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Abstract
We review a Tikhonov parameter criterion based on the search for local minima
of the function �µ(λ) = x(λ)yµ(λ), µ > 0 where x(λ) and y(λ) are the
squared residual norm and the squared solution norm, respectively, proposed
earlier by Regińska (1996, SIAM J. Sci. Comput. 3 740). As a consequence,
we demonstrate that extreme points of �µ(λ) are fixed points of a related
function, and then propose a fixed-point algorithm for choosing the Tikhonov
parameter. The algorithm constructs a regularization parameter associated
with the corner of the L-curve in log–log scale, thus yielding solutions with
accuracy comparable to that of the L-curve method but at a lower computational
cost. The performance of the algorithm on representative discrete ill-posed
problems is evaluated and compared with results obtained by the L-curve
method, generalized cross-validation and another fixed-point algorithm from
the literature.

1. Introduction

We are concerned with the numerical solution of discrete ill-posed problems

min
f ∈R

n
‖Af − g‖2, g ∈ R

m, A ∈ R
m×n, m � n (1.1)

where the matrix A has a large condition number with singular values decaying to zero
without a particular gap in the singular value spectrum, and g consists of exact data plus
noise. In this situation, the naive least squares (LS) solution fls = A†g (where A† denotes the
pseudoinverse of A) is contaminated by noise to such an extent that it is of no practical value
as an approximation to the exact solution f exact, and the LS problem needs to be regularized.
For a survey about regularization methods the reader is referred to Hansen [8] and references
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therein. The earliest and most well-known method is due to Tikhonov [17] where (1.1) is
replaced by the minimization problem

fλ = arg min‖Af − g‖2
2 + λ2‖Lf ‖2

2, (1.2)

where L is chosen so as to incorporate desirable properties on the solution such as smoothness,
and λ is a positive parameter called the regularization parameter. The proper choice of
the regularization parameter is a nontrivial problem for which several strategies have been
proposed, one of them being the L-curve method [9]. The L-curve method derives its name
from a plot of the squared norm of the regularized solution y(λ) = ‖fλ‖2

2 (or y(λ) = ‖Lfλ‖2
2)

versus the squared norm of the residual vector x(λ) = ‖g − Afλ‖2
2 in log–log scale, which

typically has an L-shaped form with distinctive vertical and horizontal parts. The method
relies on the observation that the vertical part of the curve for small changes in λ corresponds
to rapidly varying regularized solutions fλ with very little change in the residual norm x(λ),
while the horizontal part for large values of λ corresponds to slowly varying y(λ) with large
changes in the residual norm. Thus, a reasonable regularized solution should lie in the vicinity
of the ‘corner’ of the L-curve where y(λ) is about to start growing and λ remains almost
unchanged. For most problems the ‘corner’ is a region and the challenge is to select a point
from this region. The L-curve method selects the parameter λ which maximizes the curvature
of the L-curve. Although the idea of the L-curve method is intuitively clear, computing the
point of the maximum curvature in a robust way is not an easy task. For insightful discussions
on properties and drawbacks of the L-curve as well as of other methods, the reader is referred
to Engl and Grever [2], Hanke [5], Hansen [[8], chapter 6], Regińska [15], Vogel [16] and
Hämarik et al [3, 4], among others. Another strategy which also looks for the point of the
maximum curvature of a certain function is the U-curve method; details can be found in [11].

In this work, we propose an iterative procedure for selecting the Tikhonov parameter based
on an earlier work of Regińska [15], where the parameter λ that maximizes the curvature of
the L-curve in log–log scale is related to a local minimum of the function

�µ(λ) = x(λ)yµ(λ), µ > 0. (1.3)

In this respect, Regińska proved that if the curvature of the L-curve is maximized at λ = λ∗, and
if the tangent to the L-curve at (log x(λ∗), log y(λ∗)) has slope −1/µ, then �µ is minimized at
λ = λ∗. However, no further work was done on how to compute such a minimizer. Here, we
investigate the behavior of �µ(λ), and conclude that the minimizers can be calculated through
a fixed-point (FP) algorithm that determines a point near the L-corner of the maximum
curvature. Practically, the FP algorithm only needs computation of the solution norm (or
solution seminorm) and the residual norm, while the L-curve method requires either the SVD
(or GSVD) or the computation of the derivative of the solution norm with respect to the
regularization parameter [7]. This makes the FP algorithm simpler and potentially better
suited for large-scale problems.

The paper is organized as follows. In section 2, we describe the properties of �µ on
which the proposed parameter choice relies, discussing the existence of minimizers and the
role that µ plays in the minimization process. The algorithm and convergence properties
are described in section 3. In section 4, the performance of the algorithm on representative
discrete ill-posed problems, which include a super-resolution image estimation problem, is
evaluated and compared with results obtained by means of the L-curve method, generalized
cross-validation (GCV) and another fixed-point algorithm by Belge et al [1].

