
Mechanical Systems and Signal Processing (1996) 10(4), 365–380

AN OPTIMISED PSEUDO-INVERSE ALGORITHM
(OPIA) FOR MULTI-INPUT MULTI-OUTPUT

MODAL PARAMETER IDENTIFICATION

F́. S. V. B́†  C A. B‡
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A multi-input multi-output (MIMO) algorithm for modal parameter identification is
developed based on linear prediction theory and its numerical efficiency compared to that
of the well-known Eigensystem realisation algorithm ERA. The problem of determining
the correct system’s order is analysed through perturbation theory of singular values of
oversized Hankel-block matrices. The popular technique of using overdetermined models
to mitigate the effects of external noise on the quality of the estimated parameters is justified
here by showing analytically that the system’s singular values are enhanced when oversized
Hankel matrices are used. Numerical experiments illustrating the performance of the
proposed algorithm on both simulated and real mechanical systems, are included.
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1. INTRODUCTION

Modal parameter identification is the procedure used to determine dynamic properties of
vibrating systems from experimental data, such as damping, frequencies, mode shapes and
modal participation factors, which are referred to as modal parameters. In recent years,
several multiple-input multiple-output (MIMO) modal parameters identification methods
have been specially developed to take advantage of the accuracy and consistency of the
acquired data obtained by MIMO procedures. Such methods include the Ibrahim time
domain [1, 2], the polyreference time and frequency domain method [1, 21, 23], the
Eigensystem realisation algorithm in both the time and frequency domain [13, 14] and the
direct parameter model method [15]. A common characteristic of those methods is their
ability to improve the quality of the estimated parameters, as well as to handle closely
spaced modes. In almost all these cases, the methods apply to data in processed form,
either as frequency response functions FRFs, or the equivalents impulse response functions
IRFs, typically found through the inverse Fourier transform. Several handicaps, however,
still exist in MIMO modal parameter identification methods. One of the major problems
is in the determination of the number of effective modes for a measured data set. It is
widely known that in practical applications the use of overdetermined models is very
useful to overcome this problem as well as to mitigate the effects of external noise. But,
theoretical justifications explaining the benefits of using overdetermined models are rarely
found. When this is the case, intuitive justifications are presented, see [22] for example.
Another problem is how to distinguish between computational modes and actual modes
of the structure to be identified.

The pseudo-inverse technique is a powerful tool for linear algebra that has
found numerous applications in modal testing [7], and in a great variety of applied
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sciences [2, 5, 6, 10, 19]. In particular, the modal parameter identification area has
been widely favoured since, in general, pseudo-inverse matrices are used extensively
during the development of methods for parameter identification. Even so, it is
important to state that working with pseudo-inverse matrices is a delicate matter, mainly
because elements of pseudo-inverse matrices are sensitive to small perturbations in
the data, that is, small perturbations in the data can yield large perturbations in the
computed pseudo-inverse. These facts are well-documented in numerical linear algebra
[5, 9, 10, 18].

The purpose of this paper is to present a MIMO algorithm for modal parameter
identification, giving the details of a time domain implementation and showing later
that it can be implemented in the frequency domain. The algorithm, the optimised
pseudo-inverse algorithm (OPIA), is based on linear prediction and makes use of
super-dimensioned Hankel-block matrices, constructed with either sampled versions
of the impulse response matrix function or the corresponding frequency response
matrix function, which are estimated by using force and response signals measured
simultaneously. The paper is organised as follows: section 2 is a tutorial, it includes
the theory for MIMO modal parameter identification and certain basic results of linear
algebra. Section 3 develops the proposed algorithm. Here, a rigorous singular value
analysis of superdimensioned Hankel matrices is carried out in order to detect the
system’s correct order and also to explain why overdetermined models must be used for
parameter identification. Finally, to illustrate the performance of the proposed algorithm,
numerical experiments using both synthesised and real mechanical systems are included
in Section 4.

