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Abstract

A signal eigenvalue sensitivity analysis for subspace-based methods that exploit the shift-invariance property present
in the signal subspace is considered. It is proved that signal eigenvalues are rather insensitive to small perturbations in the
data provided the dimension of the problem is large enough and the eigenvalues themselves are not extremely close to
each other. In addition, bounds on the signal eigenvalue error that depend on both the largest canonical angle between
the exact and approximate signal subspace and the dimension of the data matrix are provided. The theory is illustrated
by a numerical example where a signal taken from the literature is analysed. ( 2000 Elsevier Science B.V. All rights
reserved.

Zusammenfassung

Es wird eine Signaleigenwert-SensitivitaK tsanalyse fuK r Unterraummethoden, welche die im Signalunterraum vorhan-
dene Verschiebungsinvarianz ausnuK tzen, betrachtet. Es wird gezeigt, da{ Signaleigenwerte eher unemp"ndlich gegenuK ber
kleinen StoK rungen der Daten sind, falls die Dimension des Problems gro{ genug ist und die Eigenwerte selbst nicht zu
nahe beieinander liegen. Weiters werden Schranken fuK r den Fehler der Signaleigenwerte angegeben, welche vom groK {ten
kanonischen Winkel zwischen dem exakten und dem angenaK herten Signaluterraum sowie von der Dimension der
Datenmatrix abhaK ngen. Die vorgestellte Theorie wird durch ein numerisches Beispiel veranschaulicht, in dem ein der
Literatur entnommenes Signal analysiert wird. ( 2000 Elsevier Science B.V. All rights reserved.

Re2 sume2

Nous consideH rons dans cet article l'analyse de sensitiviteH des valeurs propres d'un signal pour des meH thodes de
sous-espaces qui exploitent la proprieH teH d'invariance en deH calage dans le sous-espace du signal. Il est prouveH que les
valeurs propres d'un signal sont assez insensibles à de petites perturbations sur les donneH es pourvu que la dimension du
problème soit assez grande et que les valeurs propres elles-me(mes ne soient pas extre(mement proches des unes des autres.
De plus, nous fournissons des bornes pour l'erreur des valeurs propres du signal, qui deH pendent à la fois du plus grand
angle canonique entre les sous-espaces exacts et approcheH s du signal, et de la dimension de la matrice de donneH es. La
theH orie est illustreH e par un exemple numeH rique où un signal pris dans la litteH rature est analyseH . ( 2000 Elsevier Science
B.V. All rights reserved.
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1. Introduction

The problem of estimating model parameters
such as decay constants, signal frequencies, ampli-
tudes, plane waves, etc., from data corresponding
to noisy damped/undamped exponential signals,
has become an active area of research in recent
years. This problem has applications in a number
of areas which include modal analysis, radar and
sonar signal processing, nuclear magnetic reson-
ance (NMR), acoustic, and speech processing,
among others.

One popular class of algorithms for the problem
that has encountered prominence because of its
higher resolution and lower computational cost
compared with classical methods is the subspace-
based approach. Algorithms in this class start by
computing an estimate of the so-called signal sub-
space which is nothing but the column or row
subspace of a certain matrix containing the data
(for noise-free data). This subspace contains under-
lying signal information which is then used for
determining the parameters of interest which can
be done in a great variety of schemes. Subspace-
based methods are commonly divided into two
classes [27]: (a) subspace "tting techniques
[18,21,24,25]; and (b) single shift-invariant (SSI)
methods. The last class covers Kung's method [12]
also called HSVD in NMR [29], the matrix pencil
method of Hua and Sarkar [10], OPIA of BazaH n
and Bavastri [3], subspace rotation methods such
as ESPRIT and PRO-ESPRIT [16,31] and some
total least-squares-based methods such as HTLS
[29] and TLS-ESPRIT [15], among others. A sur-
vey on subspace SVD-based methods can be found
in [27].

We shall consider a class of methods that exploit
the so-called shift-invariance structure present in
the signal space. A particularly nice feature of these
methods is that the desired model parameters
emerge after solving a typically small eigenvalue
problem. These eigenvalues are often referred to as
signal eigenvalues or poles. Since in practical ap-
plications only an approximate signal subspace is
available, as it is estimated from data corrupted by
noise, and since poles emerge as eigenvalues of
nonsymmetric matrices (which may be very sensi-
tive to eigenvalue computation), an issue of interest

is to analyse the sensitivity of the poles to perturba-
tions on the data.

