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1.2.2 Pivôs e determinantes : : : : : : : : : : : : : : : 10

1.2.3 Pivotamento - fatora�c~ao PLU : : : : : : : : : : : 11

1.2.4 Matrizes Especiais : : : : : : : : : : : : : : : : : 13

1.3 Condi�c~ao de uma Matriz : : : : : : : : : : : : : : : : : : 14

1.3.1 A Sensibilidade de Sistemas Alg�ebricos Lineares : 14

1.4 F�ormula de Sherman-Morrison : : : : : : : : : : : : : : : 16

1.5 Exerc��cios : : : : : : : : : : : : : : : : : : : : : : : : : : 17

2 Ortogonalidade 23

2.1 O Problema de M��nimos Quadrados : : : : : : : : : : : : 23

2.2 Decomposi�c~ao QR : : : : : : : : : : : : : : : : : : : : : 26

2.2.1 QR com pivotamento de coluna : : : : : : : : : : 31

2.2.2 Decomposi�c~ao em Valores Singulares - DVS : : : 32

2.3 Exerc��cios : : : : : : : : : : : : : : : : : : : : : : : : : : 34

3 Autovalores 37

3.1 M�etodos de Potência : : : : : : : : : : : : : : : : : : : : 40

3.1.1 Itera�c~ao Inversa com Deslocamento : : : : : : : : 42

3.1.2 M�etodos de Itera�c~ao Simultânea : : : : : : : : : : 43
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Introdu�c~ao

A

�

Algebra Linear Computacional assume cada vez mais importância no

âmbito da Matem�atica Aplicada. Isso se deve principalmente ao desen-

volvimento da arquitetura de computadores que projeta m�aquinas com

processamento num�erico cada vez mais r�apido e mais preciso. Proble-

mas de grande porte, que envolvem grande armazenamento de dados

e intenso processamento num�erico, procuram na

�

Algebra Linear Com-

putacional o suporte te�orico para a sua resolu�c~ao e assim o estudo dessa

mat�eria se torna cada vez mais necess�aria e complexa. A sua conex~ao

com outras �areas da Matem�atica �e �as vezes surpreendente. Por exem-

plo, demonstra-se que o metodo QR converge para matrizes sim�etricas

em aritm�etica exata por 
uxo de matrizes. Esse m�etodo, que a cada

passo conjuga uma dada matriz por matrizes ortogonais e que no limi-

te tende a uma matriz diagonal, �e na realidade a avalia�c~ao em tempos

inteiros da solu�c~ao de uma equa�c~ao diferencial matricial.

Basicamente, a

�

Algebra Linear Computacional se envolve com dois

problemas: a resolu�c~ao de sistemas lineares e o c�alculo de autovalo-

res e autovetores de uma matriz, procurando dar a esses problemas

uma resposta com o m�aximo de precis~ao em um tempo m��nimo de

computa�c~ao. Em aritm�etica de ponto 
utuante, os truncamentos e os

arredondamentos nas opera�c~oes alg�ebricas podem resultar em respostas

muito diferentes das respostas em aritm�etica exata. Otimizar o n�umero

de opera�c~oes alg�ebricas �e, por isso, uma preocupa�c~ao constante na hora

de se propor uma solu�c~ao para um determinado problema. A Trans-

formada de Fourier R�apida (FFT) �e um exemplo de um algoritmo de
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multiplica�c~ao de matriz por vetor que utiliza

n

2

2

log

2

n multiplica�c~oes em

vez das n

3

usuais. Isso se torna poss��vel pelas propriedades intr��nsecas

da matriz de Fourier. A diferen�ca se traduz num resultado mais preciso

e obtido mais rapidamente.

Os cap��tulos a seguir estao divididos da seguinte forma: no primeiro

cap��tulo, aborda-se a resolu�c~ao de sistemas lineares, cujas matrizes de

coe�cientes s~ao invers��veis, por decomposi�c~ao PLU. No segundo cap��-

tulo, sistemas lineares determinados e indeterminados s~ao formulados

como um problema de m��nimos quadrados (por exemplo, os proble-

mas de ajuste linear de dados). Para resolvê-lo, ent~ao, estudamos mais

duas decomposi�c~oes de matriz: QR e DVS (decomposi�c~ao em valores

singulares). No terceiro cap��tulo, estudam-se alguns m�etodos computa-

cionais para calcular autovalores de uma matriz. Ao �nal de cada

cap��tulo h�a dois tipos de exerc��cios: os usuais (dedutivos ou constru-

tivos) e os computacionais. Estes foram elaborados para se utilizar o

MATLAB, sistema interativo no qual se processam algoritmos matri-

ciais (em alto n��vel). Para isso, incluiu-se uma pequena introdu�c~ao ao

MATLAB, com alguns comandos b�asicos, su�cientes para resolver os

exerc��cios propostos.