2. MATHEMATICAL MODEL AND THEORY

2.1. - - 

The theoretical basis of MIMO modal parameter identification methods is well
documented in numerous sources [1, 7, 11]. A natural assumption is that the system under
test is spatially discretised and that its dynamic behaviour is described by a set of
differential equations of type

Mü+Cu̇+Ku= f, (1)

where M, C and K are square matrices which represent the system’s mass, damping and
stiffness properties, respectively, u is a vector of generalised co-ordinates representing
displacement and f the vector of excitation acting at each dof of the system. In practice,
as dynamic signals are discrete in nature, due to truncation of the data in terms of
frequency content and measurement errors, only a finite number of modes can be used
to describe the dynamic behaviour of the system. Thus, if q excitations and p responses
are available, a p× q impulse response function matrix h(t) may be found in order to
describe the system’s characteristics [1, 13, 22, 23]. The following relationship between
impulse response functions and modal parameters can be established [1, 22]:

h(t)=F eLtL, (2)

where:

F=[f1, . . . , fn , f*1 , . . . , f*n ]p×2n

is a mode shape matrix (vector fi is the i-th system’s mode shape),

L=diag(l1, . . . , ln , l*1 , . . . , l*n ),
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with the ls being the system’s eigenvalues, and;

LT =[l1, . . . , ln , l*1 , . . . , l*n ]q×2n ;

being the modal participation factor matrix, which indicates how well a particular input
excites a particular mode. Here, the * symbol denotes complex conjugation and n the
number of modes contained in the data. Parameters {f, li , li} are the so-called ith modal
parameters of the system. Relation (2) can be expressed by:

h(t)= s
n

i=1

filiT eli t +f*i l*T
i el*t

i = s
n

i=1

Ri eli t +R*i el*ti (3)

where the Rs are the well-known residues matrices.
Frequency response matrices and impulse response matrices are related by H(v) =

F[h(t)], where F denotes Fourier transformation. Hence

H(vk )=FLkL, (4)

where

Lk =diag0 1
jvk − l1

, . . . ,
1

jvk − ln
, . . . ,

1
jvk − l*1

, . . . ,
1

jvk − l*n 1, j=z−1.

This paper deals with the development of algorithms for modal parameter identification,
where equations (2) and (4) are extensively employed. The use of equation (2) is
characteristic for the well-known time domain methods, while equation (4) is basic for
frequency response approaches.

2.2.   

This section deals with the presentation of some basic results of linear algebra which
are included for completeness. Given a matrix A of order M×N, there exists a unique
matrix G of the order N×M satisfying

(i) AGA=A, (ii) GAG=G, (iii) (AG)H =AG; (iv) (GA)H =GA, (5)

where superscript H denotes the transpose conjugate of a matrix. Matrix G is the
so-called pseudo-inverse matrix of A and is denoted by G=A†. Conditions (i)–(iv) are
known as the Moore–Penrose conditions. If A is factored as A=BC, such that B is M× l,
C is l×N and the rank of A, B and C is l, then

(a) A†=C†B†,

(b) C†=CH(CCH)−1, and (6)

(c) B†= (BHB)−1BH.

Moreover,

B†B= Il =CC†, (7)

where Il the l× l identity matrix. When A is factored as above, it is said that this is a
full-rank factorisation of A. For the purpose of computing the pseudo-inverse of a
matrix, relations expressed in (6) are fundamental [2]. Another important result is that
related to the pseudo-inverse of a perturbed matrix. If A	 =A+E, where E is a matrix
of small pertrubations of A, a question that arises is how close is A	 † to A†? An answer
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to the question can be achieved through the singular value decomposition (SVD) of A

[5, 9]. This decomposition assures the existence of matrices, U, V and D, such that

A=UDVH, (8)

where U and V are unitary matrices of order M and N respectively, and D is the M×N
matrix

s1F J
G G

D =
s2

. (9)G G·
·
·G G
sNf j

The ss are the singular values of A and satisfies

s1 e s2 · · · e sN e 0. (10)

Among other important information, the SVD of A reveals that if rank(A)= l,
there are exactly l non-zero singular values and that the 2-norm of both A and A†

are >A>= s1 and >A†>=1/sl , respectively. By assuming the 2-norm as measure
of closeness, if rank(A	 )= rank(A)= l, and >E>Q sl ; then the following estimate holds
[5, 10]

>A† −A	 †>
>A†> E 1+z5

2
k(A)

1−
>E>
sl

>E>
>A> . (11)

Here, k(A)= s1/sl , is the condition number of A. The last relation says that to be A	 † 1A†,
in addition to the imposed conditions, >E> must be small when compared to sl , and
A must be well conditioned (k(A)=O(1)), otherwise, the approximation of A† by
A	 † may be very poor. These results are well documented in numerical linear algebra
[5, 9, 10, 18].

Another result is one that tells on the spectrum of the product of matrices. Let A$CM×N

and B$CN×M, MeN, where CM×N denotes the set of all complex M×N matrices.
Then

l(AB)= l(BA)* {0}. (12)

Here, l(A) denotes the spectrum of A, a proof of this result can be seen in [18].