Several authors have developed analyses on pole
sensitivity and error estimation in connection with
classical techniques, namely those where poles
emerge from the roots of large polynomials, con-
cerning which there exists a vast literature (see, for
instance, [8,9,23,19], just to quote a few references).
However, relatively little work has been done with
respect to pole sensitivity for SSI subspace
methods: a few contributions can be found in
[6,10,11,22,30]. It must be emphasized however,
that, with the exception of the work by De Groen
and De Moor [6], the remaining contributions
present results that heavily depend on the parti-
cular nature of the noise (e.g., its elements
are independent Gaussian zero-mean random
numbers). Furthermore, as pointed out in [27],
these results are considered to hold only asymp-
totically. So an eigenvalue sensitivity analysis
using "nite measurements without using any hy-
pothesis on the nature of the noise seems to be
suitable.

We present a signal eigenvalue error analysis
that applies for a wide class of subspace-based
methods, holding for "nite measurements but free
of statistical hypotheses. We deduce informative
signal eigenvalue error estimates, obtaining, in par-
ticular, a stronger bound for the eigenvalue error
than that by De Groen and De Moor. Our main
result is that the signal eigenvalues become insensi-
tive to small perturbations on the data whenever
the dimension of the data matrix is large enough
and the signal eigenvalues are not extremely close
to each other. In particular, we show that slightly
damped signals bene"t of favourable mathematical
conditions that facilitate the task of retrieving the
model parameters even if the data are relatively
noisy. Also, we obtain eigenvalue error estimates as
a function that depends on both the subspace angle
between the exact and approximate signal subspace
and the dimension of the data matrix. These results
provide insight into the problem when the signal
subspace is estimated via the singular value de-
composition.

An outline of the paper is as follows. In Section
2 we describe the model assumptions needed to
perform our analysis and review the underlying
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idea behind SSI subspace methods. Sensitivity
analysis is presented in Section 3 where we show
that the sensitiviy of the signal eigenvalues is gov-
erned by the conditioning of a related rectangular
Vandermonde matrix whose columns span the sig-
nal subspace. This result is then used in Section
4 where we present our pole error estimates. Nu-
merical results that illustrate our theoretical analy-
sis are reported in Section 5. We "nally present
some conclusions in Section 6.

2. Model assumptions and generalities

We "rst introduce the notation used throughout
the paper. For A3CMCN, DDADD and DDADD

F
denote the

spectral and Frobenius norm of A, respectively.
AH denotes the conjugate transpose of A and
As denotes its Moore}Penrose pseudo-inverse. The
singular values of A are denoted by p

i
(A) and

arranged in decreasing order, i.e., p
1
(A)*

p
2
(A)*2*p

p
(A), where p"min(M,N). The

2-norm condition number of A, i
2
(A), is de"ned by

i
2
(A)"DDADD DDAsDD.
We assume that the available data arise as

hI
k
"h

k
#e

k
, k"0,1,2,¸!1, where h

k
is an un-

known sampled signal of the form

h
k
"

n
+
l/1

r
l
e(dl`ιul )k*t"

n
+
l/1

r
l
zk
l
, (2.1)

with r
l
3C, ι"J!1, d

l
)0, u

l
3R, z

j
Oz

k
for

jOk, *t being the sampling interval, n the number
of spectral components contained in the signal and
e
k

the noise. For the moment we assume that the
data are free of noise. Most of shift-invariant
methods start by arranging the available data in
a Hankel or Toeplitz matrix >

MCN
of order

M]N, M,N*n, whose column space, denoted
here by S

M
and from here on referred to as the

signal space, is spanned by the columns of an M]n
Vandermonde matrix of the form

=
M
"C

1 1 2 1

z
1

z
2

2 z
n

F F F F

zM~1
1

zM~1
2

2 zM~1
n

D (2.2)

(note that rank[=
M

]"n). The underlying idea
used for SSI techniques, we are concerned with in
this work, relies on the fact that if A denotes the
matrix consisting of all rows of=

M
excluding the

last and B the matrix consisting of all rows exclud-
ing the "rst, then

AZ"B where Z"diag(z
1
,2, z

n
).

