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Abstract

In this work, a method for estimating the space-dependent perfusion coefficient pa-
rameter in a 2D bioheat transfer model is presented. In the method, the bioheat transfer
model is transformed into a time-dependent semidiscrete system of ordinary differential
equations involving perfusion coefficient values as parameters, and the estimation problem
is solved through a nonlinear least squares technique. In particular, the bioheat problem
is solved by the method of lines based on an highly accurate pseudospectral approach, and
perfusion coefficient values are estimated by the regularized Gauss-Newton method cou-
pled with a proper regularization parameter. The performance of the method on several
test problems is illustrated numerically.

Keywords: Pennes equation; Chebyshev pseudospectral methods; non linear least squares
problems; regularized Gauss-Newton method.

1 Introduction

Knowledge of temperature profiles and blood perfusion of living biological tissues is impor-
tant for medical therapies such as temperature-based disease diagnostics, cryosurgery, infrared
light therapy, cancer hyperthermia, and laser surgery, among others [12, 30]. Unfortunately,
both quantities are nonlinearly related and thus, difficult to estimate empirically or numer-
ically. The difficulty arises from several factors peculiar to living tissues, e.g., the complex
anatomical structure of tissue, the blood flow in vessels, the heat exchange between the skin
and its environment [6, 27, 17, 26], etc. To account for all above factors it is often assumed
that heat transfer between tissue and blood occurs across the wall of capillaries, where blood
velocity is very low [24, 37], with all perfusion information being concentrated in the so called
blood perfusion coefficient. Blood perfusion is characterized as the local blood flow rate through
the capillary network of the tissue. It plays an important role in physiological processes such
as thermoregulation and inflammation. Hence, changes in blood perfusion indicate abnormal
physiologic or pathologic condition of the tissue. Thus, estimation methods of blood perfusion
are of paramount importance for medical disease diagnostics and therapeutic procedures.
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NOMENCLATURE

Symbol Quantity

ρ, c, κ density, specific heat and thermal conductivity of the tissue
wb, cb mass flow rate of blood and specific heat of the blood
θ, θa temperature of the tissue and arterial blood temperature
hm, he volumetric rate of metabolic heat generation and external heat
η, θ∞ heat transfer coefficient and environmental temperature
θb, θ0 skin surface temperature and initial temperature of the tissue

g0, L̂ reference source of heating generation and length of perfused tissue
U, Pf dimensionless temperature of tissue and blood perfusion coefficient
G,B dimensionless source of heating generation and Biot number
U∞ dimensionless difference between environmental and arterial temperatures
U0 dimensionless difference between initial and arterial temperatures
D, In Chebyshev differentiation matrix and identity matrix of order n× n
U j(t), H(t) auxiliary vector valued functions
ej j-th canonical vector of appropriate dimension
H, V (t) auxiliary vector and vector of approximations to U(t)
A coefficient matrix of semidiscrete system of ODEs
S(t) source term for semidiscrete system of ODEs
P f diagonal matrix consisting of Pf evaluated on the mesh
G(t) vector valued function consisting of G evaluated on the mesh
Vk, tk,∆t approximate value to V (tk), time level and timestep
F1, . . . , F4 coefficients of CPS-RK4 method

Ũ tk ,O measured temperature and domain for bioheat transfer model
L2(O), Hp(O) space of square integrable functions and Sobolev space
p∗,F(Pf ) stationary point of F(Pf ) and functional associated to the inverse problem
U(t) approximation values to the solution U
A(p) parameter dependent square matrix for the system of ODEs
p, S(t) vector of unknown parameters and source term

U tk
ℓi
(p), Ũ tk

ℓi
exact and measured temperatures

p∗, F (p) stationary point of F (p) and nonlinear least squares functional

U(p), Ũ vector of computed temperatures and vector of measured temperatures
δ error norm between actual and measured temperatures
K,J(p) compact subset of RN and sensitivity matrix as a function of p
V(p)(t),W(t) auxiliary functions in semidiscrete system

Pf diagonal matrix containing approximate values of Pj on the mesh
pf vector containing approximate values of Pj on the mesh
pk
δ kth approximation produced by regularized Gauss-Newton method

Û(p) linear model around pk
δ at iteration k of RGN

λk,L sequence of regularization parameters and regularization matrix
pe,N (·), ξ a priori estimate of pf , Null space of (·) and scale factor for λk

k̆, τd truncation index, noise-level factor
ς,Φ(k) scale factor for λk if δ is not available and fixed-point iteration function

rkλ,n residual rkλ = [U(pk
δ )− Ũ] + Jk(p

(k)
λ − pk

δ ) and Gaussian random vector
L1(m),L2(m) first and second order 1D discrete differential operator
L1(m),L2(m) first and second order 2D discrete differential operator
λ(j) fixed-point sequence to compute regularization parameter λk at stage k
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NOMENCLATURE

Acronym Meaning

RK4 Fourth order Runge-Kutta method
RGN Regularized Gauss-Newton
CPS Pseudospectral Collocation method
CPS-RK2 Second order predictor-corrector method
CPS-RK4 Fourth order Runge-Kutta method
ODE Ordinary Differential Equation
PDE Partial Differential Equation
DP Discrepancy principle
FP Fixed-point method
GSVD Generalized singular value decomposition
RGN-FP RGN algorithm coupled with FP
NL Noise Level

The purpose of this investigation is to derive a method for the estimation of blood perfusion
based on the combination of clinical temperature measurements with a mathematical model
for heat transport proposed by Pennes [34] (referred to as the bioheat model) constrained to
appropriate boundary conditions.

The 2D model is composed of a partial differential equation (PDE)

ρc θτ − κ∆θ + wbcb(θ − θa) = hm + he, 0 < x∗ < L̂, 0 < y∗ < 1, τ > 0, (1)

and the boundary and initial conditions

θx∗ = 0, x∗ = 0, 0 < y∗ < 1, τ > 0, (2)

θx∗ = 0, x∗ = L̂, 0 < y∗ < 1, τ > 0, (3)

κθy∗ = η(θ − θ∞), 0 < x∗ < L̂, y∗ = 0, τ > 0, (4)

θ = θb, 0 < x∗ < L̂, y∗ = 1, τ > 0, (5)

θ = θ0, 0 < x∗ < L̂, 0 < y∗ < 1, τ = 0. (6)

In this model, we consider a rectangular perfused tissue with length and thickness equal to
L̂ and 1, respectively, see Fig. 1, and whose temperature at position (x∗, y∗) and time τ is
denoted by θ(x∗, y∗, τ). The parameters ρ, c and κ stand for density, specific heat and thermal
conductivity of tissue, respectively. Moreover, he denotes the volumetric rate of external heat,
hm the volumetric rate of metabolic heat generation, θa the arterial temperature, cb the specific
heat of the blood and wb the mass flow rate of blood per unit volume of tissue. The boundary
conditions (2)-(5) include prescribed temperature on the upper skin surface at y∗ = 1, adiabatic

conditions at x∗ = 0 and x∗ = L̂, and convective heat transfer between the tissue and an adjoint
large blood vessel at y∗ = 0, as displayed in Fig. 1. Accordingly, η denotes the heat transfer
coefficient, θ∞ the environmental temperature (in the adjacent blood vessel) and θb the skin
surface temperature; θ0 is the initial temperature of the tissue.