We end the section by introducing some preliminary results and notation. As usual, we
assume that L is p × n, rank(L) = p � n, and that the pair (A,L) have a GSVD

A = U

[
� 0
0 In−p

]
X, L = V [M; 0]X. (1.4)
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Here both U = [u1, . . . , un] ∈ R
m×n and V = [v1, . . . , vp] ∈ R

p×p have orthonormal
columns, X ∈ R

n×n is nonsingular, and � and M are diagonal matrices: � =
diag(σ1, . . . , σp),M = diag(µ1, . . . , µp). Define αi = ∣∣uT

i g
∣∣2

(the squared Fourier
coefficient of g), δ0 = ‖(I − UUT )g‖2 (the size of the incompatible component of g that
lies outside the column space of A). Let the generalized singular values of the pair (A,L) be
denoted by γi , i.e., γi = σi/µi . Then it is easy to see that

x(λ) =
p∑

i=1

λ4αi(
γ 2

i + λ2
)2 + δ2

0, y(λ) =
p∑

i=1

γ 2
i αi(

γ 2
i + λ2

)2 (1.5)

and that for λ > 0 the derivatives with respect to λ of these functions satisfy

x ′(λ) = 4λ3
p∑

i=1

γ 2
i αi(

γ 2
i + λ2

)3 > 0, y ′(λ) = −4λ

p∑
i=1

γ 2
i αi(

γ 2
i + λ2

)3 < 0. (1.6)

Moreover, inequalities (1.5) and (1.6) can be used to give

dy/dx = −1/λ2, (1.7)

which shows that y is a monotonically decreasing function of x.
We close this section with the observation that throughout the paper no assumption is made

on rank(A) but to ensure a unique solution to (1.2) we shall assume that rank([AT LT ]T ) = n.

2. Tikhonov parameter-choice via fixed-point criterion

As mentioned in the previous section, we shall analyze the behavior of the function �µ(λ)

defined in (1.3) and interpret its extreme points, if they exist, as fixed points of an iteration
function to be defined below. Since �µ(λ) � 0 for λ � 0 and �µ(0) = 0 when δ0 = 0, we
will concentrate on the existence of nonzero extreme points. We start by observing that the
derivative of �µ with respect to λ can be written as

� ′
µ(λ) = y(λ)µy ′(λ)

[
µ

x(λ)

y(λ)
+

x ′(λ)

y ′(λ)

]
. (2.1)

Since y(λ)µy ′(λ) �= 0 and x ′(λ)/y ′(λ) = −λ2 by (1.7), the above expression for � ′
µ(λ) shows

that the necessary condition for �µ to have a local minimum at λ = λ∗ �= 0, �µ
′(λ∗) = 0,

requires that

λ∗2 = µ
x(λ∗)
y(λ∗)

⇔ λ∗ = √
µ

η(λ∗)
ξ(λ∗)

,

where η(λ) = √
x(λ) and ξ(λ) = √

y(λ). Thus if �µ achieves a local minimum at λ = λ∗ �= 0,
the parameter λ∗ must be a fixed point of φ : R

+
0 �→ R

+
0, defined by

φ(λ) = √
µ

η(λ)

ξ(λ)
, 0 � λ < ∞. (2.2)

To highlight the dependence of φ on the parameter µ, for notational convenience we shall
write φ(λ,µ) instead of φ(λ). It is worthwhile noting that φ does not need to have a fixed
point for arbitrary µ. So in order to know whether or not �µ has local extreme, we have
to investigate the existence of fixed points of function φ. Informative results concerning the
behavior of φ are given in the following lemma.

Lemma 1. Assume that µ = 1. Set γ = mini γi, γ = maxi γi . If δ0 = 0 and 0 � λ � γ , then

0 � φ(λ, 1) � λ. (2.3)

3
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Furthermore, if λ � γ , then independently of δ0 it holds

φ(λ, 1) � λ. (2.4)

Proof. Since for λ � γ we have λ4αi � γ 4αi, this inequality implies

x(λ) =
p∑

i=1

λ4αi(
γ 2

i + λ2
)2 � γ 4

p∑
i=1

αi(
γ 2

i + λ2
)2 . (2.5)

It is also immediate to see that for λ � 0 we have

y(λ) � γ 2
p∑

i=1

αi(
γ 2

i + λ2
)2 . (2.6)

So for 0 � λ � γ , from (2.5) and (2.6) we get 0 � φ(λ, 1) � γ . Now for fixed λ̆ and

0 � λ � λ̆ � γ we have

x(λ) � λ̆4
p∑

i=1

αi(
γ 2

i + λ2
)2 .

This inequality together with (2.6) implies φ(λ, 1)2 � λ̆4/γ 2 � λ̆2, which proves inequality
(2.3). Inequality (2.4) for the case where δ0 = 0 is proved in the same way.