3. IDENTIFICATION PROCEDURE

The proposed algorithm is based on linear prediction [3, 4, 16, 17, 19]. In linear
prediction one seeks a matrix containing the dynamic properties of the system and
at the same time it predicts the future states of the system from the previous ones.
The procedure used to develop OPIA is basically the same as that utilised in [4] for
deriving the algorithms for parameter identification of single functions expressed as the
sum of exponentials. This technique can be implemented in both the time and frequency
domain.

3.1. 

The basic idea of time domain modal parameter identification methods is to form a
numerical matrix, S, whose eigenstructures reveals information about the modal
parameters of the structure under test. Once the matrix S is formed, the damping rates
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and damped natural frequencies are found from the eigenvalues while the mode shapes
are encountered from the corresponding eigenvectors. The matrix S can be formed in
different ways. In linear prediction, one forms a matrix equation

SH( j)=H( j+1), j=0, 1, . . . (13)

where H( j) are (M× p)×(N× q) Hankel-block matrices whose entries are samples of
h(t): hj = h( jDt), with Dt being the sampling interval

K Lhj hj+1 · · · hj+N−1

G G
H( j) =

hj+1 hj+2 · · · hj+N
.G G·

·
·

·
·
·

·
·
·

·
·
·G GG G

hj+M−1 hj+M · · · hj+M+N (M× p)×(N× q)k l

Next, for some j previously chosen, a matrix S is calculated by pseudo-inversion:

S=H( j+1)H( j)†. (14)

It can be shown that the eigenstructure of S so constructed contains the system’s modal
parameters. In fact, the Hankel matrix can be re-written as

FK L
G G

H( j)=
FL�

L� j[L L�L · · · L�N−1L]=F�L� jL�, (15)G G·
·
·G G

k lFL�M−1

where F� and L� are easy to see in the context; and

L� =diag(el1Dt, . . . , elnDt, el*1 Dt, . . . , el*n Dt). (16)

If the system is controllable and observable [11, 14, 22], F� and L� are both of rank 2n, and
so rank (H( j))=2n, [je 0. Using equations (6) and (7),

H( j+1)H( j)† =F�L� j+1L�(F�L� jL�)† =F�L� j+1L�L�†(L� j)†F� † =F�L�F� †,

which confirms the desired result. Moreover, using equation (6) and (7) again, one sees
that

H( j+1)=F�L� j+1L�=F�L�F� †F�L� jL�=F�L�F� †H( j),

whence follows that F�L�F� † is a matrix that performs as linear predictor and that the
system’s modal parameters can be extracted from its eigenstructure. Therefore, the matrix
S calculated by equation (14) performs as predictor as well as state matrix.

In practice, the system’s order is not always known in advance and enough data must
be taken to assure that M and N are both greater than 2n. Moreover, it is known that the
presence of noise in the data imposes the use of overdeterminated models in order to
minimise the distorsion of the identified parameters as well as to detect the correct system’s
order [1, 3, 13, 14, 22]. In such cases, independently of the way how the pseudo-inverse
is calculated, the size of the matrix S becomes extremely large and considerable
computational effort must be performed. For this reason, principle component analysis
and minimal realisation approaches are suggested [1, 13, 14]. A typical algorithm that
constructs a minimal realisation is ERA.
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3.2.      

For the purpose of deriving OPIA, first, observe that the Hankel matrices H( j+1) and
H( j) can be related by

H( j+1)=H( j)C, [je 0. (17)

Here, C is a (N× q)×(N× q) companion-block matrix defined by

K L0 0 · · · 0 c1

G G
C =

Iq 0 · · · 0 c2
, (18)G G·

·
·

·
·
·

·
·
·

·
·
·

·
·
·G GG G

0 0 · · · Iq cN (N× q)×(N× q)k l

with q being the number of columns of the entries in the Hankel-block matrices and the
ci s are q× q matrices, which must satisfy

H( j)C
 = h
 . (19)

In this equation, h
 and C
 are both the last column vector-block of the matrices H( j+1)
and C respectively. Although equation (19) has infinite solutions, one always can impose
unicity by computing the corresponding one of minimal norm.