Let us choose g0 > 0 as a reference source of heating generation and suppose, for simplicity,
that θa = θb. Letting

U = κg−1
0 L̂−2(θ − θa), L = L̂−1, (x, y) = L̂−1(x∗, y∗), t = κρ−1c−1L̂−2τ,

Pf = wbcbL̂
2κ−1, B = ηL̂κ−1, G = (he + hm)g

−1
0 , U∞ = κg−1

0 L̂−2(θ∞ − θa),

U0 = κg−1
0 L̂−2(θ0 − θa),

(7)
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the dimensionless form of the system (1)-(6) reads

Ut −∆U + PfU = G, 0 < x < 1, 0 < y < L, t > 0, (8)

Ux = 0, x = 0, 0 < y < L, t > 0, (9)

Ux = 0, x = 1, 0 < y < L, t > 0, (10)

Uy = B(U − U∞), y = 0, 0 < x < 1, t > 0, (11)

U = 0, y = L, 0 < x < 1, t > 0, (12)

U = U0, 0 < x < 1, 0 < y < L, t = 0. (13)

The parameter Pf given above is the so called blood perfusion coefficient [34],[29], [28]; in turn,
B corresponds to the well known Biot number [23], G is the dimensionless source of heating
generation, U∞ and U0 stand by the dimensionless difference between the environmental and
arterial temperatures and between the initial and the arterial temperatures, respectively.

Figure 1: Domain for perfusion estimation.

Having described the bioheat transfer model, the estimation problem can be roughly de-
scribed as follows: Given a set of measured temperature values Ũ in prescribed locations, find
a pair (Pf , U) satisfying the bioheat transfer model (1)-(6) such that U is close to Ũ in some
sense. A key element in the estimation procedure is to recognize that since the measurement
data are indirectly correlated to the blood perfusion coefficient, the problem at hand is a non-
linear inverse and ill-posed parameter identification problem, where we are given a set of noisy
temperature measurements and the perfusion coefficient (regarded as unknown) needs to be
estimated through nonlinear techniques [11, 31, 25, 28]. As a matter of fact, we note that in
real life, the perfusion coefficient is a dimensionless clinical parameter that changes with the
evolution of temperature due to the very complex nature of the pathways through which it
flows [15, 24]. For these complications, the perfusion coefficient is often regarded as a function
that depends on time and position and not on temperature field [41, 42]. In this investigation
we restrict ourselves to the case where the perfusion coefficient does not depend on time.

Inverse blood perfusion estimation techniques for one dimensional cases based on known
initial and Dirichlet boundary conditions and additional heat flux measurements have been
described by Trucu et al. [41, 42]; a procedure based on integral transform techniques in rect-
angular domains is addressed in [29], while the boundary element method is employed in [22, 33].
A more general model including porosity effects is introduced in [6]; in [15] are described es-
timates for temperature dependent blood perfusion in complex 3D domains. In our approach,
the bioheat transfer model (8)-(13) (the forward problem) is transformed into a time-dependent
semidiscrete system of ordinary differential equations involving perfusion coefficient values as
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a set of unknown parameters, and the parameter estimation problem (i.e., the determination
of estimates for all parameters) is solved through a nonlinear least squares technique. More
precisely, the forward problem is solved by the method of lines, based on an accurate pseu-
dospectral approach to perform the spatial discretization of the PDE defined in (8) together
with two time integrator methods, namely a second order predictor-corrector method and the
fourth order Runge-Kutta method. Perfusion coefficient values are then estimated by a non-
linear minimization protocol based on the regularized Gauss-Newton method (RGN) [41] in
conjunction with the Fixed-point method (FP) [2, 3, 4, 5] as regularization parameter choice
rule. The approach requires the solution of the forward problem at each iteration with estimates
of Pf as input data.

The paper is organized as follows. A detailed discretization procedure of the direct problem
and some numerical results are presented in Section 2. In Section 3 the inverse problem is
discussed and the non linear protocol is established. In section 4 we present some numerical
results that illustrate the performance of the method on several synthetic test problems. The
paper ends with final considerations.

2 Forward Problem

In previous investigations, analytical and numerical aspects of the bioheat equation have
been considered in applications that include hyperthermic treatment, cryosurgery, thermoregu-
lation analysis and others. For example, analytical solutions for the 1D Pennes equation based
on fundamental solutions for parabolic equations were presented in [1] and [20]; oscillatory heat
flux condition with the aid of Laplace transform method has been considered in [37]; in [13] the
authors deal with transient coefficients by spectral element methods, while in [1], concentric
spherical regions are addressed by the finite difference method (see also [36]). Solutions for a 2D
bioheat equation involving convective boundary conditions based on integral transform tech-
niques are described in [29], and more recently, a pseudospectral approach is proposed in [8];
in [12] a Monte Carlo method was developed to solve a 3D Pennes equation with nonlinear
boundary conditions. A rigorous mathematical analysis concerning existence and uniqueness
of solution to the model (8)-(13), in Sobolev space settings, can be found in [7, Theorem 3.1],
in which, the solution U is expressed in Fourier series form in terms of eigenfunctions of the
elliptic operator −∆+ PfI. However, such solution is difficult to compute in practice.

