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In this work, methods for estimating the local convective heat transfer coefficient in coiled tubes are pro-
posed and assessed. The methods include truncated generalized singular value decomposition, Tikhonov
regularization, and a novel filtering technique which mitigates noise propagation by truncating the fre-
quency content of differentiation matrix operators. Numerical results on synthetic and experimental data
are reported to illustrate the effectiveness of the methods. Synthetic data resemble well experimental
data often encountered in technical applications and may be useful in the assessment of numerical meth-
ods and in the design of coiled tube heat exchangers. The success of the methods is supported by both an
efficient solver for the forward problem based on a highly accurate pseudospectral method and a proper
selection of regularization parameters.
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1. Introduction

The estimation of local heat transfer coefficient over a given
domain has become important in several industrial applications
such as food processing, nuclear power production, air-
conditioning systems and power electronics, among others
[12,34,35]. In particular, because coiled tubes cause heat transfer
enhancement, the development of estimation techniques of heat
transfer coefficient has attracted the attention of many researchers
[7,12,14,31,32]. Coils induce an irregular heat transfer coefficient
distribution along the wall perimeter that may be critical in some
industrial applications. However, most of research papers presents
results only in terms of thermal performance averaged along the
wall circumference, due to the practical difficulty of measuring
heat flux in the inner wall surface of a pipe. Placing probes in a pipe
is usually infeasible because of the perturbation effects of the
probes on the observed phenomenon, the geometric inaccessibility
of the surface, or because of the fluid in the pipe that may destroy
the sensors.

A way to circumvent the above difficulty is to estimate the heat
transfer coefficient from the solution of an inverse heat conduction
problem (IHCP) based on temperature measurements on the
external tube wall surface and a mathematical model that
describes the physics involved. The application of IHCP solution
techniques becomes interesting as the experimental problem of
monitoring heat transfer on the internal tube wall is avoided. How-
ever, solving IHCPs is not as easy as one would wish and complica-
tions take place because this class of problems are generally ill-
posed [9]. As a result, the problem solution, when it exists, may
not be unique and may be very sensitive to small variations in
the input data. A way to bypass the ill-posedness of IHCPs is
through the use of regularization methods. Efforts in this direction
have been done by Bozzoli et al. in a number of works as follows: in
[12,14] where Tikhonov regularization is employed, in [13] where
temperature data is processed by a filtering technique in order to
obtain estimates of the heat transfer coefficients under a small
tube thickness assumption, and in [11] where Tikhonov Regular-
ization Method is compared with a Gaussian Filtering Technique.
Besides Tikhonov regularization-based methods, the most popular
methods include Alifanov’s iterative regularization method [1,28],
function specification methods [9,29], and methods based on filter-
ing properties [15,18,27]. Related contributions are also encoun-
tered in several places. Bai et al. [2] experimentally studied the
turbulent heat transfer in helically coiled tubes. Xu and Chen
[39] discuss a nonlinear problem of determining the heat transfer
coefficient in two-phase flow in an inclined tube by building a
steady-state two-dimensional heat conduction model. Martin
and Dulikravich [19] describe an inverse boundary element
method (BEM) for determining the heat transfer coefficients on
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Nomenclature

Symbol Quantity, SI unit
Bi Biot number
h convective heat-transfer coefficient, W=m2 K
J sensitivity matrix, K/W
k truncation parameter
Q heat flux, W=m2

Q heat flux vector, W=m2

qg internal heat generation per unit volume, W=m3

r radial coordinate, m
R residual vector, K
T temperature, K
T temperature vector, KeT experimental temperature vector, K
a overall heat transfer coefficient, W=m2 K
� noise, K
/ angular coordinate, rad
kw thermal conductivity, W=m K
k regularization parameter, K m2=W
W product function, K W=m2

Subscripts, superscripts
b bulk
env environment
E external
I internal
Acronym Meaning
CPS Chebyshev pseudospectral method
DP discrepancy principle
FP fixed point method
FDMA filtering via differentiation matrix approach
GSVD generalized singular value decomposition
LC L-curve
MPR minimum product rule
OPT minimum normwise relative error
SVD singular value decomposition
TGSVD truncated generalized singular value decomposition
TRM Tikhonov regularization method
TSVD truncated singular value decomposition
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solid surfaces of arbitrary shape; BEM-based methods also are
employed in [33,41]; a three-dimensional inverse identification
model for the heat transfer coefficient was introduced in [40]
and solved using sensitivity analysis. Hybrid schemes that combine
Laplace transform, finite difference and least-squares methods to
estimate time and space-wise dependent heat transfer coefficient
in rectangular domains are addressed via linearization in [16,17].
Lu et al. [25] implemented an estimation approach based on the
IHCP solution, using the conjugate gradient method, to estimate
the unknown transient fluid temperatures near the inner wall in
section of a pipe elbow with thermal stratification. Su and Hewitt
[37] estimated the time-dependent heat transfer coefficient of
forced convective flow boiling over the outer surface of a heater
tube solving an inverse heat conduction problem based on Ali-
fanov’s iterative regularization method. Rouizi et al. [36] employed
the Quadrupole method to retrieve the temperature and flux distri-
butions over the internal surface of a micro-channel using temper-
ature profiles measured at the external surface in conjunction with
the truncated singular value decomposition (TSVD) method as reg-
ularization technique.

In this paper, the research work by Bozzoli et al. [12–14] is
investigated further and new methods are proposed for estimating
the heat transfer coefficient in coiled tubes. In particular, in Sec-
tion 2, a benchmark solution problem is introduced, which resem-
bles experimental temperature measurements often found in
technical applications, see, e.g., Bozzoli et al. [12], and can be useful
in the assessment of numerical methods for estimating heat trans-
fer coefficient. In Section 3, a comprehensive and simple approach
for the direct problem is proposed based on a highly accurate pseu-
dospectral method. Proceeding in this way, the calculation of pre-
liminary quantities such as the sensitivity matrix, necessary for the
Tikhonov regularization method to work, becomes clear and easy
to follow from the computational point of view. In Section 4, in
addition to describing several existing methods for estimating
the heat transfer coefficient in IHCPs, a novel estimation method
is proposed following the same spirit as the filtering technique
described in [13,11]; the novelty here is that no optimization prob-
lem is solved. Finally, in Section 5, all estimation techniques are
evaluated by applying them to synthetic data obtained from the
proposed benchmark solution as well as to experimental data
obtained by Bozzoli et al. in [12]; the paper ends with some con-
cluding remarks in Section 6.