Now let us observe that ∀ λ > 0 the inequality 2γiλ � γ 2
i + λ2 leads to

γ 2
i(

γ 2
i + λ2

)2 � 1

4λ2

and that for λ � γ there holds
p∑

i=1

γ 2
i αi(

γ 2
i + λ2

)2 � 1

4γ 2

p∑
i=1

αi. (2.7)

Also, since for λ � γ we have λ4 � γ 2γ 2
i , this inequality implies

p∑
i=1

λ4αi(
γ 2

i + λ2
)2 � γ 2

p∑
i=1

γ 2
i αi(

γ 2
i + λ2

)2 . (2.8)

Inequalities (2.7) and (2.8) give for λ � γ

φ(λ, 1)2 � γ 2

(
1 + 4

δ2
0∑p

i=1 αi

)
� γ 2,

and a reasoning similar to that used to prove (2.3) leads to assertion (2.4). �

Lemma 1 is useful because it allows us to locate fixed points of φ when they exist, and
because it helps us to classify local extreme points of �µ. This is the subject of the following
theorem.

Theorem 1. Assume that µ = 1. Let I1 and I2 be open intervals such that φ(λ, 1) < λ,

∀ λ ∈ I1 and φ(λ, 1) > λ,∀ λ ∈ I2. Then �µ is increasing in I1 and decreasing in I2. In
addition to this, the following assertions hold.

(a) If δ0 = 0 and αi �= 0, i = 1, . . . , p, there exists λ̌ ∈ ]γ , γ [ such that �µ achieves a local

maximum at λ̌. Additionally, if λ̌ is the fixed point of φ nearest to zero and �µ achieves
a local minimum at λ∗, then λ̌ < λ∗ and �µ achieves another local maximum inside
]λ∗, γ [.

4
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(b) If δ0 �= 0 and �µ achieves a minimum at λ∗, there exists a parameter λ̆ inside ]λ∗, γ [ at
which �µ achieves a local maximum.

(c) Let φ have a fixed point λ∗ and let P be the point on the L-curve in log–log scale
associated with λ∗. Then the L-curve is convex in a neighborhood of P if and only if λ∗

locally minimizes �µ, and it is concave in a neighborhood of P if and only if λ∗ locally
maximizes �µ.

Proof. By property (1.7) the derivative of �µ(λ) in (2.1) can be rewritten as

� ′
µ(λ) = y(λ)µy ′(λ)(φ(λ, 1)2 − λ2). (2.9)

But since y(λ)µy ′(λ) < 0 by (1.6), we conclude that � ′
µ(λ) > 0 whenever λ ∈ I1 and

hence that �µ increases with λ in I1. The assertion concerning the decreasing of �µ follows
similarly.

To prove (a) we first observe that if δ0 = 0, neither γ nor γ can be fixed points of φ, at
least not in the context of discrete ill-posed problems. In fact, if λ∗ is a fixed point of φ then

x(λ∗) = λ∗2
y(λ) ⇔

p∑
i=1

λ∗4αi(
γ 2

i + λ∗2
)2 = λ∗2

p∑
i=1

γ 2
i αi(

γ 2
i + λ∗2

)2 ⇔
p∑

i=1

(
λ∗2 − γ 2

i

)
αi(

γ 2
i + λ∗2

)2 = 0.

(2.10)

The last equality in (2.10) will remain valid with λ∗ = γ only when γi = γ for i = 1, . . . , p.
But this cannot happen in our context since by assumption the generalized singular values
decay to zero without particular gap. Therefore γ cannot be a fixed point of φ. A similar
argument explains why γ cannot be a fixed point of φ. From this observation and lemma 1 it
then follows that φ has at least a fixed point in ]γ , γ [. The statements in (a) follow on using
this result together with (2.3), (2.4) and (2.9).

To prove (b) we also observe that in this case γ cannot be a fixed point of φ. Observe
now that because of lemma 1 and the fact that y(λ) → 0 as λ → ∞, which is immediate
from (1.6), it follows that �µ monotonically decreases when λ > γ and �µ → 0 as λ → ∞.
This shows that local extreme of �µ, if any, must be achieved inside the open interval ]0, γ [.
The statements described in (b) are immediate consequences of this observation and the
monotonicity properties of �µ.

The first statement in (c) is theorem 1 in [15]. To prove the second statement set
u(λ) = log(x(λ)) and v(λ) = log(y(λ)). Then

dv

du
= −φ(λ, 1)2

λ2
and

d2v

du2

du

dλ
= − 2

λ2
φ(λ, 1)

[
φ′(λ, 1) − φ(λ, 1)

λ

]
. (2.11)

From calculus and (2.9) it is not hard to prove that φ′(λ∗, 1) > 1 in a neighborhood
(small enough) of λ∗ if and only if λ∗ maximizes �µ. From this result and the fact that
du/dλ = x ′(λ)/x(λ) > 0 by (1.6), the second statement in (c) follows on using (2.11). This
concludes the proof. �

We now discuss the existence of local minima for �µ. A first step toward this was done in
([15], theorem 2), where existence of local minimum inside the interval ]0,∞[ is guaranteed
to exist under very special conditions on A. A definitive answer for the case where δ0 �= 0 and
free of any requirement on either A or g is provided in the following corollary.