In this section, as an alternative to existing numerical approaches in literature, we will con-
sider a numerical method for the bioheat problem (8)-(13) based on the well known pseudospec-
tral collocation (CPS) method. The CPS approach has become an efficient way to construct
approximate solutions to partial differential equations (PDEs), see, e.g., [8, 18, 40], due to its
high precision and relatively lower computation cost compared to finite difference methods. It
has also been proven successful in solving a stationary 2D forward problem associated to an
inverse heat flux estimation problem in coiled tubes [9]. In the present case, the underlying
idea is to approximate spatial derivatives by using the differentiation Chebyshev matrix, which
gives rise to a system of ordinary differential equations (ODEs) where only the time derivative
appears, and then integrate in time by some appropriate numerical scheme for ODEs. For
simplicity we shall consider a mesh consisting of (n+1)× (n+1) grid points on the unit square
based on (n+ 1) Chebyshev-Gauss Lobatto points in each direction:

xi =
1

2

(
1− cos

πi

n

)
, 0 ≤ i ≤ n, yj =

1

2

(
1− cos

πj

n

)
, 0 ≤ j ≤ n, (14)

and assume that the grid points are numbered in the lexicographic ordering, as seen in Fig. 2.
Let the (n + 1) × (n + 1) differentiation Chebyshev matrix in [0, 1] be denoted by D and
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Figure 2: Grid comprising 16 points corresponding to n = 3.

assume that it can be described in column-wise (resp. row-wise) form as

D = [d0 d1 · · · dn] =




rT0
...
rTn


 , di, ri ∈ R

n+1. (15)

For later use define

D1 = [d1 d2 · · · dn−1], D2 =




rT1
...

rTn−1


 , (16)

U j(t) = [U(x0, yj , t), U(x1, yj , t), · · ·U(xn, yj , t)]
T , 0 ≤ j ≤ n. (17)

To approximate second order derivatives with respect to x notice that the second order Cheby-
shev differentiation matrix, D2, can be expressed as

D2 = d0r
T
0 + d1r

T
1 + · · ·+ dnr

T
n . (18)

Therefore



Uxx(x0, yj , t)
Uxx(x1, yj , t)

...
Uxx(xn, yj , t)


 ≈ D2




U(x0, yj , t)
U(x1, yj , t)

...
U(xn, yj , t)


 = d0r

T
0 U j(t) +D1D2U j(t) + dnr

T
nU j(t)

≈ D1D2U j(t), 0 ≤ j ≤ n− 1,

(19)

where we have used the fact that rTi U j ≈ Ux(xi, yj , t), the boundary conditions (9)-(10), and
the definitions in (16). Therefore, taking the ordering of the grid points into account, we can
consider the vector of all unknown on the mesh :

U(t) = [U0(t)
T U1(t)

T · · ·Un−1(t)
T ]T ,

and use (19) to obtain 


Uxx(x0, y0, t)
...

Uxx(xn, y0, t)
...

Uxx(x0, yn−1, t)
...

Uxx(xn, yn−1, t)




≈ (In ⊗D1D2)U(t) (20)
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where ⊗ stands for Kronecker product. This completes the approximation of second order
derivatives with respect to x. A similar procedure shows that second order derivatives with
respect to y can be approximated as




Uyy(x0, y0, t)
...

Uyy(xn, y0, t)
...

Uyy(x0, yn−1, t)
...

Uyy(xn, yn−1, t)




≈
[(
Bd0e

T
1 +D1D2

)
⊗ I(n+1)

]
U(t)−B U∞H, (21)

where

D1 = [d1 . . . dn], D2 =




rT1
...
rTn


 (22)

with di and ri being the vectors obtained by taking the first n components of di and ri, H =
[HT

0 , . . . , H
T
n−1]

T , with Hi = eTi+1d0 [1, . . . , 1]
T ∈ R

n+1, i = 0, . . . , n − 1. This completes the
discretization of spatial derivatives in the mesh.

Finally, neglecting discretization errors and denoting the vector of approximations to U(t)
by V (t), combination of (20), (21) and (8) yields an initial-value problem for a system of linear
ordinary differential equations of the form

{
V ′(t) = AV (t) + S(t), t > 0
V (0) = U0,

(23)

where
A =

[
(In ⊗D1D2) + (Bd0e

T
1 +D1D2)⊗ I(n+1) − P f

]
, (24)

P f = diag (Pf (x0, y0), . . . , Pf (xn, y0), . . . , Pf (x0, yn−1), . . . , Pf (xn, yn−1)) , (25)

and
S(t) = G(t)−BU∞H, with (26)

G(t) = [G(x0, y0, t), . . . , G(xn, y0, t), . . . , G(x0, yn−1, t), . . . , G(xn, yn−1, t)]
T . (27)

Therefore, highly accurate approximate solution to model (1)-(6) can be computed by solving
the initial-value problem (23). Notice that the solution to this initial-value problem can be
computed using eigenvalues and eigenvectors of A using the fact that

V (t) = eAtV (0) +

∫ t

0

eA(t−τ)S(τ)dτ. (28)

The capability of the CPS method to produce highly accurate numerical solutions relies
on the fact that accurate approximation to the most important features of the PDE, namely
the eigenvalues and corresponding eigenmodes, are now concentrated in the eigensystem of
matrix A. For illustration we consider the case Pf = cte (for which eigenpairs of the continuous
problem are determined in closed form) and compute the first 100 eigenvalues of the continuous
problem as well as their approximations obtained from matrix A for n = 30, see Figure 3.

To illustrate something similar with regard to eigenmodes, the first four continuous eigen-
modes and the first four discrete eigenmodes are all displayed in Figure 4. Note that for n = 30,
three of the continuous eigenmodes are already captured.

Summarizing, the CPS-based numerical approach for computing approximate solutions to
the initial and boundary value problem involving the bioheat equation reduces to apply time

7



0 20 40 60 80 100
10

0

10
1

10
2

10
3

10
4

k

Eigenvalues of continuous and discrete problems

 

 

Continuous

Discrete

Figure 3: Eigenvalues of continuous and discrete problems for the data set described in (32).
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Figure 4: First four eigenmodes of continuous (top) and discrete (bottom) Bioheat problems.

integration methods for ODEs, like multi-step or Runge-Kutta methods, for solving the initial
value problem (23). In our computations we consider two time integration methods, namely, a
second order predictor-corrector method and the well-known fourth order Runge-Kutta method.
The former, denoted here by CPS-RK2, combines the forward Euler method as a predictor
and the Crank-Nicolson (also referred to as trapezoidal rule) as a corrector. If we let Vk denote
the value that approximates V (tk), tk = ∆t k, CPS-RK2 can be outlined as follows:

CPS-RK2:

For k ≥ 0, calculate

V
(p)
k+1 = Vk +∆t (AVk + S(tk))

Vk+1 = Vk +
∆t

2

[
A
(
Vk + V

(p)
k+1

)
+ S(tk) + S(tk+1)

]
.