Now, using the SVD theorem

H( j)=UDVT =[U1U2]$D1

0
0
D2%$VT

1

VT
2%=U1D1V

T
1 , (20)

where, U1, V1 are matrices (M× p)×2n and (N× q)×2n, respectively, and D1 is the
2n×2n diagonal matrix which contains the non-zero singular values of H( j). Observe that
the above decomposition is a full-rank decomposition of H( j). Then, by using (6)–(a),
it follows

H( j)† =V1D1
−1UT

1 . (21)

Using equations (21) and (20) in equation (14), by applying repeatedly the basic result
expressed in equation (12), it follows that the spectrum of S (discarding the zero
eigenvalues) satisfies:

l(S)= l(VT
1 CV1).

Therefore the system’s eigenvalues can be extracted from the eigenvalues of

S� =V1
TCV1. (22)

This relation constitutes the core of the current algorithm. Observe that the matrix S� is
now 2n×2n, i.e., it describes a reduced model of an order equal to the number of modes
of the system.

The system’s eigenmodes and the corresponding modal participation factors now need
to be calculated. For this purpose, observe that S [of (14)] and S� are related by

S=U1D1S�D−1
1 UT

1 . (23)

If c� is an eigenvector matrix of S�, from the above relation it follows that

SU1D1c� =U1D1c�L� . (24)

That is, U1D1c� is a matrix of eigenvectors of S corresponding to the system’s eigenvalues.
Consequently, if E denotes the p×(M× p) matrix defined by E=[Ip 0], the system’s
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eigenmodes can be calculated by

F=EU1D1c�L� . (25)

Finally, once the system’s eigenvalues and the mode shapes are calculated, the modal
participation factors can be determined from equation (15) by a linear least square
procedure. If F is a (N× q)× q matrix defined by F=[Iq 0]T, then

L=L�−jc�−1VT
1 F. (26)

With the modal parameters at hand, single impulse responses can be synthesised by using
(3). The proposed method (OPIA) suggests the estimation of modal parameters by using
(22), (25) and (26).

Since both OPIA and ERA methods are derived using the SVD theorem, it
seems appropriate to carry out a comparison regarding their numerical characteristics.
ERA extracts the system’s eigenvalues and mode shapes from the eigenstructure of a
matrix, say, SE [13, 14], where

SE =D−1/2
1 UT

1 H( j+1)V1D
−1/2
1 . (27)

It is easy to see that the work necessary for computing S� is equivalent to that used
to form a product VT

1 V1 plus a product of type VT
1 C
 , where C
 comes from equation (19).

When C
 is of minimal norm, C
 =H†( j)h
 =V1D
−1
1 UT

1 h
 , and so, VT
1 C
 =D−1

1 UT
1 h
 . Assuming

D1 and V1 are available, UT
1 h
 can be easily calculated by means of equation (20) (without

effective computation of U1). Thus, matrix S� can be formed efficiently using only the
2n-right singular vectors of H( j) and their corresponding singular values. But, since
these singular vectors are eigenvectors of A=H( j)TH( j), in a first attempt one could
compute them through an eigendecomposition of A. Indeed, this operation will be less
expensive than performing a full SVD of H( j). One can verify, using MATLAB routines
that, for example, forming matrix A using a Hankel matrix 500×200 and performing its
eigendecomposition, requires approximately a third of the time required for performing
a full SVD of H( j). A disadvantage of forming A is that, unless the product is formed
in double-precision, numerical information can be lost due to rounded errors, and
singular values will be calculated inaccurately. Fortunately, these effects do not perturb
the largest eigenvalues and corresponding eigenvectors (this fact is widely known in
computational linear algebra). It will be seen later that system’s singular values are
enhanced when oversized Hankel matrices are used. A less expensive procedure for
computing estimates of V1 and D1 can be achieved from a partial eigendecomposition
of A. This can be reached using iterative methods, such as the block-power method (also
called subspace iteration), or Lanczos method [20]. In applying these techniques, one
must fix in advance a number p of desired eigenvectors. The number p must be a little bit
larger than twice the anticipated number of system’s modes. In practice, number p always
can be estimated, for instance, by analysing a single FRF. In these conditions, it is obvious
that, forming S� is much more economical than forming that one used by ERA. Although
S�, and SE are formed in a different way, extensive numerical computations have revealed
that, (even with noise data), both OPIA and ERA yields modal parameters close to
each other.