But if <K is any matrix of order M]n, whose col-
umns span S

M
, and if A and B are obtained from

<K as A and B were from=
M

, then there exists an
n]n matrix ¹, say, known as a transition matrix,
such that

A¹"B. (2.3)

Obviously ¹ is similar to Z. SSI techniques recover
such a transition matrix from the available data
and extract d

l
and u

l
from its eigenvalues. Once the

signal eigenvalues z
l

are available, the weights
r
l

are readily computed by solving a linear least-
squares (LS) problem. The same work can be per-
formed using a matrix ;K 3CNCn with columns
spanning the row subspace of>

MCN
, though in this

case Eq. (2.3) involves a transition matrix similar
to ZH.

Di!erent choices of <K (;K ) and di!erent forms of
solving (2.3) have resulted in a number of sub-
space-based methods. For example, if <K is chosen
to be the matrix formed by the left singular vectors
associated with the nonzero singular values of
>

MCN
and (2.3) is solved in the standard least-

squares (LS) sense, then one obtains Kung's
method [12]:

¹"AsB. (2.4)

Note that, since A is almost an isometry, As in (2.4)
need not be computed by matrix inversion.

I"<K H<K "AHA#xxHNAs"(AHA)~1AH

"(I!xxH)~1AH"AI#
xxH

1!xHxBAH,

where xH denotes the last row of <K and I the n]n
identity matrix. If Eq. (2.3) is solved in the total
least-squares (TLS) sense, then one obtains an algo-
rithm called HTLS. This method was recently in-
troduced by Van Hu!el and co-workers, and it is
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currently used in time-domain analysis of NMR
data [29]. Another popular method, known as the
state-space balanced realization approach (SSR),
chooses <K by weighting the columns of the same
matrix used by Kung's method [13]. Related
methods are the standard ESPRIT [16] and the
matrix pencil method of Hua and Sarkar [10].

When the data are noise corrupted, the signal
space is estimated from a perturbed data matrix
>I

MCN
">

MCN
#E, where E contains the noise,

but the procedure is essentially the same. In this
case however, the shift-invariance equation (2.3)
is no longer compatible. The question that arises is
then how the signal eigenvalues change when the
transition matrix su!ers perturbations as a conse-
quence of the errors on the data. In the remainder
of this work, we analyse the problem in the case
where A and B in (2.3) arise from any orthonormal
basis of the approximate signal subspace, and
always assume that the number n is known in
advance. In particular, we shall focus on the case
where the signal subspace basis is estimated from
the SVD of the data matrix >I

MCN
. This covers, of

course, the eigenvalue sensitivity analysis for all
above mentioned shift-invariant methods, includ-
ing those methods that exploit the shift-invariance
equation (2.3) for solving another class of problems
such as that of system pole extraction from in-
put}output measurements [12,30].

3. Signal eigenvalue sensitivity

We start by assuming that an orthonormal basis
for the exact signal subspace S

M
is available. Let

<
s

be an M]n matrix whose columns form such
a basis. The following theorem gives information
on the conditioning of the eigenvalue problem re-
lated to all SSI methods that use the shift-invari-
ance equation (2.3).

Theorem 1. Suppose ¹3CnCn satisxes the shift-
invariance equation (2.3). Then, for M*n#1

¹"(<H
s
=

M
)Z(<H

s
=

M
)~1. (3.1)

Proof. Since the columns of =
M

also span the
signal subspace S

M
, there exists a nonsingular

matrix F3CnCn such that

<
s
"=

M
F. (3.2)

Decompose <
s

and =
M

as

<
s
"C

A

xHD"C
yH

BD ,

=
M
"C

=
M~1

eHZM~1D"C
eH

=
M~1

ZD ,

where e denotes the vector in Rn of all ones. From
this and (3.2), it follows that B"=