Corollary 1. If δ0 �= 0 there exists µ∗ > 0 such that �µ∗ achieves a local minimum in ]0, γ [.

Proof. We first recall that φ(0, µ) > 0. Assume that µ = 1. If φ(λ̄, 1) < λ̄ for some
λ̄ ∈ ]0, γ [, by continuity of φ it follows that (φ(λ, 1) − λ) changes sign in ]0, λ̄[. Thus there

5
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Figure 1. (Left) Function φ(λ, 1) and the straight line z = λ, 0 � λ � γ . (Center) Plot of
z = log �µ(λ), 0 � λ � γ with µ = 1. (Right) mL(λ) for λ near the minimizer λ∗ of �µ. The
small circle denotes the point associated with the minimizer λ∗.

exists λ∗ such that φ(λ∗, 1) = λ∗ with the property φ(λ, 1) > λ for all λ in some interval to
the left of λ∗ and φ(λ, 1) < λ for all λ in some interval to the right of λ∗ (see figure 1). This
means that �µ is decreasing in some interval to the left of λ∗ and �µ is increasing in some
interval to the right of λ∗ (see theorem 1). Consequently, for µ = 1 the function �µ achieves
a local minimum at λ∗ ∈ ]0, γ [.

Suppose now that φ(λ, 1) > λ for all λ > 0. Let the slope of the L-curve in log–log scale
at the point (log x(λ), log y(λ)) be denoted by mL(λ). Then, since mL(λ) = −φ(λ, 1)2/λ2

by (2.11), we have that φ(λ,µ)2 = λ2 with µ = −1/mL(λ). This shows that any λ > 0 can
be regarded as a fixed point of φ(λ,µ) as long as µ is the negative reciprocal of mL(λ). To
conclude the proof, it suffices to select any λ∗ at which the L-curve is convex, which is always
guaranteed to exist near zero (see, e.g., lemma 3 in [15]), and then define µ = −1/mL(λ∗).
This implies that φ(λ∗, µ∗) = λ∗. The proof concludes on using item (c) of theorem 1. �

The fixed-point criterion for choosing the regularization parameter relies on the heuristic that
the fixed point λ∗ that minimizes �µ(λ) leads to a point near the corner of the L-curve in
log–log scale. The key ingredient that supports the heuristic is the behavior of the slope,
mL(λ) = −φ(λ, 1)2/λ2. To explain this more precisely, assume that φ(λ, 1) behaves as in
figure 1 so that �µ is minimized at the first fixed point of φ, say λ = λ∗. We then see
that mL(λ∗) = −1, and that for λ < λ∗ the slope mL(λ) rapidly reaches large negative
values, whereas for λ > λ∗ the slope moderately changes so that −1 < mL(λ) < 0 or
a < mL(λ) < b < 0 where a and b do not differ very much from −1 (see figure 1). Thus the
interval ]0, λ∗[ corresponds to the vertical part of the L-curve, the interval ]λ∗, γ [ corresponds
to the flat part of the L-curve and the minimizer λ∗ corresponds to a point in the vicinity of the
corner of the L-curve.

We observe that for L-curves with a distinct corner separating the vertical and horizontal
parts, the L-curve corner might as well be defined as the point for which mL(λ) = −1.
However, although intuitively acceptable, this cannot be extended for general problems since,
as we will see, there are cases where mL(λ) < −1 for all λ > 0. We postpone the analysis of
these cases to the following section.

We emphasize that an a priori parameter choice due to Miller ([13], method 2) is related
to the proposed criterion. If we assume that the (semi)norm of the exact solution is α and the
norm of the error g − gexact is δ, Miller’s method suggests the choice λ = δ/α. Thus if the
residual norm associated with the regularized solution and ‖Lfλ‖2 are good estimates of δ and
α, respectively, which is reasonable when λ is close to optimal, then Miller’s method leads to
the fixed-point criterion λ∗ = φ(λ∗, 1), thereby providing an alternative way to support the
proposed criterion. Further details about Miller’s method in connection with discrete ill-posed

6



Inverse Problems 24 (2008) 035001 F S V Bazän

Fixed-point algorithm
Input: γ, tol
1. Set µ = 1, k = 0, and choose λ0 small enough such that φ(λ0 , µ) > λ0 .
2. Compute s0 = φ(λ0 , µ),λ 0 .
3. while (|sk − 1 | > tol & λk < γ) do

λk+1 = φ(λk , µ),   sk = λk+1 /λk

k = k+1
end while

4. if (λk < γ & φ′(λk , 1) < 1) do
λ∗ = λk ,

elseif (λk < γ & φ′(λk , 1) = 1) do√
µ = 2γ/(φ(γ, 1) + γ)

Set λ0 = λk , k = 0, and go to step 2
else do
Find k∗ such that sk ∗ = min sk .
Find θ > sk ∗ (e.g., the smallest integer larger than sk ∗ ),
Choose

√
µ = 2/(sk ∗ + θ),

Set λ0 = λk ∗ , k = 0, and go to step 2
end if

∼∼

Figure 2. Fixed-point algorithm for determining Tikhonov regularization parameter.

problems can be found in [8, section 7.5.3]. Another related criterion is the one that looks for
the roots of the function B(λ) = −x(λ) + λ2y(λ). This method is known as the zero-crossing
method [10]. Note that searching for fixed points of φ(λ, 1) amounts to searching for roots
of B(λ).