3.3.   ,     fi

As was pointed out in subsection 3.1, the system’s order can be identified from the
rank of the matrices H( j). If noiseless data is used, the task is trivial, since the rank of
H( j) can be identified by observing the 2n non-negligible singular values of this matrix.
But, since in practice the available data are contaminated by external noise, a full-rank



. . . ́  . . 372

Hankel matrix must be used: H	 ( j)=H( j)+ e, where e represents a Hankel matrix of
perturbations. This fact imposes an analysis of the conditions on the noise level in the data
in order that one can be able to identify the system’s order. For this purpose, let s and
s̃ the singular values of H( j) and H	 ( j) respectively. Using perturbation theory of singular
values [5, 9, 18]:

6s̃i E si + >e>,

s̃i E >e>,

i=1, 2, . . . , 2n;

i=2n+1, n+2, . . . , (N× q).
(28)

From these inequalities one sees that if >e> is small when compared to the 2n-th
singular value of H( j), then there must exist a clear separation of the perturbed
system’s singular values: s̃i , i=1, 2, . . . , 2n, from the noise singular values s̃i ,
i=2n+1, n+2, . . . , (N× q). That is, if >e>�s2n , a set of singular values:
{s̃1, s̃2, . . . , s̃2n} must appear clearly enhanced, while in a second set, the perturbed
singular values associated to the true zero singular values: {s̃2n+1, s̃2n+2, . . . , s̃(N× q)},
must appear minimised, when compared to those of the first set. If one introduces a
constant Tol defined by

Tol=
1

k(H( j))
=

s2n

s1
,

it is obvious that >e>Q s2n is equivalent to

0Q >e>
>H( j)> QTolE 1.

Constant Tol measures as a percentage a sort of tolerance for system order
identification. If H( j) is well-conditional (s2n large) Tol1 1 and so the matrix signal
to noise ratio:>e>/>H( j)> can be high. That is, well-conditioned Hankel matrices
allow the identification of the system’s order even for high noise level. When this is not
the case, that is, when H( j) is ill-conditioned (s2n 1 0), Tol is small and separation of
system’s singular values from noise singular values is impossible even for low signal to
noise ratios.

The above analysis shows that the size of the 2n-th singular value of the Hankel matrix
constructed with clean data plays an important role in the task of identifying the correct
system’s order. Consequently, estimates of s2n as a function of the dimension of H( j)
must be calculated. In fact, from the full-rank decomposition of H( j) [see equation (15)],
using (6a)

>H( j)†>E >L�†>>(L� j)†>>F� †=. (29)

But this can be rewritten as

s2n e
bj

>F� †>>L�†> , b=min{=eliDt=}, i=1, 2, . . . , 2n. (30)

This lower bound still can be written as a function of the modal parameters. Of course,
this can be achieved by following closely a procedure like that one developed to prove
Corollary 3.1 in [4] or by using variational properties of the Rayleigh quotient associated
to F� HF� and L�HL� respectively. This done, one sees that

>F� †>E >F†>
z1+ b2 + · · · + b2M

, and >L�†>E >L†>
z1+ b2 + · · · + b2N

. (31)
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Inequality of the right side holds whenever qe 2n. Similar expressions can be derived for
qQ 2n. With these inequalities in equation (30), one could see that the following theorem
holds.

 3.1 If M and N are both larger than or equal to 2n, then

s2n e
b jz1+ b2 + · · · + b2Mz1+ b2 + · · · + b2N

>F†>>L†> . (32)

Observe that this lower bound depends on the dimension of H( j) and at the same time
it increases as a function of M and N. The closer is the constant b to 1, the better the
enhancing of s2n .

Summarising, the above analysis shows that when data noise are considered,
overdetermined models must be used for identification due to two reasons: first, because
the sufficient condition >e>�s2n could be achieved; and second, because the conditioning
of the Hankel matrix may be improved due to the enhancing of s2n (theoretical results
which justify the decreasing of the condition number as a consequence of overdetermining
the order of the model are still unknown and are the subject of research of the authors.
The results of these investigations will be addressed in future work). It should be
remembered that these conditions are important to have H	 ( j)† 1H( j)†. In such cases, the
quality of the estimated parameters must be satisfactory. In working with experimental
data, however, although s2n increase with the dimensions of the Hankel matrix, so do s1

and >e>. For this reason, it is clear that for severely noisy data, the rate of growth of s2n

