λke
−λktckψk = −L(E(t)ϕ).

Therefore, from Lemma 3.3,
d

dt
(E(t)ϕ)|t=0 = −Lϕ iff ϕ ∈ A and −L : A ⊂ L2(O) → L2(O) is the

infinitesimal generator of {E(t)}+∞
t=0 . On the other hand, since Lemma 3.1 ensures that each γ0 ≤ 0

lies in the resolvent set of L and since (15) guarantees that for all u ∈ A,

∫

O

Lu u dx = a0(u, u) ≥ C1‖u‖21,2,O ,

it follows that the numerical range of L is contained in [C1,+∞). Based on these results, following
the proof of Theorem 7.2.7 in [25], it follows that E(t) can be extended to an analytical semigroup
in any sector {λ ∈ C, |arg(λ)| < δ}, 0 < δ < π/2. We observe that this result can also be obtained
as a consequence of the well-known Lummer-Philips theorem. However, we emphasize that our
approach yields {E(t)}+∞

t=0 explicitly. From the theoretical and practical point of view, this results in
an existence and uniqueness theorem for the solutionV of problem (6)–(10) expressed in series form.

Theorem 3.1: There exists a unique solution U ∈ C([0,+∞[; L2(O)) ∩ C1(]0,+∞[;H2(O)) for
problem (1)–(5). In addition, for each Uext ∈ H2(O) satisfying the assumptions of Lemma 3.4, such
solution can be expressed as U = V + Uext, where

V(t) =
+∞∑

k=1

(U0 − Uext,ψk)O e−λktψk +
+∞∑

k=1

∫ t

0
(f(s),ψk)O e−λk(t−s)ψkds. (30)

Proof: Since for construction {E(t)}+∞
t=0 is an analytical semigroup, existence and uniqueness of so-

lution for problemP stated in (12) as well as the representation (30) are straightforward consequences
of Corollary 4.3.3 in [25]. This proves existence and uniqueness of solution for (1)–(5). �

We note in passing that, in order to cover more general physical problems involving the bioheat
model, the thermal properties of ρ c, h and k should be allowed to be spatially dependent as seen
in some works dealing with one-dimensional problems, see, e.g. [26,27]. If this were the case, an
analysis similar to the one we have just performed is also possible, but special assumptions on these
functions are required. Also, as mentioned before, we can establish the existence of the functionUext

in the case where the heat fluxes vary on the boundaries Ŵ2 and Ŵ4. As a result, we can deal with the
homogeneous boundary conditions (7)–(9) anddealwith the problemas in the case of null heat fluxes.
These cases are beyond the scope of this note and therefore are omitted here. Other than that, notice
that the representation (30) is precisely the Fourier series solution for problem P. It has proved useful
when determining the temperature field in the inverse problem of estimating the blood perfusion
coefficient [5,15] for particular choices of the coefficient cbwb. The perfusion estimation problem
plays a key role in areas as hyperthermia and optical tomography and has attracted the attention
of several researchers.[2,3,28–31] Obviously, the Fourier series solution cannot be determined in
closed form in general as the problem of determining eigenvalues and eigenfunction forL is difficult.
However, we notice that for the particular case where O is the rectangle ]0, 1[× ]0,M[, and ρc = 1,
if cbwb(x, y) = p(x) + q(y), with p ∈ L∞(]0, 1[), q ∈ L∞(]0,M[) being non-negative functions, then
the spectral problem can be handled straightforwardly through themethod of separation of variables.
Indeed, proceeding this way, the following regular Sturm–Liouville problems are derived

X ′′(x) + κ−1(µ2 − p(x))X(x) = 0, 0 < x < 1

X ′(0) = X ′(1) = 0,
(31)
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and

Y ′′(y) + κ−1(γ 2 − q(y))Y(y) = 0, 0 < y < M

Y(M) = 0, κY ′(0) − hY(0) = 0
. (32)