2. Mathematical model and benchmark solution

All estimation procedures in this study depend on the assump-
tion that the heat transfer coefficient is embedded in a 2D mathe-
matical model of a selected cross-section of a coiled tube, as shown
schematically in Fig. 1, under the laminar flow regime as done by
Bozzoli et al. [12] and Rainieri et al. [31] in their experimental
investigations. In cases like this, uniform heating is generated by
dissipating a heat flux using the Joule effect directly within the
tube wall. Without additional assumptions, the 2D direct heat con-
duction problem in polar coordinates ðr;/Þ is expressed in the
form:

kw
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@

@r
r
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@r
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þ kw

1
r2

@2T

@/2 þ qg ¼ 0; 0< rI < r< rE; 06 /6 2p; ð1Þ

kw
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ðrE;/Þ ¼ aðTenv � TðrE;/ÞÞ; 06 /6 2p; ð2Þ

� kw
@T
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ðrI;/Þ ¼ hð/ÞðTb � TðrI;/ÞÞ; 06 /6 2p: ð3Þ

Physically, qg denotes the heat generated by the Joule effect in the
wall, rI; rE denote the internal and external radius of the cross sec-
tion of the tube, respectively, kw denotes the wall thermal conduc-
tivity, a denotes the reciprocal of the overall heat transfer resistance
between the tube wall and the surrounding environment with tem-
perature Tenv, hð/Þ denotes the convective heat transfer coefficient
at the fluid-internal wall interface, and Tb denotes the bulk-fluid
temperature on the test section.

In the inverse estimation problem of interest, the convective
transfer coefficient hð/Þ is regarded as unknown and must be esti-
mated from measured temperature values as input data:eT j ¼ TðrE;/jÞ þ ej; j ¼ 1; . . . ;M, where TðrE;/Þ is assumed to match
(1)–(3) and ej denotes random noise. It is worth noticing that
due to the boundary condition (3), this estimation problem should
be handled by an appropriate nonlinear optimization technique
because hð/Þ does not depend linearly on T. An approach which cir-
cumvents possible difficulties often encountered when dealing
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Fig. 1. Geometrical domain.
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with non linear problems replaces the boundary condition (3) with
one that transforms the original problem into a linear estimation
problem. In fact, introducing

�kw
@T
@r

ðrI;/Þ ¼ Qð/Þ; ð4Þ

where Qð/Þ stands for the heat-flux distribution at the fluid-wall
interface, one can consider the more tractable problem that esti-

mates Qð/Þ from measured data eT ðrE;/iÞ instead. The reason is that
the heat-flux distribution Qð/Þ can be proved to depend linearly on
T [9]. Once the heat-flux distribution is estimated, the convective
heat-transfer coefficient can be estimated as

hð/Þ ¼ Qð/Þ
Tb � TðrI;/Þ ; ð5Þ

where TðrI;/Þ is the temperature distribution at the internal tube
wall estimated by solving the direct problem (1)–(3) with (3) being
replaced by the boundary condition (4), where Qð/Þ is the esti-
mated heat-flux distribution. This approach has been proved suc-
cessful in [12] and it will be used in this work as well, with Qð/Þ
being estimated in several ways and methods.

For comparison purposes all estimation methods in this investi-
gation will be tested and assessed by using a test problem with
exact solution satisfying (1), (2) and (4) for prescribed heat flux
Q. To generate such test problem we look for solutions of (1)
described by

Tðr;/Þ ¼ f ðrÞ þ Vðr;/Þ; ð6Þ
where f ðrÞ is a radial solution of the nonhomogeneous problem (1)

rf 0
� �0 ¼ � qgr

kw
ð7Þ

and Vðr; hÞ is a solution of the homogeneous partial differential
equation (PDE)
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@/2 ¼ 0: ð8Þ

Now, it can be readily seen that the general solution of (7) is

f ðrÞ ¼ �qgr
2

4kw
þ F lnðrÞ þ G; ð9Þ

where F and G are arbitrary constants. On the other hand, following
the standard separation of variables method, see, e.g., [22], we can
find infinitely many solutions of the homogeneous problem (8).
Indeed, by looking for product solutions of the form
Vðr;/Þ ¼ XðrÞYð/Þ, it can be seen that the product form will satisfy
the PDE if
Y 00ð/Þ þ c2Yð/Þ ¼ 0; 0 6 / 6 2p; ð10Þ

r2X00ðrÞ þ rX0ðrÞ � c2XðrÞ ¼ 0; rI < r < rE; ð11Þ
where c is an eigenvalue of (10). Taking into account that physical
solutions of (10) must be 2p-periodic, routine calculations show
that the eigenvalues are cn ¼ n;n ¼ 0;1;2; . . ., with respective eigen
solutions given by fCn cosðn/Þ;Dn sinðn/Þg, where Cn;Dn are arbi-
trary constants. Inserting c ¼ n into the Cauchy–Euler equation
(11), it can seen that the associated general solution are
X0ðrÞ ¼ A0 lnðrÞ þ B0 and XnðrÞ ¼ Anr

n þ Bn
rn
. Since the PDE (8) is linear,

the superposition principle, (6) and (9) show that the general solu-
tion for (1) can be described as

Tðr;/Þ ¼ �qgr
2

4kw
þ A0 þ C0 lnðrÞ þ

X1
n¼1

ðAnr
n þ Cnr

�nÞ cosðn/Þ

þ
X1
n¼1

ðBnr
n þ Dnr

�nÞ sinðn/Þ; ð12Þ

where the arbitrary constants have been conveniently relabeled.
Note that Tðr;/Þ in (12) does not satisfy (2) and (4). This shows that
the construction of exact solutions for the model described by (1),
(2) and (4) for prescribed Qð/Þ, requires the determination of con-
stants which are difficult to calculate. Thus, for simplicity, all esti-
mation methods in this investigation will be tested and assessed
by using a benchmark solution for (1), (2) and (4) which involves
just the Fourier mode X1ðrÞ cosð/Þ:

Tðr;/Þ ¼ �qgðr2 � r2EÞ
4kw

þ A ln
r

rE

� �
þ Bþ C cosð/Þ rþ D

r

� �
; ð13Þ

where A;B; C;D are suitably chosen constants. The motivation for
choosing such solution is that appropriate constants A;B; C;D lead
to temperature distributions that resemble experimental data
reported in [12]. It remains to select A;B;C;D such that the bound-
ary condition (2) is also satisfied. In fact, enforcing Tðr;/Þ to satisfy
the boundary condition (2) it follows

kw
�qgrE

2kw
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þ C cosð/Þ 1� D

r2E

� �� �
¼ aTenv � a Bþ C cosð/Þ rE þ D

rE

� �� �
:

Equating constant and periodic terms leads to
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and
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�qgrE

2kw
þ A
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That is,

D ¼ r2Eðkw þ arEÞ
kw � arE

; A ¼ qgr
2
E

2kw
þ rE
kw

aðTenv � BÞ: ð16Þ

Thus, infinitely many benchmark solutions can be constructed by
selecting parameters B and C. For instance, for B ¼ Tenv and arbitrary
C the benchmark solution becomes

Tðr;/Þ ¼ �qgðr2 � r2EÞ
4kw

þ qg

2kw
r2E ln

r

rE

� �
þ Tenv þ C cosð/Þ rþ D

r

� �
;

with D given in (16). Finally, note that regardless the choice of con-
stants B; C, if the heat-flux distribution Qð/Þ is defined by the
boundary condition (4) with Tðr;/Þ given in (13):

Qð/Þ ¼ �kw
@Tðr;/Þ
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; ð17Þ
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then Tðr;/Þ constructed in this way satisfies the model (1), (2), (4).
The most important consequence of the above constructive process
is that it delivers an exact solution that can be used for testing and
assessing numerical methods for estimating the heat transfer coef-
ficient hð/Þ based on prior estimation of Qð/Þ as described in (5).