may not be as large as the rate of growth of >e>, and so a well-determined gap between
s̃2n and s̃2n+1 will not occur. These cases must be analysed by other methods. In practice,
however, noise may be reduced by different means. This can be done for instance during
the measurement process (by using averages) or by a judicious choice of the sequence of
data to be analysed. This is useful, since some measurement data may be noiser than
others. In these conditions, unless severe ill-conditioning is present, the condition s2n�>e>
should be satisfied as a consequence of using oversized data matrices. This point, as
well as the improvement of the condition number of k(H( j)), will be illustrated later
using both simulated and experimental data. Another consequence of this analysis is
that the behaviour of the lower bound for s2n [see equation (32)] provides information that
can be utilised to determine an effective level of overdetermination not larger than
necessary. For instance, if one supposes b=0.98 and M=N=100, then b2M 1 0.01,
hence, successive overdetermination levels using M and N larger than 100 will not
improve the refered lower bound (for overdamped systems constant b may be much less
than 0.98).

Remarks
1. The singular value analysis of H( j) is important mainly from the theoretical point

of view, since in practical applications, M and N may be extremely large and
performing a full-SVD could be expensive. In these cases, it is sufficient to
compute a partial SVD consisting of the p largest singular values and the
corresponding singular vectors only. A suggestion is to calculate a partial SVD for
a truncating level consisting of twice the number of peaks identified in some
plot describing a mean Fourier spectrum of some column of h(t). Algorithms to
compute a partial SVD can be found in [20]. Another possibility is to replace the
full-SVD by a RRQR factorisation. It is well-known that this factorisation is
able to detect the numerical rank of a matrix saving substantially computational
effort [6].
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2. Analogous to ERA, OPIA has a counterpart in the frequency domain. For the
purpose of deriving OPIA in the frequency domain, complex Hankel-like block
matrices whose entries are shift versions of the frequency response matrix, must
be used. Once these matrices are formed, the same procedure as displayed in the time
domain can be followed. Details on how these matrices areas formed can be found
in [14].

3. A useful procedure to estimate better the effective rank of H( j) can be carried out
by defining the relative gap gi [10], between the singular values s̃i and s̃i+1 by
gi = s̃i /s̃i+1. The number of effective modes can be revealed when there exists a
well-determined gap for some i. This can be seen in a plotting of the gap gi as function
of i. A well-determined gap will not occur either because ill-conditioning is present
or because the level of overdetermination is not large enough to dominate the amount
of noise in the data.

Proposed algorithm (OPIA):
, Step 1. For je 0 and pe 2n, compute the p-right singular vectors corresponding to

the p-largest singular values of H	 ( j). This done, estimate the order of the system.
, Step 2. Construct S� according to (22).
, Step 3. Compute an eigenstructure of S�: {L� , c�}.
, Step 4. Use information from the previous steps and compute the system’s

eigenmodes and modal participation factor matrix according to equations (25) and
(26) respectively.

4. SOME EXPERIMENTS WITH OPIA

To illustrate the performance of the proposed algorithm, simulation studies with known
vibrating systems and experimental data analysis were carried out. The numerical
simulations are referred to identification problems for simulated mechanical systems of
3 and 2 dof, respectively, employing data with and without noise. The theoretical
singular value analysis developed in Section 3.3 is illustrated here in a quantitative manner.
A practical application is addressed to identify the modal parameters of a building
structure. The data set for this was acquired in the Laboratory of Vibration and Acoustics
of the Federal University of Santa Catarina, SC, Brazil.

4.1.  

Example 1: Single IRF of a three dof mechanical system
In order to corroborate the pertinency of developing a singular value analysis of Hankel

matrices constructed with clean data, a single signal defined by

h(t)= e−0.06t sen (4t)+0.8 e−0.056t sen (7t)+1.2 e−0.09t sen (9t),

T 1

Tol and s6 as function of the order of H(0)

Singular value analysis
ZXXXXXXXXXXXXXCXXXXXXXXXXXXXV

Order Tol (%) s6

6 1.8787e-05 1.1461e-04
20 48.37 4.8100
40 64.21 11.7920
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T 2