(29)

The fourth order Runge-Kutta method, denoted by CPS-RK4, can be outlined as follows:

CPS-RK4:

For k ≥ 0, calculate

Vk+1 = Vk +
∆t

6
(F1 + 2F2 + 2F3 + F4), with (30)

F1 = AVk + S(tk), F2 = A

(
Vk +

∆t

2
F1

)
+ S(tk +

∆t

2
)

F3 = A

(
Vk +

∆t

2
F2

)
+ S(tk +

∆t

2
), F4 = A (Vk +∆tF3) + S(tk+1).
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2.1 Numerical examples

We shall illustrate the effectiveness of the chosen time integration methods with two exam-
ples. The first example considers the perfusion coefficient constant case where the source term
is taken to be

G(x, y, t) = eaty2(y − L) cos(πx)[a cos (ct)− c sin (ct)]

− eat cos (ct) cos (πx)[−π2y2(y − L) + (6y − 2L)]−
2BU∞

L

+ Pf [e
at cos (ct)y2(y − L) cos(πx) +

BU∞

L
y(y − L)]

where a, c are arbitrary real constants, and the solution for the bioheat problem is

U(x, y, t) = eat cos (ct)y2(y − L) cos(πx) +
BU∞

L
y(y − L). (31)

We report results obtained with CPS-RK4 corresponding to the data

a = −50, c = 3π, B = 0.015, Pf = 0.1, L = 1, and U∞ = 0.001, (32)

for n = 20, which implies a grid of 21× 21 points and a system matrix A of size 420× 420. For
this example the timestep is ∆t = 0.00004, a slightly smaller value than the maximum allowable
timestep for stable integration, the same timestep being used in the implementation of CPS-

RK2. The results displayed in Figure 5 confirm what is known from literature: exponential
accuracy for infinitely differentiable functions with regard to spatial variables and O(∆t)4 ≈
O(10−16) accurate results for RK4 as time integrator. For details concerning theoretical upper
bounds for the error associated to spectral methods, the reader is referred to [10, 35]. The
results obtained with CPS-RK2 reached an accuracy of eight significant digits and were thus
indistinguishable when compared with those obtained by CPS-RK4; these results are not
reported here.
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Figure 5: Approximate solution computed by CPS-RK4 and corresponding error with respect
to the exact solution in a grid of 21× 21 points.

Our second example considers a bioheat problem where the perfusion coefficient is a non
smooth function of x and the source term G(x, y, t) is chosen in such a way that the solution
U(x, y, t) is the function defined in (31), where a, c, B, L and U∞ are the same as in (32). In
this case the perfusion coefficient is defined by

Pf (x) =





0, 0 ≤ x ≤ 0.2,
10(x− 0.2)/3, 0.2 ≤ x ≤ 0.5,
−10(x− 0.8)/3, 0.5 ≤ x ≤ 0.8,

0, 0.8 ≤ x ≤ 1.

(33)
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Figure 6: Numerical results for spatial-dependent perfusion coefficient case.

The results obtained with CPS-RK4 for the case where n = 20 are displayed in Figure 6.
We also emphasize that Pf given in (33) does not represent a realistic situation [29]; it is chosen
simply to check the potential of the proposed numerical method.

3 Inverse problem of perfusion coefficient estimation:

pseudospectral approach

Given that a numerically robust method for solving the bioheat model is available, we shall
now introduce a numerical method for the associated inverse problem consisting of estimating
the perfusion coefficient based on a set of measured temperatures as input data. Before this,
we emphasize that although our main goal is not to treat the theoretical properties of this
inverse problem, we find instructive to outline the question on existence of a solution as follows.
Suppose that we are given measured temperatures Ũ tk ∈ L2(O), O =]0, 1[×]0, L[×[0, T ], at
time levels 0 < t1 < t2 < . . . < tq < T . Then the inverse problem consists in recovering (Pf , U)

such that (8)-(13) is satisfied for t ∈ [0, T ] and U(·, tk) = Ũ(·, tk), and can be reformulated as
an optimization problem: Find p∗ defined as

p∗ = argmin
Pf∈X

F(Pf ), F(Pf ) =
1

2

q∑

k=1

∫ 1

0

∫ L

0

(
U(x, y, tk)− Ũ tk(x, y)

)2

dydx, (34)

where X = {p ∈ L2(O), 0 ≤ p ≤ K, K > 0, a. e. in O}, where U ∈ C([0, T ];L2(O)) ∩
C1(]0, T ];H2(O)) is the solution of (8)-(13) corresponding to Pf . The existence of p∗ ∈ X
satisfying (34) can be proved using weak convergence arguments, compactness principles and [7,
Theorem 3.1]. The details are beyond the scope of the paper.

The estimation approach proposed in this paper assumes that the initial-boundary value
problem (8)-(13) is transformed into a system of ordinary differential equations (ODEs) in
which only the time derivative appears. This means that discretization is made only in space,
e.g., by means of finite differences, finite elements, spectral methods, etc, and that, due to the
nature of the original problem, the discretization procedure gives rise to a system of ODEs of
the form {

U′(t) = A(p)U(t) + S(t), t > 0
U(0) = U0,

(35)

where p is a vector of unknown parameters, A(p) is a square matrix that depends on p and
the chosen discretization method, and the source term S(t) is a vector valued function that also
depends on the chosen spatial discretization method. The solution of (35) is a vector valued

10



function that depends on p and contains approximations to the solution U(xi, yj, t) of the
bioheat problem (1)-(6) on the spatial grid; this solution is denoted by U(p, t). For simplicity,
for appropriate positive integers N, s, in what follows we assume that A : RN → R

s × R
s

and S : [0,+∞[ 7→ R
s are sufficiently smooth maps. In such a case, for given p ∈ R

N and
U0 ∈ R

s, existence and uniqueness of U(p, .) satisfying (35) is standard. Smooth dependence
of parameters in linear ODE’s systems (see [38, Section 6.2]) ensure smoothness of U in both

variables t and p. In particular,
∂U(p, t)

∂pj
is well defined for each j = 1, . . . , N and all t ≥ 0.