3. Efficient numerical method for the forward problem

This section introduces a highly accurate numerical method for
problem described by (1), (2) and (4), based on the Chebyshev
pseudospectral (CPS) collocation approach for partial differential
equations (PDEs). The CPS approach has become an efficient way
to solve approximately partial differential equations (PDEs), see,
e.g., [20,30,38], due to its high accuracy and relatively lower com-
putation cost compared to other methods, and is particularly
important when solving IHCPs since, as we will see, the forward
problem has to be solved efficiently many times. Roughly speaking,
the CPS approach constructs the approximate solution in a space of
algebraic polynomials of degree N so that the differential equation
being solved is satisfied in a specified number of points xj called
collocation points. If the problem is unidimensional on a bounded
interval, for instance, and the approximate solution is denoted by
UN and expressed in Lagrangian form

UNðxÞ ¼
XN
k¼0

Uk‘kðxÞ; ð18Þ

where Uj¼: UNðxjÞ; j ¼ 0;1; . . . ;N, and where ‘kðxÞ denotes the
Lagrangian polynomial, then the coefficients Uj become the
unknowns of a system of linear equations obtained by discretiza-
tion of the differential equation, where derivatives of the exact solu-
tion UðxÞ are estimated at the collocation points by differentiating
(18) and evaluating the result at the points xj. Proceeding in this
way, with the observation that the pth order derivative of a function

f at xj is denoted by f ðpÞðxjÞ, it follows that

UðpÞ
N ðxjÞ ¼

XN
k¼0

Uk‘
ðpÞ
k ðxjÞ; p ¼ 1;2; . . . ; ð19Þ

or in matrix form as

UðpÞ ¼ DpU; ð20Þ

where U ¼ ½UNðx0Þ; . . . ;UNðxNÞ�T , UðpÞ ¼ ½UðpÞ
N ðx0Þ; . . . ;UðpÞ

N ðxNÞ�
T
, and

where D is the ðN þ 1Þ � ðN þ 1Þ differentiation matrix whose
entries are given by [20,38]

Dj;k ¼ ‘0kðxjÞ; 0 6 j; k 6 N: ð21Þ
The Chebyshev pseudospectral collocation method takes as colloca-
tion points the Chebyshev Gauss–Lobatto points (numbered from
left to right) defined by

xj ¼ � cos
jp
N

; j ¼ 0;1; . . . ;N: ð22Þ

For periodic problems on the interval ½0;2p� the pseudospectral col-
location method proceeds as before but now with the interpolation
polynomial being written using the Fourier basis. This gives rise to a
Fourier differentiation matrix which we will denote byD; for details
the reader is referred to [30].

In order to apply the CPS approach to the problem of interest it
is convenient to map the original domain to the reference domain
½�1;1� � ½0;2p� through the mapping

rðrÞ ¼ rI þ 1
2
ðr þ 1ÞðrE � rIÞ; �1 6 r 6 1

/ðhÞ ¼ h; 0 6 h 6 2p:
ð23Þ
Under the above transformation the boundary value problem of
interest becomes

kw q2 @
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þ q
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þ kw

½rðrÞ�2
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@h2
þ qg ¼ 0;

� 1 < r < 1; 0 6 h 6 2p ð24Þ
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@Tð1; hÞ

@r
¼ a
q

Tenv � Tð1; hÞð Þ; 0 6 h 6 2p ð25Þ

� kw
@Tð�1; hÞ

@r
¼ QðhÞ

q
; 0 6 h 6 2p ð26Þ

where q ¼ 2=ðrE � rIÞ. The construction of numerical solutions to
(24)–(26) via the CPS method starts by considering a mesh consist-
ing of ðN þ 1Þ �M grid points on the reference domain based on
ðN þ 1Þ Chebyshev Gauss–Lobatto ri in the r direction, and M uni-
formly spaced points hj ¼ 2p j=M; j ¼ 1; . . . ;M, in the azimuthal
direction, under the assumption that the sought solution is periodic
with respect to h and that gridpoints are numbered in lexicographic
ordering. This means that partial derivatives in the r direction will
be approximated by using the Chebyshev differentiation D, whereas
partial derivatives with respect to h will be approximated by using
theM �M Fourier differentiation matrixD. Partial derivatives in the
r direction are approximated as follows. For fixed j let the vector of
unknowns be denoted by

Tj ¼ ½Tðr0; hjÞ; Tðr1; hjÞ; � � � TðrN ; hjÞ�T; j ¼ 1; . . . ;M ð27Þ
and let the matrix D be represented in columnwise and row-wise
forms

D ¼ ½d0 d1 � � � dN� ¼ ½‘0 � � � ‘N�T di; ‘i 2 RNþ1: ð28Þ
Since the second order Chebyshev differentiation matrix, D2, can be
expressed as D2 ¼ d0‘

T
0 þ d1‘

T
1 þ � � � þ dN‘

T
N;, the second order deriva-

tives of T with respect to r can be approximated as

Trrðr0; hjÞ
Trrðr1; hjÞ

..

.

TrrðrN ; hjÞ

266664
377775 � D2

Tðr0; hjÞ
Tðr1; hjÞ

..

.

TðrN; hjÞ

266664
377775 ¼ d0‘

T
0Tj þ D1D2Tj þ dN‘

T
NTj ð29Þ

where

D1 ¼ ½d1 d2 � � �dN�1�; D2 ¼ ½‘1 � � � ‘N�1�T: ð30Þ
Now, since ‘Ti Tj � Trðri; hjÞ, the boundary conditions (25) and (26)
imply

‘T0Tj � Trðr0;hjÞ ¼ �QðhjÞ
qkw

; ‘TNTj � TrðrN;hjÞ ¼ a
qkw

ðText � TðrN;hjÞÞ:

ð31Þ
Then, insertion of (31) into (29) shows that the scaled vector of sec-
ond order derivatives kwq2Trrðri; hjÞ, 0 6 i 6 N;1 6 j 6 M, can be
approximated as

kwq2

Trrðr0;hjÞ
Trrðr1;hjÞ

..

.