3. Proposed algorithm and convergence analysis

Given an initial guess, λ0, our algorithm starts by setting µ = 1 as a default value and proceeds
by computing the sequence λk+1 = φ(λk, 1), k = 0, 1, . . . , until convergence is reached or
until divergence is detected. When convergence is reached, a fixed point λ∗ is computed and a
test for convexity of the L-curve at (log x(λ∗), log y(λ∗)) based on the condition φ′(λ∗, 1) < 1
is made (see (2.11)). When divergence is detected or when convergence is reached and the
convexity test is not satisfied, the parameter µ is adjusted in a manner to be specified in
section 3.2 and the iterations restart. A brief description of our algorithm is depicted in
figure 2.

In order to make the algorithm clear, we shall give a detailed description of quantities
such as input parameters and others.

3.1. Initial guess and input parameters γ and tol

A critical issue when using fixed-point-based algorithms is the proper choice of λ0. In our
context the choice of the initial guess poses no difficulty when δ0 �= 0 since independently of
µ we have φ(0, µ) > 0; hence, it suffices to choose λ0 ≈ 0. The choice of λ0 for the case
when δ0 = 0 is not as simple as before but an upper bound for γ can be appropriate.

As for the parameter γ , it must be estimated efficiently when the G(SVD) is not available.
A way to do this is by means of the Lanczos method applied to [AT LT ]T , as done, e.g., in pnu
in the Toolbox Regularization Tools by Hansen [9].

The parameter tol plays the role of convergence test parameter; it points out convergence
when the relative change in λk: |λk+1 − λk|/|λk| = |sk − 1| is small enough. It is worth

7
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Figure 3. (Left) Function φ(λ, 1) with no fixed point and the adjusted one φ(λ, µ) with µ < 1.
The small circles denote a few points of the diverging sequence of points associated with λk (for
µ = 1). (Right) Slope mL(λ).

emphasizing that when the else loop at step 4 is not visited, which means we have found the
fixed point λ∗ nearest to λ0, the FP algorithm finds out a point on the L-curve for which the
slope is mL(λ∗) = −1/µ = −1 and therefore located in the vicinity of the ‘corner’.

3.2. Choice of parameter µ

Clearly, only the case δ0 �= 0 needs to be discussed. When φ(λ, 1) has no fixed point
the sequence of values λk must diverge and, as described above, the algorithm interrupts
computations after λk exceeds γ , and then restarts with a parameter µ chosen such that the
function φ(λ,µ) is guaranteed to have a fixed point in ]0, γ [. In order to choose the parameter
µ, we first recall that if φ(λ, 1) has a fixed point λ∗ that locally minimizes �µ, then mL is
maximized at a point that is to the right of λ∗ (more precisely, located between two fixed
points of φ(λ, 1)), with the maximum value of mL(λ) being between mL(λ∗) = −1 and 0, see
figure 1 and the discussion after corollary 1. This property is not valid when φ(λ, 1) has
no fixed point because mL(λ) < −1 for all λ > 0, but the slope mL(λ) continues to behave
like the ‘ideal situation’ where φ(λ, 1) has a fixed point that minimizes �µ, see figure 3 and
compare with figure 1. Our choice of µ relies on this observation.

Before describing our strategy of selecting the parameter µ when φ(λ, 1) fails to have
a fixed point, observe that because φ(λ,µ) = √

µφ(λ, 1) (see definition (2.2)), for φ(λ,µ)

to have a fixed point in the interval ]0, γ [, the parameter µ must be smaller than 1; this is
graphically illustrated in figure 3.

Now note that if λ∗ is a fixed point of φ(λ,µ), then
√

µ = λ∗/φ(λ∗, 1) and
mL(λ∗) = −1/µ. As a consequence, whenever φ(λ, 1) > λ for all λ > 0, any λ > 0
can be regarded as a fixed point of φ(λ,µ) with µ being defined by

√
µ = λ/φ(λ, 1).

Naturally, φ(λ,µ) does not necessarily need to have a fixed point for any µ < 1. This can
be explained as follows. Define ϕ(λ) = λ/φ(λ, 1) and assume that the function ϕ achieves a
maximum inside ]0, γ [, say ω. It is straightforward to see that if ω <

√
µ < 1, then φ(λ,µ)

has no fixed point since, φ(λ,µ) > λ for all λ > 0. We thus conclude for φ(λ,µ) to have a
fixed point in ]0, γ [, the parameter

√
µ cannot exceed the maximum value of ϕ(λ).