M~1
ZF,

A"=
M~1

F and As"F~1=s
M~1

. Substituting
As and B into (2.4), we get

¹"F~1=s
M~1
=

M~1
ZF"F~1ZF,

since =s
M~1
=

M~1
"I. The statement of the the-

orem results then by observing from (3.2) that
F~1"<H

s
=

M
and F"=s

M
<

s
"(<H

s
=

M
)~1. h

Since it is straightforward to see that
i
2
(<H

s
=

M
)"i

2
(=

M
), where i

2
(=

M
) denotes the

2-norm condition number of =
M

, Theorem
1 shows that the sensitivity of the signal eigenvalues
to perturbations on ¹ is essentially governed by
i
2
(=

M
). We now present an upper bound for

i
2
(=

M
) which shows that under conditions that

hold in many applications, this condition number is
not as severe as one could usually suppose.

Theorem 2. Dexne a"max Dz
l
D and b"min Dz

l
D.

Also dexne

d" min
1xj,kxn

jEk

Dz
j
!z

k
D, (3.3)

/
M
"S

1#a2#2#a2(M~1)

1#b2#2#b2(M~1) (3.4)

and

D2
M
"DD¹DD2

F
!(Dz

1
D2#2#Dz

n
D2). (3.5)

Then, for all M*n, the 2-norm condition number of
=

M
satisxes

i
2
(=

M
))1

2
(g#Jg2!4), (3.6)
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where

g"C1#
D2

M
(n!1)d2D

(n~1)@2 n

2
(/

M
#/~1

M
)!n#2.

(3.7)

Proof. Let C be an M]M companion matrix such
that

C=
M
"=

M
Z.

It then follows that the projected companion
matrix onto S

M
matches ¹. In fact, as

<
s
<H

s
=

M
"=

M
because <

s
<H

s
is the orthogonal

projector onto S
M

and the columns of=
M

belong
to this subspace, the above equation can be rewrit-
ten as

C<
s
<H

s
=

M
"<

s
<H

s
=

M
Z.

Using the fact that <H
s
<

s
"I and Theorem 1, the

above equation becomes

<H
s
C<

s
"(<H

s
=

M
)Z(<H

s
=

M
)~1"¹ (3.8)

as claimed. Bound (3.6) follows then from identify-
ing ¹ with <H

s
C<

s
in Theorem 3 by Bazan and

Toint [4]. h

Note that the quality of bound (3.6) depends on
the condition D2

M
((n!1)d2 and that the bound is

about o times n when this condition is ful"lled, with
o a moderate constant. Note also that, since d de-
pends on the separation of the signal eigenvalues
z
l
but not on M, the quality of the bound ultimately

depends on the behaviour of D2
M

as a function of M.
The number D

M
, known as departure from normal-

ity of ¹, measures how close is ¹ from being a nor-
mal matrix. It was studied by Bazan [2, see Lemma
7] who showed that

0)D2
M
)(n!1)#DD fK

M
DD2#

n
<
l/1

Dz
l
D2!

n
+
l/1

Dz
l
D2,

(3.9)

where fK
M

is the minimum 2-norm solution of the
underdetermined system of equations

=H
M

f"ZHMe, (3.10)

where e is as before. Vector fK
M

features the interest-
ing property that its norm DD fK

M
DD monotonically

decreases to zero as M increases [5]. From this fact
it follows that whenever DD fK

M
DD2+0 and Dz

l
D+1 we

should get D2
M
+0. Hence, unless the signal eigen-

values are extremely close to each other, the condi-
tion D2

M
((n!1)d2 should be satis"ed, thereby

ensuring reasonably small bounds for i
2
(=

M
). An-

other evidence about the well-conditioning of
=

M
comes in terms of D

M
: Ruhe [17] shows that

D
M
+0 implies a well-conditioned eigenvalue

problem. We therefore conclude that if the signal
eigenvalues in modulus are resonably close to
1 (which happens when analysing slightly damped
signals) but not extremely close to each other, then
the only condition needed to ensure moderate
values of i

2
(=

M
) is to keep M su$ciently large.

However, as we shall illustrate later, M need
not be as large as the theoretical analysis seems to
require.