TrrðrN;hjÞ

266664
377775� �qadNeTNþ1 þ kwq2D1D2

� �
Tj �qQjd0 þqaTex dN

ð32Þ
where ei denotes the ith unit vector in RNþ1 and Qj¼: QðhjÞ. Similarly,

the scaled vector of first order derivatives kwq
ri

Trðri; hjÞ can be

approximated as
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R¼ diagðr0; . . . ; rNÞ; �Qj ¼ R�1 Qje1 � aTexeNþ1
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; �D¼ R�1 0T
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�a eT
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24 35;
ð34Þ

ri¼: rðriÞ, as defined in (23), and 0 denotes the vector in RNþ1 of all
zeros. The last equality in (33) is because of the boundary condi-
tions (2) and (3). Arranging the vectors Tj to obtain a long vector
of all unknowns we get
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T � f ð35Þ

where T contains all unknowns and � stands for Kronecker product
and

�A ¼ �qadNeTNþ1 þ kwq2D1D2;þ�D; ð36Þ

f ¼ ½ft1; . . . ftM �
t
; f j ¼ qQjd0 � qaTex dN þ �Qj: ð37Þ

Similarly, second order derivatives Thhðri; hjÞ can be approximated
using the corresponding M �M differentiation matrix Dð2Þ for peri-
odic data. In such case it can be shown that the scaled vector of sec-
ond order derivatives kw

r2
i
Thhðri; hjÞ in all points of the grid can be

approximated by
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Neglecting discretization errors (35) and (38) yield a system of
linear equations (the discrete forward problem) of the form

bAx ¼ bg; ð39Þ
where

bA ¼ ðINþ1 � �AÞ þ kwðR�2 � IMÞ Dð2Þ � INþ1
� �

; ð40Þbg ¼ f � q; q ¼ ½qt
1; . . . ;q

t
M �

t
; qj ¼ ½qgðr0; hjÞ; . . . ; qgðrN; hjÞ�t: ð41Þ

Thus, to calculate approximate solutions to the forward problem
(1)–(3), the linear equation system (39) has to be solved.
4. Estimation approach

Since the solution to the discrete forward problem (39) depends
on Q, the inverse estimation problem of Qð/Þ can be formulated as
a problem which consists in estimating a vector of parameters Q
such that the difference between the temperatures TðQ Þ and tem-

peratures experimentally measured eT on the outer wall of the tube
is minimized in some sense. More precisely, following the notation
of the previous section let Q � ¼ ½Q �

1; . . . ;Q
�
M�t with Q �

j¼: QðhjÞ. The
goal is to determine an estimate eQ for Q � by solving the least
squares problem

eQ ¼ argmin
Q2RM

¼ 1
2
kTðQ Þ � eTk22 ¼ argmin

Q2RM

1
2

XM
j¼1

ðTjðQ Þ � eT jÞ
2
; ð42Þ

where Q is the vector of unknowns and TðQ Þ ¼ ½T1ðQ Þ; . . . ; TMðQ Þ�t
is the vector of computed temperature values satisfying (39) at
r ¼ rN ¼ 1 (or equivalently at r ¼ rE). In order to determine such

estimate, notice that the necessary condition for the vector eQ to
be a minimum point is

JTðTð eQ Þ � eTÞ ¼ 0; ð43Þ
where J is the so called sensitivity matrix with entries ½J�i;j ¼ @TiðQ Þ

@Qj
. In

addition, since the system matrix bA does not depend on Q , then

bA @TðQ Þ
@Qj

¼ @bgðQÞ
@Qj

¼:

0
..
.

0
ðqd0 þ R�1e1Þ

0
..
.

0

26666666666664

37777777777775
jth block ð44Þ

and these partial derivatives also do not depend on Q . Thus to
determine the jth column of J it suffices to take the components

of @TðQ Þ
@Qj

corresponding to the locations ðrN; hjÞ. Another consequence
of (44) is that second order derivatives of TðQ Þ with respect to Qj

vanish. From this observation together with Taylor Theorem around
Q ¼ 0 it follows that

Tð eQ Þ ¼ Tð0Þ þ J eQ : ð45Þ

From this and (43) it follows that eQ solves the normal equations

ðJT JÞQ ¼ JT Tð0Þ � eTh i
:

EquivalentlyeQ ¼ argmin
Q2RM

kJQ � ðTð0Þ � eTÞk22: ð46Þ

However, despite the apparent simplicity in determining the
above estimate, because the sensitivity matrix in inverse heat
transfer problems is very ill-conditioned, some regularization
method is required in order to filter out the contribution of noise
in the solution.

4.1. Filtering via TSVD/TGSVD

Perhaps one of the most well-known methods to deal with ill-
conditioned problems is truncated singular value decomposition
(TSVD). TSVD is based on the SVD of J which reads

J ¼ URVT ; ð47Þ
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where U ¼ ½u1; . . . ; uN� 2 RN�N and V ¼ ½v1; . . . ; vN� 2 RN�N are orthog-
onal matrices and R 2 RN�N is a diagonal matrix,
R ¼ diagðr1; . . . ;rNÞ, with the singular values rj ordered such that
r1 P � � � P rN P 0. The naive least squares solution to (46) is thus
given by

eQ ¼
XN
j¼1

utj g

rj
vj; g ¼ Tð0Þ � eT: ð48Þ

Let Q exact denote the solution to (46) corresponding to
gexact ¼ Tð0Þ � T, i.e., corresponding to the noiseless case. The main

problemwith eQ is that noise components in eT can be greatly ampli-
fied because of the division by small singular values; in this event

the computed estimate eQ can differ enormously from Q exact. To fil-
ter out the contribution of noise to the computed solution, the Trun-
cated SVD (TSVD) method determines regularized solutions by
truncating the summation (48) to k 6 N terms, see, e.g., [23]. Hence
the kth TSVD solution is defined as

Q k ¼
Xk
j¼1

uTj g

rj
vj; k 6 N: ð49Þ

The point here is that if k is poorly chosen, the solution Q k either
captures not enough information about the problem or the noise
in the data dominates the approximate solution. The challenge in
connection with TSVD is thus how to choose a proper truncation
parameter. Truncated GSVD solutions are defined similarly based
on the GSVD of the matrix pair ðA; LÞ where L is introduced to incor-
porate a priori information of the solution such as smoothness. The
GSVD of ðA; LÞ is a generalization of the SVD of A in the sense that
the generalized singular values of ðA; LÞ are the square roots of the
generalized eigenvalue of the symmetric matrix pair ðATA; LTLÞ
[21,23]. More explicitly, for A 2 RM�N and L 2 Rp�N , with
M P N P p, which always occurs in discrete ill-posed problems,
then the GSVD of the pair ðA; LÞ reads

A ¼ U
S1 0
0 IN�p

� �
X�1; VðS2;0ÞX�1 ð50Þ

where U ¼ ½u1; . . . ;uN� 2 RM�N and V ¼ ½v1; . . . ; vp� 2 Rp�p have
orthonormal columns, X ¼ ½x1; . . . ;xN� 2 RN�N is nonsingular, and
S1 ¼ diagðr1; . . . ;rpÞ (with ri ordered in non increasing form),
S2 ¼ diagðl1; . . . ;lpÞ (with li ordered in nondecreasing form), are
p� p diagonal matrices whose entries are positive and normalized
so that

r2
i þ l2

i ¼ 1:

The generalized singular values values of ðA; LÞ are defined as the
ratios

ci ¼ ri=li: ð51Þ
Turning to the estimation of the heat-flux Qð/Þ, based on the GSVD
of the matrix pair ðJ; LÞ, a truncated GSVD solution is defined as

Q k;L ¼
Xp

i¼p�kþ1

uT
i g
ri

xi þ
XN
i¼pþ1

ðuT
i gÞxi: ð52Þ

Obviously, the ri here has nothing to do with the ‘‘ordinary” singu-
lar value ri of Q. The same observation holds for the vectors ui. The
challenge in connection with TGSVD is the same as that of TSVD:
how to choose a proper truncation parameter.