Then, it can be proved that the eigenvalues {µ2
k}∞k=1 of (31) and the eigenvalues {γ 2

k }∞k=1 of (32)

satisfy limk→+∞ γ 2
k = +∞ , limk→+∞ µ2

k = +∞, and that the corresponding eigenfunctions
Xk ∈ H2(]0, 1[), Yk ∈ H2(]0,M[) form orthogonal bases of L2(]0, 1[) and L2(]0,M[), respectively.
Moreover, it is not difficult to prove that the infinity family {XiYj}∞i,j=1 is an orthogonal basis for

L2(]0, 1[×]0,M[). With these results at hand, eigenvalues {λk}+∞
k=1 and eigenfunctions {ψk}+∞

k=1 of L

can be determined in several ways. In particular, the eigenpairs {ψk, λk}+∞
k=1 can be obtained through

the following procedure: for givenm ∈ N and k = 1 + m(m − 1)/2, define

λk = µ2
1 + γ 2

m, λk+1 = µ2
2 + γ 2

m−1, . . . , λk+m−1 = µ2
m + γ 2

1 . (33)

and

ψk = X̂1Ŷm, ψk+1 = X̂2Ŷm−1, . . . , ψk+m−1 = X̂mŶ1. (34)

The purpose of the above enumeration of the eigenfunctions ψk is to capture low frequencies first.
In such a case, it is often seen that a few terms are usually enough for the truncated series to produce
good approximation to the solution of the bioheat transfer problem. To illustrate this, we can consider
the case where p = 0 and q > 0 with q constant. In this event, elementary calculations show that

µ2
i = κ(i − 1)2π2, γ 2

j = κβ2
j + q, (35)

where βj is a root of the nonlinear equation

β cot (βM) = −κ−1h.

In addition, the orthonormal eigenfunctions are X̂i = Xi/Ni, where

Xi(x) = cos (κ−1/2µix), Ni =
{√

2/2, i �= 1,
1, i = 1

(36)

and Ŷj = Yj/Mj, where

Yj(y) = sin (βj(M − y)), Mj =
(
M

2
− 1

4βj
sin (2βjM)

)1/2

. (37)

Furthermore, when both U∞ and Ub are constant, we can take

Uext(y) = Ub + hκ−1M−1(U∞ − Ub)y(y − M).

In this case, from (30), we can see that the Fourier series solution to (1)–(5) becomes

U(x, y, t) = Ub + h(U∞ − Ub)

κM
y(y − M) +

+∞∑

k∈Jm

ake
−λktψk(x, y)

+
+∞∑

k∈Jm

∫ t

0
(f(s),ψk)O e−λk(t−s)ψk(x, y)ds,

(38)
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Figure 1. Left: Usual behavior of coefficients ak and exponential terms e−λk t for the series solution of the bioheat problem. Right:
Solution of bioheat problem at t = 0.1. In this case, themaximumerror in a regular grid of 20×20 points between the exact solution
U(xi , yj , t) and the approximate solution obtained by truncating the series to 15 terms, which we denote here by U15(xi , yj , t), is

maxi,j |U(xi , yj , t) − U15(xi , yj , t)| = 4.35 × 10−7 .

where ak = (U0 − Uext,ψk)O and where for each m ≥ 1, Jm = {ℓ ∈ N/ ℓ = i + m(m − 1)/2, i =
1, . . . ,m}.

For illustration purposes and completeness, the first 15 exponential terms e−λkt and corresponding
coefficients ak of the Fourier series (38) are displayed in Figure 1. In this illustration, we consider
a dimensionless counterpart of the bioheat model (6)–(10) where O is the rectangle ]0, 1[×]0,M[,
q = 0.15, and where the solution to the bioheat model is given by

U(x, y, t) = ec1t cos (c2t)y
2(y − M) cos (πx) + hU∞(y − M)y/M,

for h = 0.025, c1 = −50, c2 = 6π , U∞ = 0.01, andM = 1. The average decay of the coefficients
ak in absolute value and the exponential terms e−λkt at t = 0.1 confirm that the main features of
the solution are indeed captured with a few terms of the series. For additional numerical results of
the Fourier approach as well as comparisons with a pseudospectral based approach for the problem,
the reader is referred to [7].

Why only a few eigenvalues λk are sufficient to capture themost important features of the Fourier-
based solution to the bioheat model is now justified by the theorem below.