In order to describe our choice of µ, recall that maximizing ϕ(λ) amounts to maximizing
mL(λ), which in turns amounts to minimizing φ(λ, 1)/λ. Our algorithm minimizes
approximately the function φ(λ, 1)/λ and proposes as parameter µ the one calculated by√

µ = 2/(s∗
k + θ), where θ is the smallest integer larger than s∗

k . The main virtue of this
choice is that the parameter λ∗ so computed yields a slope that does not differ very much

8
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from −1 (recall that mL(λ∗) = −1/µ), e.g., if 1 < s∗
k < 2,−4 < mL(λ∗) < −9/4, thereby

ensuring that the computed λ∗ does not correspond to the vertical part of the L-curve where
the perturbation errors dominate and therefore avoiding local corners with large slopes, as
illustrated in figure 5. Another characteristic of our choice, revealed by numerous numerical
experiments with discrete ill-posed problems, is that the parameter µ is relatively insensitive
to small changes in θ , this being valid for the associated parameter λ∗ as well.

It remains to explain the choice of µ for the case where φ(λ, 1) � λ for all λ > 0,
that is, the case where the straight line z = λ is tangent to the curve z = φ(λ, 1) at some
point λ∗ ∈ ]0, γ [. Although this case rarely happens, we need to consider it. Obviously,
the choice of µ according to the above proposal might be used, in which case the selected
parameter would be µ = 4/9. We note, however, that this choice might not be suitable for
all problems since the parameter µ is maintained fixed. In order to allow certain flexibility
when choosing µ, while incorporating information of the problem, we propose the choice√

µ = 2γ /(φ(γ , 1) + γ ). Geometrically,
√

µ/γ is the reciprocal of the distance of the point
(γ , 0) to the point Q = (P1 + P2)/2, where P1 = (γ , γ ) and P2 = (γ , φ(γ , 1)).

We now give a theorem that describes the convergence properties of our algorithm.

Theorem 2. Assume that δ0 �= 0, that λ0 is selected according to step 1 of the FP algorithm,
and that no fixed point of φ(λ, 1) is to the left of λ0. Assume further that if φ(λ, 1) has no
fixed point in ]0, γ [, the finite sequence of values sk generated by the FP algorithm achieves a
minimum that differs from s0. Then, the sequence λk converges either to the closest fixed point
of φ(λ, 1) which locally minimizes �µ for µ = 1, or to a fixed point of φ(λ,µ) with µ < 1
which locally minimizes �µ.

Proof. Assume that φ(λ, 1) has a fixed point λ∗ near λ0. Then, since φ′(λ, 1) > 0 for all
λ > 0 by (1.6), it follows that λk is an increasing sequence and that |λk+1 − λ∗| < |λk − λ∗|.
This is sufficient to ensure that λk → λ∗ as k → ∞.

Assume now that φ(λ, 1) has no fixed point. Then a finite sequence of values sk is
generated from which an integer k∗ and a parameter µ∗ < 1 are computed. Using the
definition of µ∗ according to the algorithm we have

φ(λk∗, µ∗) = √
µ∗φ(λk∗, 1) < λk∗,

and a continuity argument shows then that φ(λ,µ∗) has a fixed point that is to the left of λk∗ .
Restarting the algorithm with λk∗ as initial guess, the sequence λk so generated converges to
the nearest fixed point because of the fact that φ(λ,µ) is an increasing function of λ. This
concludes the proof. �

4. Numerical results

To evaluate the performance of our FP algorithm we have solved three discrete ill-posed
problems: two test problems from Hansen’s regularization toolbox, and one from image
super-resolution. For each problem we ran 500 instances with different vectors g = gexact + e

where e contains zero-mean Gaussian random numbers (with the seed value of the random
generator set to zero), and report average relative errors and standard deviations. Parameter
θ at step 4 is chosen as the smallest integer larger than sk∗ . For comparison, we also
report results associated with L-curve, GCV, and another fixed-point-based algorithm due
to Belge et al [1], which we call BFP. The BFP method selects the regularization parameter
α (Belge uses symbol α instead of λ2 in (1.2)) by minimizing the so-called distance function
v(α) = |log x(α) − a|2 + |log y(α) − b|2, where (a, b) = (log x(γ 2), log y(γ 2)) is an origin,
which also leads to a fixed point procedure.

9



Inverse Problems 24 (2008) 035001 F S V Bazän

10
0

10
0

10
5

10
10

10
− 0.75

10
−0.72

10
1

FP

BFP

L– curve

GCV

Figure 4. Tikhonov L-curve for Shaw problem. The right figure shows a close-up view of the
points on the L-curve associated with the regularization parameters found by FP, BFP, L-curve and
GCV.