4.1.1. Truncation parameter selection methods
In this work stable estimates of Q � are computed by using trun-

cated SVD equipped with two parameter selection criteria, namely
the discrepancy principle (DP) by Morozov [26], which requires
noise estimates of keT � Tk2, and a criterion introduced recently
by Bazán et al. [6] which does not require such information
referred to as the minimum product rule (MPR). As usual we
assume that ‘‘exact” data satisfies the discrete Picard condition,
i.e., the coefficients utj g decay in magnitude, on the average, faster
than the singular values ri, until they level off at a plateau deter-
mined by the standard deviation of the noise. More precisely, if

noise data are assumed such that eT ¼ Tþ e, witheTj ¼ Tj þ ej; j ¼ 1; . . . ;N, then there must exist a integer k such that

jutj gj ¼ jutj gexact þ utjej � jutjej; for j > k: ð53Þ

Index k marks the transition between decaying and flat coefficients
jutj gj and corresponds to a good balance between the regularized
solution norm and the residual norm [23]. In addition, under the
above assumptions it is known that the error kQ exact � Q kk2 is min-

imized when k ¼ k [10, Section 4.1]. A problem however is that

index k is difficult to identify.
The truncation parameter chosen by DP is defined as the first k

such that

kRkk2 ¼: kJQ k � gk2 6 sd; d ¼ keT � Tk2k; ð54Þ
where 1/s is a user specified parameter. As for MPR, it chooses as
truncation parameter the integer defined as

kw ¼ argminWk; Wk ¼ kRkk2kQ kk2; k > 1: ð55Þ
Theoretical properties as well error bounds associated to DP are
well established in literature and are therefore not included here.
Regarding MPR, it appeared for the first time in connection with
LSQR in [6] and more recently in connection with TSVD in [10].
DP and MPR are implemented similarly by considering the residual
Rk;L and corresponding TGVSD solutions Q k;L. Matlab m-files that
implement TSVD and TGSVD are available in Hansen [24].

4.2. Filtering via Tikhonov regularization

Tikhonov regularization method (TRM) handles the ill-
conditioning of the least squares problem (46) by determining reg-
ularized solutions defined byeQ k ¼ argmin

Q2RM
F kðQ Þ; F kðQ Þ

¼ kJQ � ðTð0Þ � eTÞk22 þ k2kLQk22; ð56Þ
where k > 0 is the regularization parameter. F kðQ Þ represents a
trade-off between two optimization processes: first, the fidelity of
the fit and second, the smoothness or the stability of the solution.
Thus, for the regularized solution Q k to be meaningful, the regular-
ization parameter k has to balance these two optimization pro-
cesses. In other words, the choice of a good regularization
parameter requires a good balance between the size of the residual
norm and the size of the solution norm (seminorm when L has non
trivial null space).

4.2.1. Regularization parameter selection methods
Perhaps one of most widely used regularization parameter

choice methods is the L-curve (LC) method by Hansen and O’Leary
[23]. The method determines the regularization parameter by
locating the ‘‘corner” of the parametric curve in the ðt; sÞ plane
defined by

L : fðtk; skÞ 2 R2; tk ¼ logðkJQ � ðTð0Þ � eTÞk2Þ;
sk ¼ logðkLQk2Þ; k > 0:g ð57Þ
For ill-conditioned problems the curve L almost always has a well
distinguished L-shaped appearance with distinctive vertical and
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horizontal parts; when this is the case, the corner corresponds to a
good balance between the size of the residual norm and the solution
norm and the error in Q k with respect to Q � tends to be within rea-
sonable bounds. Computationally, the L-curve method selects the
parameter which minimizes the curvature of L, see Hansen and
O’Leary [23]. In practice, the L-curve method has been proven to
produce good regularization parameters in several cases. However,
locating the corner in a robust way is not always an easy task, either
because sometimes the curve displays several corners or because
the corner is not visible at all. A method that has been proved to cir-
cumvent these difficulties on several test problems from the litera-
ture, is the fixed-point (FP) method and its variants proposed by
Bazán and co-workers [3–5]. The fixed-point method requires com-
putation of the solution seminorm and the corresponding residual
norm, and selects the parameter which minimizes the product of
these norms as a function of the regularization parameter. Like
L-curve, the motivation to use this algorithm is that the sought min-
imizer corresponds to a good balance between the size of these
norms. Algorithmically, the regularization parameter chosen by
the fixed-point method is the limit value of the sequence

kkþ1 ¼ uðkkÞ ¼
kJQ kk

� ðTð0Þ � eTÞk2
kLQ kk

k2
; k ¼ 0;1; . . . ð58Þ

In practice, the sequence converges very quickly and the computed
regularization parameter yields solutions with accuracy compara-
ble to that of the L-curve method but it is more robust and less
computational expensive [22,23]. Like the L-curve approach, the
Fixed-point method does not require any a priori knowledge of
the noise level. Another parameter choice rule that has gained rel-
evance due to its theoretical properties is Morozov’s discrepancy
principle (DP) [26]. It suggests choosing the regularization parame-
ter in such a way that the residual norm for the regularized solution
Q k satisfies the non linear equation

kJQ k � gk ¼ skek; ð59Þ
where s’1 is a user specified parameter and e denotes the data

error: e ¼ ~g � gexact ¼ T� eT.
4.3. Filtering via differentiation matrix approach

When a thin wall pipe configuration is assumed to hold, that is,
when rI � rE, the heat-flux distribution can be estimated by differ-
encing the temperature distribution at the external tube wall as it
can be explained shortly. Integrating (1) in ½rI; rE� gives

kw rE
@T
@r

ðrE;hÞ � rI
@T
@r

ðrI;hÞ
� �

¼�kw

Z rE

rI

1
r

@2T

@h2
dr� qgr

2

2

" #r¼rE

r¼rI

: ð60Þ

Since 1=r does not change sign in the interval ½rI; rE�, the weighted
mean value theorem for integrals ensures that there exists r̂ in
½rI; rE� such thatZ rE

rI

1
r

@2T

@h2
dr ¼ @2T

@h2
ð̂r; hÞ

Z rE

rI

1
r
dr:

Inserting this result into (60), the boundary conditions (2) and (3)
can be used to yield

rEaðTenv � TðrE; hÞÞ þ rIQðhÞ ¼ �kw lnðrE=rIÞ @
2T

@h2
ð̂r; hÞ � qgðr2E � r2I Þ

2
:

ð61Þ
Thus

QðhÞ ¼ � 1
rI

kw lnðrE=rIÞ @
2T

@h2
ð̂r; hÞ þ qgðr2E � r2I Þ

2
þ rEaðTenv � TðrE; hÞÞ

" #
ð62Þ
and

hðhÞ ¼ kw lnðrE=rIÞ @2T
@h2

ð̂r; hÞ þ qg ðr2E�r2I Þ
2 þ rEaðTenv � TðrE; hÞÞ

rIðTb � TðrI; hÞÞ ð63Þ

provided that TðrI; hÞ � Tb – 0 for all h 2 ½0;2p�. When rI � rE it can

be assumed that TðrI; hÞ � TðrE; hÞ and @2T
@h2

ð̂r; hÞ � @2T
@h2

ðrE; hÞ, in which
case the heat-flux coefficient and the convective heat transfer coef-
ficient can be estimated as

QðhÞ � �1
rI

kw lnðrE=rIÞ@
2T

@h2
ðrE;hÞ þ

qgðr2E � r2I Þ
2

þ rEa tenv � TðrE;hÞð Þ
" #

ð64Þ
and

hðhÞ � kw lnðrE=rIÞ @2T
@h2

ðrE; hÞ þ qg ðr2E�r2I Þ
2 þ rEaðTenv � TðrE; hÞÞ

rIðTb � TðrE; hÞÞ : ð65Þ

Summarizing, to estimate the heat flux QðhÞ (hence hðhÞ), the sec-
ond order derivative of measured temperature at the external tube
wall has to be computed. The main difficulty here is that such com-
putation is difficult because the available data are noise corrupted
and because the noise tends to be amplified when the ill-
posedness of the problem is not taken into account.

It is worth noticing that estimate (65) was derived differently
by Bozolli et al. in [13], in which second order derivatives are
calculated after the data is preprocessed in order to filter out
high-frequency signal components through a Gaussian filter. In
this section, an alternative technique to calculate second order
derivatives is introduced in which such pre-processing step is
avoided. The technique introduced here, which will be referred
to as the filtering differentiation matrix approach (FDMA), is
motivated by the observation that the eigenvalue problem

yðxÞ00 þ kyðxÞ ¼ 0; 0 < x < 2p;
yð0Þ ¼ yð2pÞ; y0ð0Þ ¼ y0ð2pÞ;

(
ð66Þ

has as solution

k0 ¼ 0; kn ¼ n2; n ¼ 1;2; . . . ;
c0 ¼ cte; cnðxÞ ¼ cosðnxÞ; fnðxÞ ¼ sinðnxÞ;

(
ð67Þ

Interesting enough, when algebraic eigenvalue problems are used
to approximate continuous eigen pairs of (66), the matrices
involved in such approximation can be regarded as differentiation
matrix operators. For example, using centered finite differences
with meshspacing h ¼ 2p=N, continuous eigen pairs (67) can be
approximated by eigen pairs of the algebraic N � N eigenvalue
problem with matrix defined by

Dð2Þ ¼ 1

h2

�2 1 1
1 �2 1

. .
. . .

. . .
.

1 �2 1
1 1 �2

26666664

37777775; ð68Þ

while second order derivative of yðxÞ at grid points
xi ¼ ih; i ¼ 1; . . . ;N, can be approximated by the matrix vector pro-
duct Dð2Þy, with y ¼ ½yðx1Þ; . . . ; yðxNÞ�T . It is noteworthy that Dð2Þ is
singular and that its non zero eigenvalues can be proved to be neg-
ative. Obviously, a similar effect can be produced when using the
second order Fourier differentiation matrix Dð2Þ introduced in the
previous section.

The fact that discrete eigen pairs can be used as approximations
to continuous eigen pairs is illustrated in Fig. 2 for Dð2Þ of size
N ¼ 256. The role of Dð2Þ as discrete differentiation operator is
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illustrated in Fig. 3 for a discrete periodic function with and with-
out noise.

Excellent quality results for the noiseless case is justified by the
fact that the finite difference technique being used is second order

accurate (in this case Oðh2Þ � O 6� 10�4
	 


). On the other hand,

poor quality results in the noisy case can be explained by using
the SVD of the discrete differentiation operator as follows. Let
Dð2Þ have a SVD Dð2Þ ¼ USVT . Since Dð2Þ is Hermitian, its singular
values and singular vectors are obtained immediately. More pre-
cisely, with the convention that singular are sorted in non decreas-
ing order and that eigenvalues of Dð2Þ are presented in non
increasing order, then r1 ¼ 0 6 r2 6 � � � 6 rN , ri ¼ �ki; vi ¼ v i

and ui ¼ �vi, with v i being the eigenvector corresponding to ki.
As a consequence, small singular values correspond to low-
frequency eigenmodes while larger singular values correspond to
high-frequency eigenmodes, as seen in Fig. 2. Thus, discrete second
order derivatives ey00 for noisy data ey ¼ yþ e with
~yi ¼ yðxiÞ þ �i; i ¼ 1; . . . ;N, becomes

ey00 ¼ Dð2Þey ¼ USVTey ¼
XN
i¼1

ri v
T
i ey� �

ui ¼
XN
i¼1

ri v
T
i y

� �
ui þ

XN
i¼1

ri v
T
i e

� �
ui:

ð69Þ

The second term in the right equality shows that the contribution of
noise in the computed derivative will start dominating the final
result when, for some i, rijvTi ej 	 1. Now, if noise is white, which
means the magnitude of the Fourier coefficients jvTi ej is approxi-
mately constant, because the singular values ri grow approximately

as i2, it follows that high-frequency components should start dom-
inating the result very soon. Therefore, in order to filter out such
components, the sum should be truncated soon as well. The same
ideas can be implemented using the Fourier differentiation matrix
or some other discrete differentiation operator.

Like TSVD, FDMA constructs approximate second order deriva-
tives by truncating the sum in (69) to k 6 N terms, giving rise to
kth truncated second order derivatives defined by

ey00k ¼Xk
i¼1

ri v
T
i ey� �

ui: ð70Þ

Three kth truncated second order derivatives displayed in Fig. 4
show that while small values of k oversmooth the computed deriva-
tive, larger ones yield the opposite effect, and once again the chal-
lenge is how to choose a proper truncation parameter. The
truncation parameter for FDMA will be determined by using the
discrepancy principle (DP) and by MPR. To this end, considering
(69) as the inverse solution to a linear problem of the form Bs ¼ ey
com B ¼ Dð2Þy, it suffices to notice that the residual and solution
norms associated to ey00ðkÞ are given as

kRkk22 ¼
XN
i¼kþ1

vTi ey� �2
; and key00kk22 ¼

Xk
i¼1

r2
i vTi ey� �2

: ð71Þ

With the above quantities at hand, the truncation parameter selec-
tion methods DP and MPR can be implemented as described in (54)
and (55), respectively. Having determined the truncation parame-

ter, say bk, the reconstructed function can be calculated as

ybk ¼
Xbk
i¼1

ðvTi eyÞvi: ð72Þ

Reconstructed functions ybk and corresponding truncated second

order derivatives determined by applying FDMA to the above dataey based on DP and MPR are displayed in Fig. 5. Parameter s
required to implement DP was chosen as s ¼ 1:1. To asses the qual-
ity of computed quantities, a method that determines the smallest
normwise relative error as a function of k was considered and
denoted by OPT. Normwise relative errors reported in Table 1 show
that both methods DP and MPR perform nicely and with errors rel-
atively close to the optimum.