Results of OPIA Analysis—example 1

True parameters Estimated parameters
ZXXXXXXCXXXXXXV ZXXXXXXXXCXXXXXXXXV

k rk lk r̂k l
 k

1 0.500i −0.060–4.00i 0.003+0.490i −0.0956–3.988i
2 0.400i −0.056–7.00i −0.002+0.387i −0.0550–7.006i
3 0.600i −0.090–9.00i −0.001+0.601i −0.0875–8.992i

was utilised. For this, Hankel matrices whose entries are sample of h(t) recorded at a rate
of Dt=0.1 s were analysed. As the underlying signal corresponds to a 3 d.o.f. system,
rank (H( j))=6, [je 0, a singular value analysis directioned to observe the behaviour
of s1 and s6, for Hankel matrices of various orders, was carried out. Results are
shown in Table 1. As consequence of this analysis, oversized Hankel matrices were very
well-conditioned; therefore changes for system’s order identification were excellent even
for high levels of noise. This fact is attributed to the surprising enhancing of s6 as function
of the order. The OPIA analysis was performed using a Henkel matrix of order 40×40
whose entries were perturbed by random noise in various levels. The noise level was
measured by the ratio >noise>/>signal>. In this case, system’s order identification was
not difficult because in terms of tolerance the constant Tol is high when compared to the
noise level in the data. In these cases, modal parameter identification is a simple task.
Results are presented for the case in which data with noise level of 30% was employed,
see Table 2.

Example 2. Synthesized two dof mechanical system (SIMO-Scheme)
In order to discuss a case in which system’s order identification is difficult, an analytical

mechanical system having high damping rates was analysed. For this, assume a system
described by

$10 0
1%$ü1

ü2%+$20 0
8%$ü1

u̇2%+$ 22
−10z2

−10z2
40 %$u1

u2%=$f1

f2%
The experiment started by calculating the first column of the impulse response matrix

associated to the system: [h11(t) h21(t)]T. Next, with the purpose of simulating a modal test
using as data base IRFs corresponding to a single input and six outputs, ‘new’ IRFs were
constructed by taking arbitrary linear combinations of h11(t) and h21(t). Thus, a modal test
was simulated by applying the current algorithm for identifying the modal parameters
using samples of a 6×1 impulse response matrix: h(t)= [h11(t) h21(t) · · · h61(t)]T. The next

T 3

Tol and s4 as a function of the order of H(0)

Singular value analysis
ZXXXXXXXXXXXXXCXXXXXXXXXXXXXV

Order Tol (%) s4

6×60 4.01e-07 4.50e-09
18×60 0.8532 0.0164
36×60 1.3553 0.0346
48×60 1.4824 0.0416
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T 4

Results of OPIA analysis—example 2

True parameters Estimated parameters
ZXXXCXXXV ZXXXXCXXXXV

k lk l
 k

1 −3.00+5.00i −2.56+5.65i
2 −2.00+4.00i −1.19+3.47i

task was to analyse the behaviour of the fourth singular value of the oversized Hankel
matrix in order to know the tolerance for system’s order identification. For this purpose
IRFs were sampled using Dt=0.05. It was verified that hj 1 0, from je 100, therefore the
level of overdetermination of the model was limited by the number of available samples.
Behaviour of s4 and tolerances for the system’s order identification are shown in Table 3.
Analogous to the first example, a surprising growing of constant Tol can be observed
again; even so the oversized Hankel matrix constructed with the available data do not
allow the identification of the system’s order in the presence of noise, since Tol is very
small. These facts can be explained by observing that the system under analysis have a
mean damping rate j1 0.48, this implies that the constant b defined in equation (30) is
not large enough to allow an effective increase of the lower bound of s4. Results of OPIA
analysis, employing data corrupted by random noise with level of 1.5% and a Hankel
matrix of order 40×60 are shown in Table 4. The behaviour of s4 and Tol justifies the
poor obtained results.

4.2.   : ( )
As an example of an application of the OPIA method to a real system, a building

structure has been chosen. The structure under test corresponds to a prototype of the three
stages of industrial building. All results to be presented were obtained from two sets of
impulse response functions which describes the input–output relationships between 20
input locations from point 11 until point 30 and a single output point located in point 29,
see Fig. 1. The first data set corresponds to lateral excitation in the global x-direction while
the second set corresponds to excitation in the global z-direction. In order to estimate the
impulse response functions, first the corresponding FRFs were calculated. Each FRF
relative at each pair of input–output points was obtained as result of averaging 15 FRFs
related to these points obtained previously via an impact test procedure. Signal responses
were filtered with a cut-off frequency of 200 Hz and measured with a single accelerometer

Figure 1. Prototype of industrial building structure.
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Figure 2. Trend of relative gap. e, gi .

for each data set. Dynamic signals were recorded during 8 s at a rate of 512 samples per
second. All of the 40 impulse response functions were employed for modal identification
in two distinct numerical experiments using data related to x and z directions, respectively,
arranging the data corresponding to each direction in a single column of the impulse
response matrix: h=[h11(t) h21(t) · · · h201(t)]T.