4. Error perturbation analysis

In this section we provide estimates for the error
Dz
l
!z8

l
D, l"1,2,2, n, where the z8

l
are computed

from an approximate transition matrix ¹I . Our goal
here is to prove that signal eigenvalues are quite
insensitive to small perturbations on the data. We
start by noting that classical eigenvalue perturba-
tion theory and Theorem 1 together ensure that

Dz
l
!z8

l
D)DD¹!¹I DDi

2
(=

M
), 1)l)n. (4.1)

Since i
2
(=

M
) was already analysed before and we

know it remains within moderate bounds under
conditions that hold in many applications, in order
to achieve our goal, we have to prove that the error
DD¹!¹I DD does not propagate the input errors on
the data matrix. We shall restrict ourselves to only
analyse the error DD¹!¹I DD in the case where ¹I is
estimated by using a pure least-squares technique,
as described in (2.4).

Let <
s
and <I

s
be N]n matrices with orthonor-

mal columns that span the exact signal subspace
S

M
and the approximate signal subspace SI

M
, re-

spectively. Decompose <I
s

conformally with <
s

as
in the previous section, i.e.,

<
s
"C

A

xHD"C
yH

BD , <I
s
"C

AI
x8 HD"C

y8 H

BI D .
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Note that for noise-free data the transition matrix
¹ is the unique solution to the compatible system
A¹"B. Let AI "A#D

A
, BI "B#D

B
and as-

sume that AI is of rank n. Then the error on ¹ is

¹I !¹"AI sBI !¹

"AI s(B#D
B
)!¹

"AI s(A¹#D
B
)!¹

"AI s(AI ¹!D
A
¹#D

B
)!¹

"AI s(!D
A
¹#D

B
). (4.2)

The last equality follows from the fact that
AI sAI "I, since by assumption rank[AI ]"n. Taking
2-norm on both sides of (4.2) yields

DD¹I !¹DD)DDAI sDD DD¹DD(DDD
A
DD#DDD

B
DD), (4.3)

where we used the property that DD¹DD"DD<H
s
C<

s
DD

*1 [4]. Now, note that to obtain any meaningful
error estimate, <

s
must be chosen as close as pos-

sible to<I
s
. This is always possible and can be made

by choosing <
s
"<X, where < is any M]n

matrix with orthonormal columns spanning the
signal space S

M
and X3CnCn a unitary matrix

which solves the orthogonal Procrustes problem

min DD<X!<I
s
DD
F
.

De"ne G"<I H
s
< and let G"PM RM QM H be its singular

value decomposition. Then the unitary matrix solv-
ing this problem is X"QM PM H, see, for instance, [1],
or [7, p. 601]. Using this X, <

s
"<QM PM H. After

some manipulations, we obtain that

DD<
s
!<I

s
DD2"DD(<QM PM H!<I

s
)H(<QM PM H!<I

s
)DD

"DD2I!PM QM H<H<I
s
!<I H

s
<QM PM HDD

"2DD(I!PM RM PM HDD.

We now recall that the cosines of the canonical
angles between the subspaces S

M
and SI

M
are the

singular values of <I H
s
< (contained in RM ); see, for

instance, Stewart [20, Theorem 2.4]. Using this
observation, the last relation implies that

DDD
Vs

DD"DD<
s
!<I

s
DD"2 sin

H

2
, (4.4)

where H, sometimes called subspace angle, denotes
the largest canonical angle between S

M
and SI

M
.

Now, since DDd
A
DD)DDD

Vs
DD and DDD

B
DD)DDD

Vs
DD, using

these inequalities in (4.3) and taking (4.4) into ac-
count, we obtain the following result.

Lemma 3.

DD¹!¹I DD)4DDAI sDD DD¹DD sin
H

2
. (4.5)

Note that in this estimate, both DDAI sDD and DD¹DD
strongly depend on M, the number of rows of the
data matrix >I

MCN
. But, since ¹"<H

s
C<

s
,

DD<
s
C<

s
DD")J1#DD fK

M
DD2 (see Theorem 2 by

Bazan and Toint [4]), and DD fK
M

DD decreases to zero
as M increases, these facts ensure that for M large
enough we get DD¹DD+1. Note also that
DDAI sDD"1/(1!DDx8 DD2)"1/(1!DDp8

M
DD2), where p8

M
is

the last column of the orthogonal projector PI onto
the subspace SI

M
. This suggests that if DDp8

M
DD be-

haves approximately as DDp
M

DD, which decreases with
M and remains near zero for M large [5], then DDAI sDD
should not be much larger than 1. We therefore
conclude that the estimate provided by Lemma
3 depends strongly on M, though the closeness of
S

M
to SI

M
, measured by the subspace angle, is also

important. This means that for large M, unless
S

M
is very far from SI

M
, the bound (4.5) becomes

close to 2 sinH. Although this result does not yet
prove that input errors on the data matrix are not
propagated when computing ¹I , it ensures small
errors on ¹ provided M is large enough and the
subspace angle is su$ciently small. We shall return
to this discussion later.