5. Numerical results

The main purpose of the section is to illustrate the performance
of all estimation methods described before on two test problems,
first, using synthetic data generated from the benchmark solution
introduced in previous section, and second, using experimental
data.

5.1. Synthetic data from benchmark solution

The test problem considered here generates temperature values
from a benchmark solution introduced in (13) which takes into
account physical quantities reported in [12] displayed in Table 2.

For the forward problem spatial derivatives are approximated
using nþ 1 ¼ 21 Gauss–Lobatto points and derivatives with
respect to h are approximated with N ¼ 128. High accuracy attrib-
uted to the pseudospectral approach in solving the forward prob-
lem is confirmed in Fig. 6.

For the inverse problem, N ¼ 128 temperature values at the
external tube wall are used:eTj ¼ TðrE; hjÞ þ ej; j ¼ 1; . . . ;128; ð73Þ
with hj equally spaced on ½0 2p� and where ej are Gaussian random

numbers scaled such that keT � Tk2=kTk2 ¼ 2:5� 10�4, and

d ¼ keT � Tk2 ¼ 0:86550. Recall that the absolute error d is required
by DP as input data. Exact temperature values, noise corrupted tem-
perature values, as well as the heat-flux coefficient estimated
naively by solving the least squares problem (46) are displayed in
Fig. 7. Poor quality results are explained by the fact that the sensi-
tivity matrix is severely conditioned (in this case, condðJÞ ¼
1:0219� 1010). To prevent large variations of the heat-flux distribu-
tion when computing inverse solutions, a regularization matrix L is
introduced in the estimation procedure; in this case, because the
heat-flux is smooth, the regularization matrix is chosen to be a dis-
crete second order differentiation operator defined by

L ¼
1 �2 1

. .
. . .

. . .
.

1 �2 1

264
375

ðN�2Þ�N

: ð74Þ

Thus, all numerical results rely on the GSVD of the matrix pair ðJ; LÞ.

5.1.1. TGSVD-based results
To describe results obtained by TGSVD, first notice from Fig. 8

that the parameter selection rules DP and MPR point out trunca-
tion parameters k ¼ 5 for DP and k ¼ 3 for MPR. The resulting reg-
ularized solutions Q 5;L and Q 3;L are displayed on the left of Fig. 9.
Notice that QðhÞ and the estimated regularized solutions are close
to each other. Estimates of the heat transfer coefficient hðhÞ based
on (5) and the estimated heat flux coefficient QðhÞ, as well as the
corresponding pointwise relative errors are also displayed in
Fig. 9. The error distribution shows that both parameter truncation
rules perform well, thereby confirming the effectiveness of MPR as
already seen in other applications, e.g., [6].

5.1.2. Tikhonov regularization-based results
To describe results obtained by Tikhonov regularization, first

notice that regularization parameters obtained with DP, FP and
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Table 1
Truncation parameters and normwise relative errors.

k Error in ey00k Error in yk

DP 7 0.0556 0.0042
MPR 11 0.0551 0.0038
OPT 9 0.0158 0.0034

Table 2
Physical quantities.

kw a qg Tb Tenv rI rE

15 5 4:8� 106 295.2 294.2 0.012 0.015
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L-curve are displayed in Fig. 10 using small circles. It is worth
emphasizing that while DP requires knowledge of the noise level,
FP and L-curve do not. Regularized solutions obtained with the
computed parameters as well as the corresponding pointwise rel-
ative errors are all displayed in Fig. 11. The results confirm com-
mon experience regarding L-curve method in the sense that
when the L-curve plot does not display multiple corners, FP,
L-curve and DP perform generally well. Errors associated to the
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reconstructions of the heat transfer coefficient were approximately
the same as those obtained via TGSVD (Fig. 9-right); for this they
are not displayed here.
5.1.3. Filtered differentiation matrix-based results
Temperature data of the above numerical experiments are now

used to illustrate how FDMA performs in recovering both the heat
flux distribution and the heat transfer coefficient, concentrating on
assessing the quality of inverse solutions as the tube thickness var-
ies. For this, the heat-flux distribution QðhÞ and the heat transfer
coefficient hðhÞ will be estimated for three distinct values of rI ,
keeping the outer radius unchanged and fixed at rE ¼ 0:015. FDMA
is implemented using the discrete second order differentiation
operator D2 introduced in (68) with DP and MPR as parameter
truncation rules; to assess its potential average normwise relative
errors of 20 realizations are computed, which are denoted here by
EQ and EH , respectively. Numerical results reported in Table 3 show
that while the reconstruction quality of the heat flux coefficient is
remarkably good and rather independent of the inner radius, this
does not happen with the estimated heat transfer coefficient
whose quality deteriorates as the thickness tube grows. This
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Fig. 11. Heat flux distribution QðhÞ and its estimates determined via Tikhonov regularization.
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observation is illustrated in Fig. 12 with results obtained from the
first realization.

More can be said to explain the poor quality of the estimated
heat transfer coefficient for rI ¼ 0:012;0:013. Indeed, this behavior
is due to the fact that FDMA is based on a simplified numerical
model of the tube section, formulated by assuming thin wall
approximation. This assumption is fully acceptable only when Biot
number, defined as the product of convective heat transfer coeffi-
cient and tube thickness, divided by tube thermal conductivity, is
smaller than 0.1 [8]. When the tube thickness becomes significant,
the assumption is not fulfilled anymore and the thin wall approx-
imation introduces important errors. In particular, for rI ¼ 0:014
Biot number value is 0.04 while for rI ¼ 0:012 it is 0.5 and the thin
wall approximation is not acceptable. For illustration, Biot num-
bers associated to the above radii are shown in Table 4.
5.2. Quantifying performance of the methods

In order to complement the above results, the performance of
all methods in estimating QðhÞand hðhÞ from highly noisy data will
now be assessed by computing relative errors in the reconstructed
quantities. As before, noisy data eT j used in all numerical experi-
ments are as in (73), but now with noise levels

keT � Tk2=kTk2 ¼ NL� 10�2, with NL ¼ 0:2;0:4;0:6;0:8, and 1.0,
i.e., noise levels 0.2%, 0.4%,. . .,1%. Since noise is random, average
normwise relative errors, EQ and EH , of 20 instances were calcu-
lated for each noise level, with the observation that because
L-curve failed constructing reasonable solutions several times,
average value computation for LC was done using successful runs
only: an LC-based solution was considered successful when the
corresponding error did not exceed 0.5 (i.e. relative error 50%). In
addition, since DP requires an upper bound on the noise level,
see, (54) and (59), all computations involving DP were performed
with s ¼ 1:1 and the exact noise level as input data.