Theorem 3.2: Assume that O =]0, 1[× ]0,M[, cbwb(x, y) = p(x) + q(y), with p ∈ L∞(]0, 1[),
q ∈ L∞(]0,M[) being nonnegative functions, and that the eigenvalues λk of the elliptic operator
L : A ⊂ L2(O) → L2(O) are ordered as in (33). Then for j = 0, 1, . . . ,m − 1 we have

λk+j = µ2
j+1 + γ 2

m−j ≥ κ j2π2 + γ 2
m−j + mp,

where µ2
i and γ 2

j are eigenvalues of the Sturm–Liouville problems (31) and (32), respectively, and

mp = ess inf 0≤x≤1 |p(x)|.
Proof: Let λi and λ̌i be the eigenvalues of L associated to the cases p(x) ≥ 0 a. e. in [0, 1] and
p(x) = 0 a. e. in [0, 1], respectively, and let a0(u, v) and a1(u, v) be the corresponding bilinear forms,
i.e.

a0(u, v) = κ(∇u,∇v)O + h(u, v)Ŵ3 + ((p(x) + q(y))u, v)O

and

a1(u, v) = κ(∇u,∇v)O + h(u, v)Ŵ3 + (q(y)u, v)O.
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It is immediate to see that a0(u, v) and a1(u, v) are coercive and continuous on H1
Ŵ1

(O) × H1
Ŵ1

(O),

and that for each u ∈ H1
Ŵ1

(O) with‖u‖0,2,O = 1, we have

a0(u, u) ≥ a1(u, u) + mp.

Assume temporarily that λi and λ̌i are ordered in nondecreasing form. Then, the well-known Min–
Max Theorem [21, Theorem 10, p.102], implies

λi = max
Vi−1⊂H1

Ŵ1
(O)

[min{a0(u, u), u ∈ V⊥
i−1, ‖u‖1,2,O = 1}]

≥ max
Vi−1⊂H1

Ŵ1
(O)

[min{a1(u, u), u ∈ V⊥
i−1, ‖u‖1,2,O = 1}] + mp = λ̃i + mp,

(39)

where themaximum is over all subspacesVi−1 ⊂ H1
Ŵ1

(O) of dimension i−1. Now notice that for the

case p(x) = 0, the ith eigenvalue of the Sturm–Liouville problem (31) is given by κ(i−1)2π2, see (35).
This shows that if we enumerate the eigenvalues λ̌k according to (33), we have λ̌k+j = κ j2π2 + γ 2

m−j,

for j = 0, . . . ,m − 1. This and (39) imply

λk+j = µ2
j+1 + γ 2

m−j ≥ λ̃k+j + mp = κ j2π2 + γ 2
m−j + mp,

and the proof follows. �

Since the Fourier series (38) involves exponential factors e−λkt , it is now clear that only a few
eigenvalues will play some role in the solution.

There is a physical motivation to assume the particular case where qm, qe, and Ua are all
constants.[4,5] If this is the case, the Fourier series solution (30), as well as the explicit representation
of Xi and Yj given in (36)–(37), allow us to obtain the following regularity result.

Theorem 3.3: Assume that O =]0, 1[× ]0,M[, cbwb = q > 0, ρc = 1, U0 ∈ L2(O) and that qm, qe,
Ua, Ub, U∞ are all constants. Then, problem (1)–(5) has a unique solution U ∈ C∞(]0,+∞[ ×O)

given by

U(x, y, t) = η(y) +
∞∑

k=1

ake
−λktψk(x, y), (40)

where ak = (U0 − η,ψk)O and

η(y) = G

q
+

(
qUb − G

q

)
cosh (

√
qκ−1(y − M))

+
hG − hqU∞ + (Ubq − G)(

√
κq s + h c)

q(
√

κq c + h s)
sinh

(√
qκ−1(y − M)

)
,

(41)

with c = cosh (
√
qκ−1M), s = sinh (

√
qκ−1M) and G = qUa + qm + qe.