Thus, the inverse problem of estimating the perfusion coefficient can be formulated as one
of estimating a vector p of parameters such that the difference between computed temperatures
U(p, t) at prescribed locations and experimentally acquired temperatures at the same locations
is minimized in some sense. For future reference, computed and experimentally measured
temperatures at locations ℓi, i = 1, 2, . . . ,M , and time levels tk, k = 1, . . . , q, are denoted by
U tk
ℓi
(p) and Ũ tk

ℓi
, respectively. Moreover, measured temperatures are assumed to be corrupted

by additive noise, that is

Ũ tk
ℓi

= U tk
ℓi

+ ǫi
k, i = 1, . . . ,M, k =, . . . , q (36)

where ǫki are random numbers and U tk
ℓi

are actual (exact) temperature values. Thus the perfusion
estimation problem can be, in principle, handled by solving a non linear least squares problem
of the form

p∗ = argmin
p∈RN

F (p), F (p) =
1

2
‖U(p)− Ũ‖22 =

1

2

q∑

k=1

M∑

i=1

(U tk
ℓi
(p)− Ũ tk

ℓi
)2, (37)

where p = [p1, . . . , pN ]
T is the vector of unknowns,

U(p) = [U t1
ℓ1
(p), . . . , U t1

ℓM
(p), U t2

ℓ1
(p), . . . , U t2

ℓM
(p), . . . , U

tq
ℓ1
(p), . . . , U

tq
ℓM

(p)]T

is the vector of computed temperatures from model problem (35), and

Ũ = [Ũ t1
ℓ1
, . . . , Ũ t1

ℓM
, Ũ t2

ℓ1
, . . . , Ũ t2

ℓM
, . . . , Ũ

tq
ℓ1
, . . . , Ũ

tq
ℓM

]T

is the vector of measured temperatures such that

‖U− Ũ‖2 ≤ δ, (38)

where U is the vector of actual (and exact) temperatures at location ℓi and time level tk, and
δ is an estimate of the error norm between actual and measured temperatures.

Notice from the continuity of U in R
N × [0,+∞[ that the functional F is continuous on

R
N . Consequently, if we restrict p to a nonempty compact subset K of RN , F has a minimum

at some p∗ ∈ K. Hence, a reasonable choice is K = {p ∈ R
N ; 0 ≤ pj ≤ K, j = 1, . . . , N}

for chosen K, and the minimization problem can be addressed in a number of ways such as
trust region methods or nonmonotone line search approaches [19, 39]. However, the existence
of multiple minima can not be ruled out and therefore difficulties can always appear. Thus,
methods that produce approximate minimizers preserving properties of the sought parameter
are always desirable. The study and application of a method with these characteristics in the
problem of estimating the perfusion coefficient is one of the main objectives of this work. We
start this study with the observation that differentiation of F with respect to pj gives

∂F (p)

∂pj
=

q∑

k=1

M∑

ℓ=1

(Ũ tk
ℓi
(p)− Ũ tk

ℓi
)
∂U tk

ℓi
(p)

∂pj
.
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Hence a necessary condition for p∗ to be a critical point of F ,

∂F (p∗)

∂pj
= 0, j = 1, 2, . . . , N,

can be rewritten in matrix form as

J(p∗)T [U(p∗)− Ũ] = 0, (39)

where J(p) is an (M × q)×N referred to the sensitivity matrix which is given by

J(p) =




J1(p)
J2(p)

...
Jq(p)


 , Jk(p) =




∂U tk
ℓ1
(p)

∂p1

∂U tk
ℓ1
(p)

∂p2
· · ·

∂U tk
ℓ1
(p)

∂pN
∂U tk

ℓ2
(p)

∂p1

∂U tk
ℓ2
(p)

∂p2
· · ·

∂U tk
ℓ2
(p)

∂pN
...

...
...

...
∂U tk

ℓM
(p)

∂p1

∂U tk
ℓM

(p)

∂p2
· · ·

∂U tk
ℓM

(p)

∂pN




, k = 1, . . . , q.

(40)
Thus, an estimate pδ can be obtained by approximately minimizing the non linear problem
(37) such that ‖J(pδ)

T (U(pδ) − Ũ)‖2 is small. The minimization problem then requires an
iterative method wherein the matrix J(p) changes at each iteration, and an accurate method
for its calculation is necessary. The description of such a method is presented below.

3.1 Sensitivity matrix

Taking partial derivative with respect to pj on both sides of (23) gives

∂

∂pj
U

′(t) = A(p)
∂U(p, t)

∂pj
+

∂A(p)

∂pj
U(p, t)

Letting V(p)(t) =
∂U(p, t)

∂pj
, we can interchange the order of differentiation to obtain a system

of ODEs with V(t) as unknown. On the other hand, if (23) is solved for U(t) it follows that
∂U(p, t)

∂pj |t=0

= 0. Hence, to determine the jth column of the sensitivity matrix we first solve

the initial value problem




V′(t) = A(p)V(t) +W(t), t > 0, W(t) =
∂A(p)

∂pj
U(p, t)

V(0) = 0,
. (41)

and then take the components of V(t) corresponding to the locations li, i = 1, . . . ,M . Notice
that this requires solving the direct problem (23) for U(p, t).

As already mentioned, in this paper we assume that the direct problem (1)-(6) is solved by
using the pseudospectral collocation method, as described in the previous section, and thus,
for chosen p containing approximate values of Pf (x, y) on the grid, p(x, y), this gives rise to a
system matrix given by

A(p) =
[
(In ⊗D1D2) + (Bd0e

T
1 +D1D2)⊗ I(n+1) − Pf

]
, (42)

where Pf is a diagonal matrix given by

Pf = diag (p(x0, y0), . . . ,p(xn, y0), . . . ,p(x0, yn−1), . . . ,p(xn, yn−1)) , (43)
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thereby indicating that the vector of unknown parameters is

pf = [Pf (x0, y0), . . . , Pf (xn, y0), . . . , Pf (x0, yn−1), . . . , Pf (xn, yn−1)]
T . (44)

Notice that by virtue of (42)-(43), the source term of the auxiliary initial value problem (41)
reduces to

W(t) = uj(p, t)ej, (45)

where uj(p, t) is the jth component of U(p, t) and ej denotes the jth canonical vector in R
(n+1)n.

Having computed efficiently the sensitivity matrix, the nonlinear problem (37) can be han-
dled in several ways. For example by using non linear conjugate gradients (NCG), Gauss-
Newton methods, Tikhonov regularization, or others. For an account of a variety of methods
for heat inverse problems, the reader is referred to [32].