The OPIA analysis was carried out in a PC environment using only 512 samples
beginning from j=10. The system order was identified analysing the behaviour of
the relative gap and the mean Fourier spectrum of the data. This can be seen in Figs 2
and 3, which show the behaviour of the 60 first relative gap’s corresponding to a Hankel
block matrix of the first experience, constructed with 50 row-blocks and 200 columns, and
the mean Fourier spectrum of all the data, respectively. In order to evaluate the
performance of OPIA, the FRFs corresponding to the full frequency domain data were
sent to ICATS (Imperial College Analysis Testing and Software), a modal analyser

Figure 3. Mean Fourier spectrum.
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T 5

A comparison of results: OPIA vs. ICATS ( first experiment)

ICATS OPIA
ZXXXXXXCXXXXXXV ZXXXXXXCXXXXXXV

Mode Damping Frequency Damping Frequency
j (%) v (Hz) j (%) v (Hz)

1 0.83 4.75 0.79 4.75
2 0.91 5.16 0.96 5.17
3 0.51 8.47 0.53 8.47
4 0.32 11.49 0.31 11.49
5 0.29 13.10 0.31 13.11
6 0.31 13.37 0.30 13.37
7 0.29 16.93 0.29 16.94
8 0.19 18.52 0.18 18.53
9 0.15 24.28 0.14 24.28

software, and a global modal parameter identification was requested. Results obtained by
both OPIA and ICATS are shown in Tables 5 and 6 respectively. These tables show that
natural frequencies and damping rates identified by OPIA are remarkably close to those
calculated using ICATS, except that, in the last case, the second mode was not identified,
perhaps because of the short length of the data sequence utilised, due to the limitations
of working in a PC environment. Even so, the results obtained were sufficient to illustrate
a good performance of OPIA.

To strengthen the theory developed in subsection 3.3, the impulse response functions
corresponding to the input–output relationships in the x direction were synthesised [this
was done by using parameters of Table 5 and relation (3)]. With the impulse response
functions at hand, ‘errorless’ Hankel-block data matrices H( j) of several orders were
constructed. This done, the corresponding error matrices e, were computed simply making
e=H	 ( j)−H( j), where H	 ( j) were the Hankel matrices constructed with experimental
data. Next, a singular value analysis of these matrices was carried out. The experiment
was designed to observe the size of both s̃18 and s18, as well as the size of the error >e>,
for successive orders of overdetermination. This was done by maintaining the number of
fixed columns and varying the number of row blocks. An analogous experiment was

T 6

A comparison of results: OPIA vs. ICATS (second experiment)

ICATS OPIA
ZXXXXXCXXXXXV ZXXXXXXCXXXXXXV

Mode Damping Frequency Damping Frequency
j (%) v (Hz) j (%) v (Hz)

1 0.83 4.75 0.82 4.81
2 0.91 5.16 — —
3 0.51 8.47 0.52 8.48
4 0.32 11.49 0.37 11.48
5 0.29 13.10 0.38 13.11
6 0.31 13.37 0.31 13.38
7 0.29 16.93 0.33 16.94
8 0.19 18.52 0.18 18.53
9 0.15 24.28 0.22 24.23
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Figure 4. s18 vs. >e> and Tol vs. SNR (N=200).

carried out for observing the behaviour of constants Tol and SNR both defined in
Section 3.3. Results of these experiments are shown in Fig. 4. By observing
these figures, the positive effects of overdetermining the order of the model becomes
evident, since both, s18 and the tolerance to the system’s order identification (Tol)
are both enhanced, as predicted in theory. Observe that both M and N must be
suitably chosen, otherwise, the amount of noise in the data need not be dominated by
the size of s2n , as can be seen in Fig. 4(a) for the case N=100. Empirical results have
pointed out that s2n is better enhanced when M=N, however this must be demonstrated
analytically.

5. CONCLUSIONS

An optimised pseudo-inverse algorithm (OPIA) for parameter identification in the linear
prediction context has been presented and its performance illustrated with numerical
experiments analysing simulated data as well as data corresponding to a real structure.
It is shown via the SVD theorem and suitable manipulation that it is possible to improve
the well-known ERA method, preserving efficiency as well as diminishing computational
effort. The problem of detecting the number of effective modes was tackled using relative
gaps, taking advantage of the singular value analysis of Hankel-block matrices specially
developed for this situation. This analysis also became useful to explain the benefits of the
use of overdetermined models in parameter identification.
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