Proof: It is straightforward to see that the function η(y) defined in (41) satisfies both the differential
equation −κ η′′(y) + q η(y) = G and the boundary conditions (2)–(4). In view of Theorem 3.1, the
unique solution U of the bioheat problem (1)–(5) can be expressed as U = V + η, where V solves
the Cauchy problem (6)–(10), with Uext = η and f = 0. Moreover, from (36)–(37), for each integer
m ≥ 1, k = 1 + m(m − 1)/2 and i ∈ {1, . . . ,m}, we get ψk ∈ C∞(O) and

sup
x∈O

∣∣∣∣
∂ |α|ψk+i−1

∂xα1∂yα2
(x)

∣∣∣∣ = O

(
µ

α1
i β

α2
m−i+1

Mj

)
(42)
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for any α = (α1,α2) ∈ N × N. It is easy to check that, for each j ∈ N,

sj(t) = sup
k∈N

e−2λktλ
j
k

is a continuous function in any interval [ǫ,T], ǫ > 0. Now, based on (42), we can differentiate

V(x, y, t) =
+∞∑

k=1

ake
−λktψk(x, y)

term by term with respect to the variables x, y, and t as many times as we desire, thus obtaining a
uniformly convergent series in O × [ǫ,T], for any ǫ > 0. This concludes the proof. �

3.1. Highly accuratemethod for computing eigenpairs

As already mentioned, except for the case where cbwb is constant, the problem of determining the
spectral information for L is difficult. The objective of this section is to describe an algorithm that
intends to alleviate this difficulty for the case where cbwb is split into two functions as described above,
in which case we are able to construct approximations to the eigenpairs of L based on eigenpairs
of the Sturm–Liouville problems (31)–(32). The underlying idea is to approximate eigenvalues and
eigenfunctions of the continuous problems using eigenvalues and eigenvectors of standard matrix
eigenvalue problems obtained after discretization of (31) and (32), respectively. To this end, due to
its high accuracy and low computational cost compared with finite difference methods, we choose to
use the Chebyshev pseudospectral method (CPS) based on the well-knownChebyshev differentiation
matrix.[32,33] For simplicity, we will consider a mesh consisting of N + 1 grid points on [0, 1] based
on the N + 1 Chebyshev-Gauss Lobatto points in each directions (which means we setM = 1):

xi = yi = 1

2

[
1 − cos (π i/N)

]
, i = 0, . . . ,N ,

and denote the (N + 1) × (N + 1) Chebyshev differentiation matrix by D. If v = [v0, . . . , vN ]T
is a vector consisting of values of function v(x) at the grid points xi, we recall that highly accurate
approximations to v′(xi), v′′(xi), etc. can be produced by performing products of the form Dv, D2

v,
etc. i.e. by taking v′(xi) ≈ (Dv)i, v

′′(xi) ≈ (D2
v)i, etc. For the discretization of the Sturm–Liouville

problems, it is convenient to express the Chebyshev differentiation matrix as

D = [c0, . . . , cN ] =



rT0
...

rTN


 , ci, ri ∈ R

N+1.

With these representations for D, the second order differentiation matrix can be expressed as

D2 = c0r
T
0 + · · · + cN r

T
N .

To discretize the Sturm–Liouville problem (31), let X = [X(x0), . . . ,X(xN )]T . Then,

[X ′′(x0), . . . ,X
′′(xN )]T ≈ D2

X = c0r
T
0 X + c1r

T
1 X + · · · + cN−1r

T
N−1X + cN r

T
NX.

Taking into account that

rT0 X ≈ X ′(x0) = 0 = X ′(xN ) ≈ rTNX,
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neglecting approximation errors and denoting by X̃ the vector of approximations toX, the collocation
Chebyshev pseudospectral method produces the standard matrix eigenvalue problem

AXX̃ = µ2
X̃, AX = P − κD1D2 ∈ R

(N+1)×(N+1), (43)

being

P = diag
(
p(x0), . . . , p(xN )

)
, D1 = [c1, . . . , cN−1], D2 =




rT1
...

rTN−1


 . (44)

Thus, our method takes as approximations to the eigenvalues µ2
i the eigenvalues of matrix AX

and as approximations to pointwise values of eigenfunctions Xi the components of corresponding
eigenvectors of AX .