3.2 Regularized Gauss-Newton method

Linearization of estimated temperatures U(p) around a current estimate pk
δ at iteration k

produces a linear model of the form

Û(p) = U(pk
δ ) + Jk(p− pk

δ ) (46)

where Jk is introduced to denote Jk(pk
δ ). The Gauss-Newton method for minimizing (37)

substitutes this approximation into (39), and defines a sequence of iterative approximations pk
δ

given as
pk+1
δ = pk

δ + s, (47)

where s solves the linear least squares problem

min
s

‖U(pk
δ )− Ũ+ Jk(p− pk

δ )‖
2
2. (48)

Alternatively, provided (Jk)T (Jk) is non singular, the sequence of iterative approximations is
given as

pk+1
δ = pk

δ − [(Jk)T (Jk)]−1(Jk)T [U(pk
δ )− Ũ], k = 0, 1, . . . (49)

In inverse heat transfer problems the sensitivity matrix Jk is usually very ill-conditioned, so
that the iterative approximations pk

δ will be unstable even if [(Jk)T (Jk)] is nonsingular. The
regularized Gauss-Newton method alleviates such difficulty by adding a stabilization term to
(48) so that the iterative approximations are obtained by solving the least squares problem

min
s

‖[U(pk
δ )− Ũ] + Jk(p− pk

δ )‖
2
2 + λ2

k‖L(p− pe)‖
2
2, (50)

where L is a regularization matrix introduced to damp instabilities, λk is a monotonically
decreasing sequence of regularization parameters satisfying [14, 16]

λk > 0, 1 ≤
λk

λk+1

≤ C, (C = const.), (51)

and pe is an a priori estimate of pf . The regularization matrix is generally chosen to be either
the identity matrix or some discrete differential operator.

Under the mild condition that N (Jk) ∩ N (L) = {0}, where N (·) stands for null space
of (·), using the regularized normal equations associated to (50) it follows that the iterative
approximations satisfy

pk+1
δ = pk

δ − [(Jk)T (Jk) + λ2
kL

TL]−1
{
(Jk)T [U(pk

δ )− Ũ] + λ2
kL

TL(pk
δ − pe)

}
(52)
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Several strategies for selecting regularization parameter satisfying (51) can be considered among
a number of regularization methods for linear problems such as Generalized Cross-validation, L-
curve, discrepancy principle, Reginska’s rule, Fixed-point method (FP), etc [2, 3, 21]. However,
as mentioned in [14], numerical experiments have shown that a brutal use of the above parameter
choice methods may lead to oscillating sequences λk [14]. A way to alleviate this difficulty was
proposed by Eriksson [16] who suggested a sequence of regularization parameters defined by :

λk =

{
ξλk−1 + (1− ξ)λ, λ < λk−1,
λk−1, λ ≥ λk−1,

(53)

where λ is the regularization parameter determined by one of the above methods and 0 < ξ < 1
is chosen a priori. An important aspect concerning the construction of stable approximation via
iterative methods is the choice of the stopping index. More precisely, for iterative regularization
methods, the number of iteration steps plays the role of the regularization parameter, and
thus the iterations have to be properly stopped in order to keep the contribution of noise in
the approximations under control. A widely used rule for selecting the stopping index is the
discrepancy principle (DP), that is, the iterative process is stopped at the first index k̆ = k̆(δ)
such that

‖[U(pk̆
δ )− Ũ‖ ≤ τdδ < ‖[U(pk

δ )− Ũ]‖2, 0 ≤ k ≤ k̆ (54)

where τd > 1 and δ satisfying (38). Unfortunately, because in many inverse heat transfer
problems the errors in the data cannot be estimated, alternative ways to stop the iterative
process which do not rely on a priori knowledge of the error norm are necessary.

Assuming that the error norm estimate δ is not available, the proposal of this work is to
compute iterative approximations for the perfusion coefficient Pf obtained by the regularized
Gauss-Newton method using the Fixed-point method as parameter choice rule. The proposal
relies on the observation that, because computed temperatures U associated to the bioheat
problem vary very slowly with time, the singular values of the sensitivity matrix Jk do not
vary significantly during the iteration process. Based on this observation and on the excellent
performance of the Fixed-point method compared to L-curve method in solving linear problems,
see examples in [2, 3, 4, 5], for the sequence of regularization parameters (51) we choose a
sequence λk as defined in (53) in which the regularization parameter λ is determined by the
Fixed-point method. In addition, in order to guarantee that λk is actually decreasing, if λ >
λk−1 we take λk = ςλk−1 for ς / 1. This regularization parameter choice method will be referred
to as the weighted FP-method.

For purposes of clarity, the Fixed-point method will be described briefly. For λ > 0 let
pk
λ be the regularized solution to the minimization problem (50) with λ instead of λk. The

regularization parameter chosen by the Fixed-point method associated to this linear problem
is a limit value of the sequence defined by

λ(j+1) = Φ(k)(λ(j)), Φ(k)(λ) =
‖[U(pk

δ )− Ũ] + Jk(p
(k)
λ − pk

δ )‖2

‖Lp(k)
λ ‖2

, j = 0, 1, . . . . (55)

That is, the regularization parameter computed this way is a fixed-point of Φ(k). Theoretically,
this parameter minimizes the product of the residual norm (the numerator of Φ(k)(λ)) and

the seminorm ‖Lp(k)
λ ‖, and corresponds to a good balance between the size of these norms.

Interestingly enough, the Fixed-point method does not require any a priori knowledge of the
error norm. Furthermore, it can be computed efficiently using the generalized singular value
decomposition (GSVD) of the matrix pair (Jk,L). For algorithmic details of the Fixed-point
method and stopping criterion the reader is referred to [2, 3].

As stopping criterion for the regularized Gauss-Newton method, we choose to stop the
iterations as soon as the relative change in λk reaches some prescribed tolerance. The motivation

14



for this stopping rule relies on the fact that computed temperature values associated to the
bioheat problem change very slowly, in which case the function Φ(k)(λ) varies slowly with k
during the iterative process. As a result, the sequence of regularization parameters λk turns
out to stagnate very quickly, as we will illustrate numerically later. This gives rise to an
algorithm which we denote by RGN-FP and summarize as follows.

Regularized Gauss-Newton method with FP as parameter choice rule:

Input data : Tol, n, regularization matrix L, a priori estimate pe, initial guess p
0
δ ,

measured temperatures Ũ.
Set k = 0, λ−1 = 0
1. Set p = pk

δ and solve both the forward problem (35) and the initial value
problem (41) to obtain U(pk

δ ) and the sensitivity matrix Jk.
2. Using the GSVD of the matrix pair (Jk,L) determine the fixed point λ of Φ(k),

as described in (55), and compute λk according to the weighted FP-method.

3. Compute the new estimate p
(k+1)
δ by solving the least squares problem (50)

4. Compute the ratio ρk = |λk − λk−1|/λk.
If ρk < Tol

Stop the iterations and take pf = pk+1
δ .

Otherwise
set k ← k + 1 and go to step 1.