Substituting the estimate provided by Lemma
3 into (4.1), we obtain the following theorem.

Theorem 4. The eigenvalue error satisxes

Dz
l
!z8

l
D)2 DDAI sDD DD¹DD(g#Jg2!4)sin

H
2

,

1)l)n, (4.6)

where g is as in Theorem 2.

As g becomes generally a modest constant when
M is large enough (see the examples discussed
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in [2,4]), the behaviour of both DDAI sDD and DD¹DD as
functions of M, as discussed before, ensures that, if
<I

s
is su$ciently close to <

s
in the sense of the

Frobenius norm, then the bound for the signal
eigenvalue error can be regarded as the product of
sinH times a moderate constant. In other words,
estimate (4.6) can be rewritten as

Dz
l
!z8

l
D"O(sinH), 1)l)n. (4.7)

We now assume that <I
s

is estimated by using the
SVD of the observed data matrix >I

MCN
"

>
MCN

#E. The following corollary gives a bound
that depends on the size of DDEDD and p

n
(>

MCN
), the

smallest nonzero singular value of the clean data
matrix >

MCN
.

Corollary 5. Assume a basis for the signal subspace
SI

M
is computed from the SVD of >I

MCN
"

>
MCN

#E. Then, provided DDEDD@p
n
(>

MCN
), the fol-

lowing xrst-order estimate for the bound on DD¹!¹I DD
in (4.5) holds:

DD¹!¹I DD)2DDAI DD DD¹DD
DDEDD

p
n
(>

MCN
)
. (4.8)

Consequently, the bound on the reconstruction error
for the signal eigenvalues in (4.6) becomes

Dz
l
!z8

l
D)DDAI sDDDD¹DD(g#Jg2!4)

DDEDD
p
n
(>

MCN
)
,

1)l)n. (4.9)

Proof. Let

>
MCN

"[;
1
;

2
] diag(R

1
,R

2
) [<

1
<

2
]H and

>I
MCN

"[;I
1
;I

2
] diag(RI

1
,RI

2
) [<I

1
<I

2
]H

be SVDs of >
MCN

and >I
MCN

, respectively, where
;

1
,;I

1
,<

1
and <I

1
all have n columns. It is well-

known that if DDEDD
2
@p

n
(>

MCN
) then an orthonor-

mal basis for the approximate signal space (gener-
ated by the columns of ;I

1
) is formed by the

columns of an M]n matrix ;K
1
, say, such that

;K
1
"(;

1
#;

2
P)(I#PHP)~1@2, (4.10)

where P is a matrix of order (M!n)]n whose
norm is of the order of DDEDD (see, for instance
[26], or [14] for a detailed explanation), and
(I#PHP)~1@2 is the inverse of the square root of

the positive-de"nite matrix (I#PHP). Although
one is not able to "nd the matrix P, its norm DDPDD is
interestingly interpreted as the tangent of the lar-
gest canonical angle H, see [20]. On the other hand,
since

;H
1
;K

1
";K H

1
;

1
"(I#PHP)~1@2

and, as the singular values of this Hermitian matrix
are the cosines of the canonical angles between
S

M
and SI

M
, after some algebraic manipulations it

follows that DD;
1
!;K

1
DD"2 sin(H/2). This ensures

that;
1

is a matrix that is closest to;K
1

in the sense
that DD;

1
!;K

1
DD
F

is minimized. Finally, since

2 sin
H

2
)tanH"DDPDD)

DDEDD
p
n
(>

MCN
)
,

where the last inequality holds up to "rst order,
see [26]. Inequalities (4.8) and (4.9) follows from
subsituting this inequality in (4.5) and (4.6), respec-
tively. h