Similarly, to discretize the Sturm–Liouville problem (32), letY = [Y(x0), . . . ,Y(xN )]T . As before,
the vector of second-order derivatives can be approximated as

[Y ′′(x0), . . . ,Y
′′(xN )]T ≈ D2

Y = DDY = D

[
rT0 Y

D̂T
2 Y

]
= D

[
rT0 Y
0

]
+ D

[
0

D̂T
2 Y

]
,

where 0 ∈ R
N is a vector of all zeros. Now taking into account the boundary conditions

Y(0) = κ

h
Y ′(0) ≈ κ

h
rT0 Y, Y(xN ) = 0,

neglecting approximation errors and denoting by Y̆ , the vector that approximates the N first
components of Y, we obtain a matrix eigenvalue problem

AYY̆ = γ 2Y̆ , AY = Q − κ

([
h

κ
ĉ0, 0, . . . , 0

]
+ D̂1D̂2

)
∈ R

N×N , (45)

where Q = diag(q(y0), . . . , q(yN−1), ĉ0 comprises the N first components of c0, 0 ∈ R
N is as above,

[D̂1]i,j = Di,j for 0 ≤ i ≤ N − 1, 1 ≤ j ≤ N , and [D̂2]i,j = Di,j for 1 ≤ i ≤ N , 0 ≤ j ≤ N − 1.
Thus, approximate eigenpairs for the elliptic operatorL can be constructed following (33) and (34)

based on eigenpairs {µ2
i , X̃i} of AX and eigenpairs {γ 2

j , Y̆j} of AY, taking as pointwise approximation

to the jth eigenfunctionYj, the vector Ỹj =
[
Y̆j

0

]
. Based on this, approximations to the eigenfunctions

ψk on the mesh can be constructed using rank one matrices calculated as,

ψ1(xi, yj) ≈ [X̃1Ỹ
T
1 ]i,j, ψ2(xi, yj) ≈ [X̃1Ỹ

T
2 ]i,j, ψ3(xi, yj) ≈ [X̃2Ỹ

T
1 ]i,j , . . . (46)

Remark 3.1: It is worth observing that if the method of separation of variables works and the
eigenpairs of the Sturm–Liouville problems (31)–(32) are enumerated according to (33)–(34), then
m computed accurate approximations to eigenpairs of the Sturm–Liouville problems will result in
m(m + 1)/2 accurate approximations to eigenpairs of the elliptic operator.

Thus, if the goal is to compute eigenmodes of the elliptic operator through somenumericalmethod,
a few eigenpairs of the Sturm–Liouville problems are required and these must be computed to high
accuracy. As we will see, that is precisely what the Chebyshev pseudospectral method does. In fact,
to illustrate this, we consider a bioheat equation for which κ = 1, p(x) = 0, and q(y) = 0.15. In this
case, both Sturm–Liouville problems have closed form solutions given by (35)–(37). Figure 2 displays
some continuous eigenmodes given in (36) and (37), as well as the corresponding approximations
produced by the Chebyshev pseudospectral method with N = 20. As we can observe, except for
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Figure 2. Top: Continuous and discrete eigenmodes of Sturm Liouville problem (31). Bottom: Continuous and discrete eigenmodes
of Sturm–Liouville problem (32). In both cases, lines linking small circles correspond to discrete eigenmodes.
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Figure 3. Approximate eigenmodes produced by Chebyshev pseudospectral method.

mode 12 corresponding to the Sturm–Liouville problem (32), the computed modes agree well with
the continuous ones. To bemore precise, the numerical results revealed that modes corresponding to
low frequencies are calculated more accurately, in fact, with regard to the Sturm–Liouville problem
(32), eigenvalue 5 is accurate to eight digits, eigenvalue 9 is accurate to 6 digits, but eigenvalue 12 is
not at all accurate and with relative error 19%. From this observation and Remark 3.1, we conclude
that the first 5modes of the Sturm–Liouville problems, computedwith high precision, will result in 15
highly accurate modes for the elliptic operator, as seen in Figure 4, which have been shown sufficient
for the solution of the bioheat problem in series form to be meaningful, see Figure 1. We notice that
accuracy can be improved by simply increasing the number of grid points. As an example, by taking
N = 30, the difference between the first 5 continuous eigenvalues and the five computed ones is just
at the level of rounding errors. Approximations to some of the first 15 modes of L according to (46)
produced by the Chebyshev method with N = 30 are displayed in Figure 3.