We close this section with an observation regarding a comparison of the stopping index
determined by RGN-FP compared to the one determined by the discrepancy principle DP. For
this, notice that the residual corresponding to the regularized solution pk

λ to the least squares

problem (50) (actually Tikhonov problem) is given as rkλ = [U(pk
δ )− Ũ]+Jk(p

(k)
λ −pk

δ ). Hence,
if at step k we determine the fixed point of Φ(k), say λ∗ = Φ(k)(λ∗), then we have λk = λ∗ and
hence, p∗

λ = pk+1
δ . Therefore at step k we have

‖rkλ∗‖2 = ‖[U(pk
δ )− Ũ] + Jk(pk+1

δ − pk
δ )‖ ≤ ‖[U(pk

δ )− Ũ]‖2 + ‖J
k‖2‖p

k+1
δ − pk

δ‖2.

Hence, if the tolerance criterion at step 4 of RGN-FP is satisfied at k = k∗, then the sequence
of regularization parameters λk stagnates, and as a result we have pk+1

δ ≈ −pk
δ , and the related

residual norm can be bounded as

‖rk
∗

λ∗‖2 / ‖[U(pk∗

δ )− Ũ]‖2

Thus, since in general the tolerance criterion at step 4 of RGN-FP is satisfied in a few itera-
tions, the estimate above suggests that RGN-FP should stop in less steps than the discrepancy
principle does.

4 Numerical Examples

This section illustrates numerically the effectiveness of RGN-FP on several test problems
involving 1D and 2D cases. We first consider the case where Pf depends on x, which covers a
number of cases discussed in literature [29, 42], and then the case where Pf depends on both
spatial variables. In both cases, to simulate measured temperature values we first assume that
sensors are located at even-numbered grid points of 9 successive central rows of the grid, where
the numbering of gridpoints is as in Fig. 2, and consider temperature values U tk

ℓi
at eight time

levels tk = 200 k∆t, k = 1, . . . , 8, where ∆t is the maximum allowable timestep for stable
integration of (35). If, n = 14, for instance, this gives 63 measurement locations, the number
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Figure 7: Grid points (marked with small circle) and sensor locations (marked with × symbol).

of unknown parameters for 1D estimation is m = n + 1, ∆t = 1.8 × 10−4 for CPS-RK4 and
the sensitivity matrix Jk is 504× 15. The measurement procedure is illustrated in Fig. 7, grey
region, where we consider three central rows and n = 8. Then, arranging all exact temperature
values U tk

ℓi
in a long vector U, we simulate actual measured temperature data as

Ũ = U+ n,

where n is a Gaussian random vector generated by the Matlab function randn with the state
value set to zero, and NL = ‖n‖2/‖U‖2 is referred to as the noise level in the data. For each
test problem the measurement process is repeated for 30 different random sequences and for
each data set generated in this way we estimate the corresponding perfusion coefficient and
then compute average values of the estimation error for several noise levels.

For the implementation of RGN-FP for the 1D case we use CPS-RK4 as forward solver.
Input parameters are chosen as

Tol = 0.0001, pe = p0
δ = 0, (56)

and the regularization matrix is defined by

L1(m) =



−1 1

. . . . . .

−1 1


 ∈ R

(m−1)×m, (57)

where m denotes the number of unknown parameters. Computation were carried out in Matlab.

4.1 1D estimation

For the numerical examples involving the 1D case the source term G(x, y, t) is chosen in
such a way that the solution to the bioheat problem (1)-(6) for given perfusion coefficient Pf is
the function U(x, y, t) defined in (25). Two types of perfusion coefficient are selected: two test
cases involving smooth Pfs and an third one involving a nonsmooth Pf .

Smooth Pf

We consider two examples:

(a) Pf (x) = x2,
(b) Pf (x) = 5 [2 + cos(xπ)− cos(2xπ)− cos(3xπ)− cos(4xπ)] .
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For case (a) (relatively easy), we choose n = 14 and consider five noise levels: NL = 10−6, 10−5,
10−4, 10−3, 10−2 and 10−1, which means the data are corrupted with noise levels 0.0001%,
0.001%, 0.01% 0.1% and 1%, respectively. The very low noise level case is introduced to
illustrate the behavior of the estimated parameter as the noise level goes to zero.

Average relative estimation errors of 30 realizations for several noise levels are displayed in
Fig 8. We notice that the quality of the estimated coefficient deteriorates as the noise level
increases, but we notice also that the quality is excellent for the lowest noise level.
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Figure 8: Average values of estimation errors for Pf of example (a) for five noise levels.

Condition numbers of Jk and fixed points of Φ(k) as functions of the number of iterations
for a typical run are displayed in Fig. 9. Fast stagnation of both the condition number of Jk

and the fixed points of Φ(k) suggests that RGN-FP should converge in a few iterations. As a
matter of fact, for the run considered in Figure 9 RGN-FP stopped at k = 7.
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Figure 9: Conditioning of sensitivity matrix Jk and fixed-points of Φ(k) for example 1-(a) using
data with relative noise level NL = 10−4%.
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Figure 10: Behavior of function Φ(k) for NL = 10−4 % (left) and estimated coefficients (right)

Figure 10 shows the typical behavior of functions Φ(k) for k = 1, 2, . . . 5 for the smallest
noise level and typical results of the estimation process for three noise levels.
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Case (b) is not as easy as case (a) since the exact perfusion coefficient Pf exhibits some
oscillations that are somewhat difficult to resolve. In order to compensate this difficulty we
increase the number of grid points (hence the number of locations) to n = 20. This gives 90
measurement locations and yields a sensitivity matrix Jk of size 720 × 21. As in the previous
example, we compute average relative estimation errors of 30 realizations which are displayed
in Fig. 11. Notice that the estimation errors for case (b) follow the same trend as those of case
(a).
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Figure 11: Average values of estimation errors for Pf of example (b) for five noise levels.

Figure 12 shows the behavior of fixed points of Φ(k) as a function of the iteration index k
and some of the corresponding functions. Again, since the sequence of fixed points stagnates
very quickly, the stopping criterion of RGN-FP is satisfied early. Typical estimated coefficients
for NL = 10−6 and NL = 10−2 (with stopping index k∗ = 8 and k∗ = 6, respectively, are
displayed in Figure 13.
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Figure 12: Conditioning of sensitivity matrix Jk and fixed-points of Φ(k) for example 1-(b) using
noisy data with relative noise level NL = 10−6.
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Nonsmooth Pf

We consider the estimation problem for the case when the perfusion coefficient is not dif-
ferentiable on all domain. Our test problem involves the perfusion coefficient given in (33).
As estimation problems involving nonsmooth coefficient are know to be very difficult, we will
compensate the difficulties associated to this kind of problems by increasing the number of grid-
points to n = 22. We then, as before, consider five noise levels and proceed as in the previous
examples. The behavior of fixed-points and results of the estimation procedure of typical runs
for two noise levels are displayed in Figure 14. The difficulties associated to the nonsmooth
case are eloquent from the results: acceptable reconstructions are only possible for very low
noise level cases. Similar conclusions concerning this test problem can be found in [29]. The
estimated parameters were obtained with k∗ = 12 for the very low noise level case and k∗ = 8
for the other case. The quality of average relative estimation errors decrease a little if compared
with the previous examples but the trend is approximately the same; this explains why these
results are not displayed here.
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Figure 14: Functions Φ(k) (left) and results for nonsmooth Pf case using noisy data. Functions
on the left correspond to noise level NL = 10−4.