Errors in the reconstructions obtained with TGSVD and Tikho-
nov regularization are displayed in Fig. 13. Two aspects have to
be emphasized. First, that the reconstruction quality is approxi-
mately the same for all methods, with a slight advantage in favor
of MPR and LC, and second, that the reconstructions of the heat
transfer coefficient are more sensitive than the reconstructions of
the heat flux distribution. The reason for the increased sensitivity
in estimating the heat transfer coefficient is explained by the fact



Table 3
Average normwise relative errors in estimating heath-flux distribution and heat-transfer coefficient from noisy data with noise level 0:025%.

rI ¼ 0:012 rI ¼ 0:013 rI ¼ 0:014

DP MPR DP MPR DP MPR

EQ 0:3517� 10�3 0:5672� 10�3 0:2224� 10�3 0:6678� 10�3 0:2059� 10�3 0:4735� 10�3

EH 0.1606 0.1606 0.0689 0.0688 0.0167 0.0167
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Fig. 12. Heat-flux distribution QðhÞ and heat-transfer coefficient hðhÞ estimated by FDMA.

Table 4
Estimated Biot numbers Bi for three inner radii.

rI s ¼ rE � rI kw hmax Bi ¼ hmaxs=kw

0.012 0.003 15 2500 0.5
0.013 0.002 15 1400 0.1866
0.014 0.001 15 600 0.04
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that the estimated temperature TðrI; hÞ used to obtain the heat
transfer coefficient in (5) incorporates two source of errors in the
final result: the error in estimating QðhÞ and the error due to the
forward solver.

Average relative errors obtained with FDMA are displayed in
Fig. 14. The results show that the relative errors follow the same
trend as those obtained in the case where the data are contami-
nated by low noise levels: the reconstruction quality of heat flux
distributions is more accurate than that of the heat transfer coeffi-
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Fig. 13. Average normwise errors in estimating the heat flux Q (left) and the heat trans
levels.
cient, the latter depending strongly on the tube thickness. The rea-
son for the decreased accuracy in estimating the heat-transfer
coefficient is explained by the fact that such estimation depends
on both the second order derivative of the measured temperatureeTj, which is inaccurate, and the replacement of TðrI; hÞ by an esti-
mate that is obtained from the measured temperature, see Eqs.
(63) and (65). (see Fig. 15).

The conclusion that can be drawn from Figs. 13 and 14 is that,
except in the case when the tube thickness is very small, TGSVD
and Tikhonov regularization produce more accurate solutions than
FDMA.

5.3. Experimental data measured by infrared camera

In this section, all numerical estimation procedures will be
tested using experimental data obtained in [12]. The data consist
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radius.
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of 276 pointwise equality spaced temperature values acquired by a
infrared camera on the exterior wall surface of a coiled tube, see
Fig. 1. In this experimental investigation a stainless steel tube.
The pipe under test was characterized by a helical profile com-
posed by eight coils: the diameter and the pitch of the helix were
of approximately 310 mm and 200 mm, respectively. The tube
external diameter was equal to 16 mmwith a 1 mmwall thickness.
The surface temperature distribution was acquired experimentally
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−7000

−6000
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−4000
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−2000
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FP
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Fig. 16. Estimated heat flux distribution (left) and estimated heat transfer coefficient
measurements.
by means of a FLIR SC7000 infrared camera, with a 640� 512 pixel
detector array. Its thermal sensitivity, as reported by the instru-
ment manufacturer, is 20 mK at 303 K, while its accuracy is ±K.
Moving the infrared camera around the tube, different images of
the test section were acquired: then thanks to a position reference
fixed on the tube wall, the different infrared images were conve-
niently cropped, processed by perspective algorithms and merged
together in Matlab environment. With this data processing proce-
dure a continuous temperature distribution on the tube wall ver-
sus the circumferential angular coordinate was obtained. The
heat transfer enhancement was investigated in laminar regime
by using Ethylene Glycol as a working fluid. Except for the radii
which were set to rI ¼ 0:008 and rE ¼ 0:009, the remaining system
parameters are the same as in Table 2.

Again, to prevent large variations of the heat-flux distribution
when computing inverse solutions, the second order discrete dif-
ferentiation matrix L, see (74), is used as regularization matrix;
hence, all estimated quantities rely on the GSVD of the matrix pair
ðJ; LÞ, where J is the sensitivity matrix. Also, since the data are
experimental in nature and as the level of noise in the data is
unknown, the choice of the regularization parameter through the
discrepancy principle will not be used. The estimated heat flux dis-
tribution and corresponding heat transfer coefficient obtained
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(right) both obtained by TGSVD and Tiknonov regularization from experimental



−4 −2 0 2 4

304

306

308
 Exp 
 Filt  (MPR)

−4 −2 0 2 4

304

306

308
 Exp
 Filt (FP)

Fig. 17. Experimental data and filtered data.

F.S.V. Bazán et al. / International Journal of Heat and Mass Transfer 102 (2016) 1230–1244 1243
through TGSVD and Tikhonov regularization are displayed in
Fig. 16. The results obtained through FDMA are very similar and
are not reported here. The results agree well with those obtained
in [12] in which the forward problem is addressed using the finite
element method available in Comsol Multiphysics, a commercial
software.

The estimation methods are also able to filter out noise of the
data after the heat flux distribution is available: by using (45) fil-
tered temperature data can be computed as Tfiltered ¼ Tð0Þ þ JQ ð�Þ,
where Q ð�Þ stands for the heat flux distribution obtained by regu-
larization technique (�). Two temperature filtered data are dis-
played in Fig. 17, one based on TGSVD and the other one based
on Tikhonov regularization.

6. Conclusions

In this work, several regularization methods for estimating the
local convective heat transfer coefficient in coiled tubes have been
proposed and assessed. The methods include truncated generalized
singular value decomposition (TGSVD), Tikhonov regularization
method (TRM), and a novel technique which truncates the fre-
quency content of a discrete differentiation operator (FMDA) in
order to filter out noise from data. Numerous numerical results
on synthetic and experimental data have shown that the methods
yield satisfactory results even when the data are highly contami-
nated by noise. Synthetic data used in the experiments resemble
well experimental data often encountered in technical applications
and may be useful in the assessment of numerical methods and in
the design of coiled tube heat exchangers. Two factors contributed
to the success of the methods: an efficient solver for the forward
problem based on a highly accurate pseudospectral method and
a proper selection of regularization parameters. Finally, since esti-
mation errors in heat transfer coefficient depend on two source of
errors, namely, input data errors and errors in heat flux distribu-
tion, non linear estimation techniques should be implemented in
order to mitigate such dependence. This is the subject of ongoing
work.
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