Our implementation was made in MATLAB using the SVD(GSVD) and functions
l−curve.m and gcv.m from the regularization tools by Hansen [9]. FP and BFP were initialized
with λ0 = 10−4 and terminated when |λk+1 − λk| � λk10−4. In our description we use the
following symbols:

• SR: successful runs (%);
• Ēf (resp.λ̄): average values of relative error in fλ (resp. computed Tikhonov parameter);
• Emax ( resp. Emin): maximum error (resp. minimum) occurring in all realizations;
• Imax (resp. Imin): maximum (resp. minimum) number of iterations;
• STD: standard deviation of computed errors,
• NL: noise level defined by ‖g − gexact‖2/‖gexact‖2.

Example 1 Shaw test problem. We apply Tikhonov regularization in standard form (i.e.,
L = I ) to a problem with matrix A and vector gexact generated by using the function Shaw.m
from [9], with n = 64. Matrix A is numerically rank-deficient with rank(A) = 20 and effective
condition number κ(A) = σ1/σ20 = 5.2759e + 12. This test problem has been analyzed in
several places and its Tikhonov L-curve is known to be well behaved (see, e.g., figure 5.3
in Hansen’s book [9], and figure 4). Numerical results displayed in table 1 show that with
the exception of the GCV method, all remaining methods perform very well, with a slight
advantage in favor of FP. For this test problem, a GCV solution is considered successful
when the corresponding error does not exceed the maximum error associated with the other
methods. We see that among the tested methods, the one that estimates more consistently
(smallest variance) the regularization parameters is FP, while the one in the opposite direction
(largest variance) is BFP. We also see that the smallest average error corresponds to FP and
that the largest one corresponds to BFP. For this test problem the choice µ = 1 works well in
all the instances and the else loop at step 4 of our algorithm is not visited.

Example 2 (Helio test problem). This example considers Tikhonov method in general form
applied to a problem from inverse helioseismology. Matrix A in this problem is 212×100 and
matrix L is a discrete second-order differential operator of size 98 × 100. Matrices A,L and
vectors f exact, gexact are all generated by function Helio.m; for further information the reader
is referred to [6]. A discussion about the performance of several methods for this problem is in
[8, chapter 7, section 7.7.1]; there are reported results for noisy data involving e with standard
deviation σ0 = 10−2. Here, we report results for σ0 = 2 × 10−2 (which implies NL ≈ 5%);

10
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Figure 5. (Left) L-curve for Helio problem for data at low-noise level. (Right) L-curve for Helio
problem and points on the L-curve generated by FP, BFP, L-curve and GCV, for NL = 5%.

Table 1. Numerical results for Shaw test problem.

NL = 1% NL= 5%
FP BFP L-curve GCV FP BFP L-curve GCV

SR 100% 100% 100% 85.80% 100% 100% 100% 82%
Ef 0.1213 0.1585 0.1281 0.1315 0.1728 0.2193 0.1738 0.2087
Emax 0.2985 0.4011 0.3382 0.3176 0.2867 0.5653 0.2771 0.2837
Emin 0.0475 0.0511 0.0466 0.0493 0.0939 0.0697 0.0929 0.0866
STD 0.0410 0.0555 0.0453 0.0424 0.0335 0.0821 0.0388 0.0908
λ 0.0221 0.0122 0.0189 0.0329 0.1155 0.0622 0.0997 0.0860
Imax 11 8 – – 12 11 – –
Imin 5 4 – – 7 5 – –

in this case the associated L-curve is not well behaved and with convex and concave parts
inside the interval [γ , γ ] (see figure 5), which makes the identification of the corner difficult.
This problem provides an excellent way to illustrate that the Tikhonov parameter choice via
BFP can be very sensitive to the origin (a,b). We illustrate this point by calculating Tikhonov
parameters for three distinct choices of the origin; results displayed in columns BFP(1) and
BFP(2) in table 2 are apparent. Also, we see that the best average relative error corresponds
to FP and that the worst one corresponds to BFP. The computed standard deviations, on the
other hand, show that FP computes solutions in a much more consistent way than the other
methods. The line labeled with symbol Ef contains average relative errors of solutions whose
first 12 elements are discarded (as done in [8]). The results do not change so much the trend
of the methods. For this example the choice µ = 1 fails to work in all the instances and the
else loop at step 4 of our algorithm is always visited.

Example 3 (super-resolution image reconstruction problem). We consider the problem
of estimating a high-resolution (HR) image from observed multiple low-resolution (LR)
images. Let f be the HR image of size M = M1 × M2 written in lexicographic
notation as f = [f1, . . . , fM ]T , where M is the number of pixels of the HR image, and
let the kth LR image of size N = N1 × N2 be denoted in lexicographic notation as
gk = [gk,1, gk,2, . . . , gk,N ]T , k = 1, 2, . . . , p, with M1 = N1 × L1,M2 = N2 × L2, where

11
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µ computed by the FP algorithm of first 200 runs for Helio problem.