Note that inequality (4.8) shows that reduction of
input errors will happen whenever 2DDAI sDD DD¹DD(
p
n
(>

MCN
), a fact often observed if M is large

enough (see the examples analysed in [4]). On the
other hand, that inequality suggests choosing the
dimensions of the data matrix so that the bound be
minimized to guarantee a small subspace angle.
There are no theoretical results on the behaviour of
p
n
(>

MCN
) as a function of M,N but empirical evid-

ence advises to choose data matrices as square as
possible, since thus p

n
(>

MCN
) would achieve

a maximum value [4], in which case the bound
would be minimized.

We conclude this section with two remarks.

1. In [6], De Groen and De Moor show that

DD¹!¹I DD)KA
DDEDD#p

n`1
(>I

MCN
)

p
n
(>I

MCN
)!p

n`1
(>I

MCN
)B,

(4.11)

where K is a positive constant not larger than
3 provided the signal is measured for long
enough time (i.e, for M large enough). They use
this estimate to conclude that the eigenvalue
error is of order p

n`1
(>I

MCN
)/(p

n
(>I

MCN
)

!p
n`1

(>I
MCN

)). The advantage of our error
analysis over that by the above authors is that
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Table 1
Model parameters of NMR signal, u

l
"2p f

l

l r
l

d
l

f
l
(Hz) z

l
Dz
l
D d2

l

1 5.8921#ι1.5788 208 !1379 0.6342!ι0.7463 0.9794 0.1787
2 9.5627#ι2.5623 256 !6854 0.8858!ι0.4067 0.9747 0.0643
3 5.7956#ι1.5529 197 !271 0.9663!ι0.1661 0.9805 0.0643
4 2.7046#ι0.7247 117 353 0.9642#ι0.2174 0.9884 0.0100
5 16.4207#ι4.3999 808 478 0.8811#ι0.2729 0.9224 0.0100

Fig. 1. (a) Fourier spectrum of pure NMR signal. (b) Fourier spectrum of noisy NMR signal, p"1 (the scale is arbitrary in both cases).
(c) D2

M
as a function of M. (d) Upper bound for i

2
(=

M
) as a function of M ((c) and (d) are on a logarithmic scale).
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Fig. 2. Matrix noise-to-signal ratio DDEDD/DD>
MCN

DD,
M#N"129, 5)N)64.

we obtain an error bound for the transition
matrix (hence for the eigenvalue error, see (4.8)
and(4.9)), which involves a readily computable
constant of modest size. In addition to this,
comparison of (4.8) with (4.11) shows that our
error estimate (4.8) realizes substantial improve-
ment.

2. The current analysis can be adapted to derive
eigenvalue error estimates for subspace-based
methods that exploit a multiple shift-invariance
property present in the signal subspace. These
methods are applied to estimating system poles
from multi-input multi-output measurements,
in which case, poles emerge from transition
matrices satisfying a multiple shift-invariance
equation like (2.3), and the `signal subspacea is
identi"ed as the range space of the extended
observability matrix of the system state-space
description [12,30]. It is easy to see that
the error estimate (4.5) applies immediately
to these methods, however the conditioning of
the matrix eigenvalue problem remains to be
analysed.

5. Numerical experience

In this section we report numerical results to
illustrate the theory presented throughout the pa-
per. We analyse a typical NMR signal comprising
"ve complex exponentials [29]. Model parameters
as well as the separations of the signal poles,
d
l
"minDz

l
!z

j
D, jOl, l, j"1,2,2, n shown in

Table 1. As seen in that table and Fig. 1(a), the
signal is relatively damped and its Fourier spec-
trum features two closely overlapping peaks. The
number of samples is ¸"128 and the sample rate
10 kHz (i.e. *t"0.0001s).