4.2 2D estimation

This section is concerned with a perfusion estimation problem where Pf depends on both
spatial variables. The purpose is to test our RGN-FP algorithm coupled with CPS-RK2 and
CPS-RK4 as forward solvers. For this, we consider a bioheat problem whose source term is
defined by

G(x, y, t) = −e−π2t cos(πx) + Pf (x, y)U(x, y, t),

with perfusion coefficient defined by Pf (x, y) = sin(πxy), and exact solution

U(x, y, t) =
e−π2t

2(B + L)
[((B + L)y2 −By − L) cos(πx)] +

BU∞

B + L
(L− y). (58)

For the numerical simulation we choose B = 0.015, U∞ = 0.001, L = 1, and initial temperature

value U0 =
1

2(B + 1)
[((B + 1)y2 −By − 1) cos(πx)] +

BU∞

B + 1
(1− y).

Notice that this 2D perfusion coefficient estimation problem involves (n+1)×n unknowns,
as seen from vector pf in (44). So in order to keep the number of unknowns within reasonable
bounds we choose n = 14 (which means we deal with an optimization problem involving 210
unknowns). For the simulation of the measurement process we follow the same protocol as in
the previous examples. Thus, we consider 63 measurements locations and 8 time levels, in which
case the sensitivity matrix Jk is of order 504 × 210. In order to stabilize the RGN iterations
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we consider three cases for the regularization matrix. In the first case L is the identity matrix,
and in the second and third cases L is a 2D discrete differentiation operator of the form

Li =

[
In ⊗ Li(n+ 1)
Li(n)⊗ In+1

]
, i = 1, 2,

where L1(m) is defined in (57) and L2(m) is a 1D second order discrete differentiation operator
defined by

L2(m) =




1 −2 1
1 −2 1

. . . . . . . . .

1 −2 1


 ∈ R

(m−2)×m. (59)

Regularizers Li are often employed in image reconstruction problems [5]; the purpose of them is
to incorporate in the iterative process smoothing properties of Pf in the horizontal and vertical
directions. The purpose of the three choices of L is to provide the reader with further insight
concerning the role that the regularizer plays into the stabilization of the inverse problem.

We first describe results obtained with RGN-FP coupled with CPS-RK2 using perturbed
data with NL = 0.01% and start by showing that the all chosen regularization are able to
stabilize RGN. This is illustrated in Figure 15 in which, condition numbers Jk and fixed points
of Φk are displayed. Notice that stagnation of these quantiles occur very early. In this case, the
stopping criterion of RGN-FP is reached in 9 iteration for L = I and in 8 iterations for L = L2.

k
0 5 10 15

10
10

10
11

10
12

cond(Jk)

k
0 5 10 15

10
−6

10
−4

10
−2

Fixed−points

Figure 15: Condition numbers of Jk and fixed-points of Φk. Small circles correspond to L = I
and x marks correspond to L = L2. Quantities corresponding to L = L1 behaved similarly and
are not displayed here.

The results of the estimation process are shown in Figure 16, using a 3D graph (first row)
to visualize Pf (x, y) over the grid points, as well as using a 2D graph (second row) to display
the parameter vector pf and its estimates pk

δ . This test problem provides an excellent way to
illustrate the fact that stabilization of RGN may not be sufficient to guarantee good solutions,
as seen from the results corresponding to L = I.

In order to illustrate the quality of the results obtained using both CPS-RK2 and CPS-

RK4 as forward solvers, we compute the actual error pf − pk
δ where pk

δ denotes the estimated
parameter obtained in each case. The conclusion drawn in this case is that the quality produced
by both solvers is essentially the same, as displayed in Fig. 17 (left). Finally, in order to
illustrate the effect of the noise level on the quality of the results, we also use data with noise
level NL = 1%. In this case, for clarity, the results are presented through a 2D graph in Fig. 17
(right) which also includes results corresponding to the low noise level; in both cases only results
obtained using CPS-RK2 are displayed. As before, we notice that the quality of the estimated
parameter for the smallest noise level is excellent, and that this quality deteriorates as the noise

20



y x0
0.5

1

0
0.5

1
0

0.5

1

1.5

Exact

y x0
0.5

1

0
0.5

1
0

0.5

1

1.5

Estim.

y x0
0.5

1

0
0.5

1
0

0.5

1

1.5

Estim.

0 50 100 150 200
0

0.5

1

1.5
Exact

0 50 100 150 200
0

0.5

1

1.5
Estim.

0 50 100 150 200
0

0.5

1

1.5
Estim.

Figure 16: Exact and estimated perfusion coefficients: Results corresponding to L = I (second
column) and results corresponding to L = L2 (third column). Quantities corresponding to
L = L1 behaved similarly as those obtained with L = L2 and are not displayed here.

level grows. Finally, we emphasize that, similar to the 1D cases, we also computed average
relative estimation errors. The behavior of these reconstruction errors behaved very similarly
as the 1D cases and are therefore not displayed here.
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Figure 17: Error for noise level NL = 10−2 % (left). Exact parameter pf and estimated param-
eters pk (right).

5 Conclusions

We investigated the problem of estimating the perfusion coefficient as a function of position
from a 2D heat transfer Pennes model. As a result, we proposed a parameter estimation method
based on both a highly accurate approach for the forward problem, and the regularized Gauss-
Newton method to cope with typical instabilities in inverse estimation problems. Numerical
results using synthetic data not only show that the proposed method is effective but also that
it may be useful in practical applications such as therapeutic procedures by hyperthermia or
other procedures depending on blood perfusion measurements. Continued experience with the
proposed protocol is necessary to fully assess its potential. In particular, the influence of sensor
locations (and number) on the quality of the perfused coefficient should be investigated. More
experience is needed with problems involving real data. Moreover, extension of the proposed
protocol to the case when the perfusion coefficient also depends on time is highly desirable.
These are the subject of future research.
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