Table 2. Numerical results for Helio problem. Columns BFP, BFP(1) and BFP(2),
contain values corresponding to origins (log x(γ 2), log y(γ )2), (log x(γ 2), log y(1.2γ 2)), and

(log x(γ 2), log y(1.4γ 2)), respectively.

FP BFP BFP(1) BFP(2) L-curve GCV

SR 100% 100% 100% 100% 99.20% 99%
Ef 0.1540 0.2015 0.2470 0.3005 0.1883 0.2190
Emax 0.1946 0.2536 0.3024 0.3585 0.2949 0.2989
Emin 0.1454 0.1623 0.1963 0.2489 0.1470 0.0709
Ef 0.0794 0.1418 0.1705 0.2035 0.0603 0.0508
STD 0.0074 0.0152 0.0178 0.0174 0.0255 0.059
λ 0.0319 0.073 0.0973 0.1163 0.0190 0.0059
Imax 25 21 24 12 – –
Imin 18 4 4 6 – –

L1 and L2 represent down-sampling factors in the observation model for the horizontal and
vertical directions, respectively. Assuming that the acquisition process of the LR sequence
involves blurring, motion, subsampling and additive noise, an observation model that relates
f to gk is written as [14]

gk = Ckf + εk (4.1)

where Ck is N × M , and εk stands for noise. The HR image problem is to estimate f from
all LR images gk . In this context, the Tikhonov method consists of solving the optimization
problem

f̂ = arg min
f

‖g − Cf‖2
2 + λ2‖Rf‖2

2 (4.2)

where g = [
gT

1 . . . gT
p

]T
, C = [

CT
1 . . . CT

p

]T
, R is a discrete first-order differential operator in

the horizontal and vertical directions, and λ is the regularization parameter.
We address the problem of estimating the 18 × 24 HR image depicted in figure 7 from a

sequence of five noisy LR images with downsampling factors L1 = L2 = 2. Thus C is of size
540×432 and R is of size 822×432. The noisy LR images were obtained adding white noise

12



Inverse Problems 24 (2008) 035001 F S V Bazän

0 50 100 150 200
0.05

0.1

0.15

0.2

0.25

0.3

10
0

10
−1

10
0

10
1

10
2

10
3

10
4

FP

BFP

L– curve

GCV

FP

BFP

L– curve

Figure 7. (Left) L-curve for HR problem. (Right) Relative errors corresponding to first 200 runs.

Table 3. Numerical results for HR estimation problem.

FP BFP L-curve GCV

Ef 0.0617 0.1471 0.0615 0.0622
Emax 0.0748 0.2975 0.0751 0.0911
STD 0.0034 0.0670 0.0035 0.0045
λ 0.3318 1.7753 0.1968 0.1944
Imax 26 386 – –
Imin 19 21 – –

ε to the degraded images so that SNR = 15dB; two LR images are depicted in figure 7. For
this problem we verified that rank(C) = 390 (to machine precision) and that rank(R) = 341.
Since R is overdetermined, we compute the QR decomposition of R, R = QR, and replace
‖Rf‖2 by ‖Lf‖2 in (4.2) where L is the top block of R of size 341 × 342. We also verified that
the associated L-curve is not as well behaved as in example 1, and that the L-shape deteriorates
significantly as the noise level increases. The L-curve for noise level of 15 dB of the last run
is depicted on the left of figure 7; on the right of the same figure are displayed relative errors
corresponding to the first 200 runs. The estimated images obtained by means of FP, BFP
and L-curve of the last run are depicted on the second line in figure 8. The estimated image
obtained by GCV is very similar to those obtained by FP and L-curve and it is not displayed
there. Visual inspection shows that the estimated images obtained by FP and L-curve are much
more accurate than that obtained by BFP, which is also verified from the average relative errors
shown in table 3. Table 3 also shows for this problem that the number of iterations needed
for BFP to reach convergence is significantly larger than that for FP and that BFP calculates
solutions that can vary very much from one run to another (as explained by the large value
of the associated standard deviation and by the relative errors depicted in figure 7). For this
problem the choice µ = 1 fails to work in approximately 5% of the cases.

5. Conclusions

We proposed a fixed point algorithm that selects a Tikhonov parameter associated with a
point near the ‘corner’ of the L-curve in log–log scale, thus producing solutions with accuracy
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Figure 8. HR image, two LR images and estimated images by FP, BFP and L-curve method.

comparable to that of the L-curve method but at a lower computational cost. Numerical
results suggest that the FP algorithm can be much more robust than BFP, and that BFP can
be very sensitive to the choice of the origin specially when the associated L-curve is not well
behaved. Although all computations were performed satisfactorily using the SVD(GSVD),
we are aware that this may not be the case when the problem is too large. However, we expect
the ideas behind the algorithm can be implemented efficiently in conjunction with iterative
regularization methods such as those based on LSQR and GC [12]. Less heuristic choices
of µ should be investigated. The extension of FP to the selection of multiple regularization
parameters is also of interest and is the subject of future research.
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