Other methods can be employed to solve the Sturm–Liouville problems (31)–(32). These include
finite differences methods, finite element methods, spectral methods, and multidomain spectral-
type methods. While the former are well suited for very simple domains, the latter are preferable
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Figure 4. Relative error for first 10 eigenvalues of Sturm–Liouville problem (31) computed by multidomain collocation method for
several subdomains with N = 10 for each subdomain.

for boundary value problems in domains with a complicated geometry and solutions with different
regularity in different parts of the domain. In multidomain spectral-type methods, we divide the
domain of interest into smaller subdomains which are individually mapped onto a reference domain,
e.g. the interval [−1, 1] for 1D problems.[34,35] The approximation to the global solution arises by
combining the solutions computed via a spectral/pseudospectral method relative to each subdomain.
We close this note by briefly describing a multidomain method for the Sturm–Liouville problem
(31) based on the CPS method. Let k ≥ 1 be an integer and sj ∈ R, 0 ≤ j ≤ k, such that 0 =
s0 < s1 < · · · < sk−1 < sk = 1. To derive the pseudospectral approximation, we subdivide the
interval I = [0, 1] into k subintervals Ij = [sj−1, sj], 1 ≤ j ≤ k. Then, solving the Sturm–Liouville
problem (31) via a multidomain collocationmethod is equivalent to finding k Nj-degree polynomials
Xj, 1 ≤ j ≤ k, such that

X ′′
j (x) + κ−1(µ2 − p(x))Xj(x) = 0, x ∈ Ij, 1 ≤ j ≤ k, (47)

Xj(sj) = Xj+1(sj), 1 ≤ j ≤ k − 1, (48)

X ′
j (sj) = X ′

j+1(sj), 1 ≤ j ≤ k − 1, (49)

X ′
1(s0) = X ′

k
(sk) = 0. (50)

To keep the notation simple, we take the polynomial order Nj to be equal to N across all

subdomains. Thus, to determine thepolynomialsXj, wedefine anew set of nodes ξ
N ,j
ℓ ∈ Ij, 0 ≤ ℓ ≤ N ,

1 ≤ j ≤ k, and then collocate the differential Equation (47) at the nodes in Ij in such a way that the
constraints (48)–(50) are satisfied. This gives rise to a block-diagonal (kN + 1) × (kN + 1) matrix
eigenvalue problem which can be handled via numerical linear algebra tools. Of course, polynomials
of different degree can be used in each domain depending on the regularity of the solution. The
number of blocks and the number of collocation points in each subdomain is arbitrary but the use
of many subdomains and polynomials of low degree is often found in literature.[35] Convergence
analyses of multidomain collocation methods for 1D problems can be found in [35, Chapter 11]. To
illustrate the effectiveness of the multidomain collocation method, we solve (31) using polynomials
of the same degree as the solutions are regular in the whole domain. Errors associated to computed
eigenvalues are plotted in Figure 4. Good accuracy with relatively few nodes and small number of
subdomains is apparent. A similar observation applies to the accuracy of corresponding eigenmodes
(not shown here).

We finally observe that for the general case where the coefficient cbwb is a function that cannot
be separated as above, the problem of constructing approximations to the eigenpairs {λk,ψk} can be
handled by discretizing the elliptic operator. In such a case, approximate eigenpairs can be obtained
by solving suitable matrix eigenvalue problems. This is beyond the scope of the present paper.
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4. Conclusion

An analysis on existence and uniqueness of solutions for a 2D bioheat equation with convective
boundary conditions has been carried out. As main result, a Fourier series-based solution was
obtained based on a suitable transformation of the original problem into a standard Cauchy problem,
as well as on elliptic regularity on polygons and semigroup theory. The analysis shows that the series
constructed this way can converge quickly in cases that appear in applications. Although second-
order parabolic equations have been widely discussed in the literature, very little attention has been
devoted to the convergence analysis of Fourier series-based solutions for the bioheat model. In this
event, we believe our results become useful in that they provide theoretical support for numerical
methods, successfully used so far but with no convergence analysis, see, e.g. [5,7].
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