The numerical experiment consists of two parts.
The goal of the "rst part is to show that i

2
(=

M
)

becomes rather small provided M is large enough.
This can be appreciated in Fig. 1(d), where we
illustrate the behaviour of bound (3.6) for i

2
(=

M
)

as a function of M. The condition number itself for
M*60 reaches values about 3.10. Explanation for
this comes in terms of D

M
and the separation be-

tween the z
l

themselves: since (n!1)d2"0.0399,
the inequality D2

M
((n!1)d2 in (3.7), which we

have proved to ensure moderate values of the
bound, is rapidly reached. Some values illustrate
this fact: D2

50
"0.0385, D2

60
"0.0365, D2

100
"

0.0310, etc. (see also Fig. 1(c)).
In the second part, we address the issue of signal

eigenvalue error Dz
l
!z8

l
D: we compute bound (4.1)

for the eigenvalue error, the error itself, and related
quantities such as sinH, 2 sin(H/2), DDEDD/p

n
(>

MCN
)

and DD¹!¹I DD. The z8
l
were extracted from matrices

¹I , computed according (2.4), where AI and BI in that
formula are estimated from the SVD of a Hankel
matrix >I

MCN
">

MCN
#E containing samples of

the perturbed signal hI
k
"h

k
#e

k
, where we use

zero-mean Gaussian random numbers with stan-
dard deviation p as noise. In order to assess the
e!ect that the dimensions M,N could yield on the
eigenvalue error, the experiment was performed
for M,N constrained to M#N"129, for
N"5,6,2,64.

We report mean values of computed quantities
corresponding to 100 noise realizations for p"0.1
(low noise-to-signal ratio) and p"1 (matrix noise
to signal ratio DDEDD/DD>

MCN
DD+13%, see Fig. 2). The

behaviour of sinH, 2 sin(H/2), and DDEDD/p
n
(>

MCN
),

displayed in Fig. 3(a), shows that at low noise-to-
signal ratios (p"0.1) those quantities are very
comparables when the data matrix progressively
becomes less overdetermined and that the sine
measuring the closeness between the exact and ap-
proximate signal subspace seems to monotonically
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Fig. 3. DDEDD/p
n
(>

MCN
) (solid line), sinH (dashed line) and

2 sin(H/2) (dash-dotted line), all as functions of
M, M#N"129, 5)N)64 ((a): p"0.1, (b): p"1, the scale
is logarithmic in both cases).

Fig. 4. Bound (4.1) for i
2
(=

M
) (solid line), DD¹!¹I DD (dash-

dotted line), and Dz
l
!z8

l
D for l"3,4,5 (solid-dotted line, dotted

line, and dashed line, in the same order). (a): p"0.1, (b): p"1.
The dimensions M, N and the scale are as in Fig. 2.

decrease as >I
MCN

becomes a square one. The same
comment applies for p"1, though the distance of
DDEDD/p

n
(>

MCN
) to sinH becomes more pronounced

(see Fig. 3(b)).
Bound (4.1) for the eigenvalue error, the error

DD¹!¹I DD, and the eigenvalue error itself for z
3
, z

4
and z

5
, all are displayed in Fig. 4(a) and (b). Here

again observe that the eigenvalue error strongly
decreases when the data matrix becomes less over-
determined and that these errors are somewhat

minimized when the dimensions of the data matrix
satisfy M+N. These "gures also con"rm that the
eigenvalue error is of the same order of magnitude
as sinH, as predicted in theory, and that the third
pole z

3
(marked by solid-doted lines) is notoriously

less sensitive than the closest poles z
4

and z
5
, as

expected. Extensive numerical experiments which
illustrate the sensitivity of the model parameters
themselves related to this NMR signal, for several
noise levels, can be encountered in [28,29].
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6. Conclusions

We have performed an eigenvalue perturbation
analysis for subspace-based methods that exploit
the shift-invariance property present in the signal
subspace. We concluded that signal eigenvalues
become quite insensitive to small perturbations on
the data provided the dimension of the data matrix
is large enough and the eigenvalues themselves in
modulus are not much smaller than 1. The analysis
also allowed us to derive estimates for the signal
eigenvalue error. These estimates suggest that the
error itself could be approximately of the same
order of magnitude as the sine of the largest canoni-
cal angle between the exact and approximate signal
subspace. This was numerically veri"ed, even for
moderate levels of noise, and illustrated by simula-
tions using a signal often mentioned in the litera-
ture. The numerical experience also suggested that
the sine measuring the closeness between the exact
and the approximate signal subspace is minimized
when the data matrix is square, however this needs
to be analytically demonstrated.
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