1

Decomposi�c~ao LU

1.1 Elimina�c~ao Gaussiana

O modelo mais simples e o mais utilizado em Matem�atica Aplicada �e

um sistema de equa�c~oes lineares. Nesse cap��tulo, discutiremos a reso-

lu�c~ao de sistemas lineares da forma Ax = b, em que A �e uma matriz

quadrada e invers��vel. Mais precisamente, focalizaremos nossa aten�c~ao

sobre a elimina�c~ao gaussiana e a �algebra matricial nela envolvida. Va-

mos come�car com o seguinte exemplo :

x+ y + z = 4

3x+ 2y + 2z = 10 (1.1)

2x� y + 3z = �2

O primeiro passo �e eliminar a vari�avel x das duas �ultimas equa�c~oes. O

pivô dessa opera�c~ao �e o coe�ciente de x na primeira equa�c~ao. Algebri-

camente, isso �e equivalente a

a) subtrair 3 vezes a primeira equa�c~ao da segunda ;

b) subtrair 2 vezes a primeira equa�c~ao da terceira.

Essas opera�c~oes elementares resultam no seguinte sistema

x+ y + z = 4

�y � z = �2 (1.2)

�3y + z = �10

5
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que �e equivalente ao anterior ( isto �e, ambos têm o mesmo conjunto de

solu�c~oes ). No pr�oximo passo, ignoremos a primeira equa�c~ao e consi-

deremos apenas as duas �ultimas equa�c~oes. O objetivo agora �e eliminar

a vari�avel y da �ultima equa�c~ao. Para isso, devemos subtrair dessa

equa�c~ao três vezes a segunda. O pivô �e o coe�ciente de y na segunda

equa�c~ao, (�1). Chegamos ent~ao ao seguinte sistema triangular:

x+ y + z = 4

�y � z = �2 (1.3)

4z = �4

que se resolve por retrossubstitui�c~ao. Ou seja, calcula-se o valor de z

na terceira equa�c~ao: z = -1. Substitui-se esse valor na segunda equa�c~ao

e ent~ao calcula-se o valor de y : y = 3. Finalmente, substituindo-se

esses valores na primeira equa�c~ao, obtemos x = 2.

Essa sistem�atica se generaliza para sistemas de n equa�c~oes lineares

com n vari�aveis: elimina-se uma vari�avel ap�os outra at�e que reste so-

mente uma vari�avel, x

n

. Resolve-se ent~ao esta vari�avel que, em seguida,

�e substitu��da na equa�c~ao anterior. Esse procedimento se repete assim

por diante at�e que �nalmente se resolve x

1

. Esse m�etodo de resolu�c~ao

de sistemas lineares, que �e conhecido como elimina�c~ao gaussiana, �e li-

mitado aos casos em que os pivôs s~ao n~ao nulos. Um exemplo no qual

o m�etodo falha �e o seguinte:

x+ 2y + z = 4

2x+ 4y � z = 11

5x + 2y + 3z = 6

Para eliminar a vari�avel x nas duas �ultimas equa�c~oes, subtrai-se da

segunda equa�c~ao duas vezes a primeira e da terceira, cinco vezes a

primeira. O resultado dessas opera�c~oes �e o seguinte sistema equivalente:

x+ 2y + z = 4

�3z = 3 (1.4)

�8y � 2z = �14

N~ao �e poss��vel eliminar a vari�avel y da terceira equa�c~ao subtraindo-se
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dela um m�ultiplo da segunda, pois o pivô �e zero. Contudo, esse proble-

ma se resolve simplesmente permutando-se as duas �ultimas equa�c~oes:

x+ 2y + z = 4

�8y � 2z = �14 (1.5)

�3z = 3

1.2 Matrizes

1.2.1 Matrizes Elementares

Sejam C e A duas matrizes tais que seja poss��vel o seu produto CA. As

linhas de CA s~ao combina�c~oes das linhas de A, como se pode ver no

seguinte exemplo :

(x y z )

0

B

@

a

11

a

12

a

13

a

21

a

22

a

23

a

31

a

32

a

33

1

C

A
=

= x ( a

11

a

12

a

13

) + y ( a

21

a

22

a

23

) + z ( a

31

a

32

a

33

) :

Por exemplo, o seguinte produto transforma a matriz de coe�cientes do

sistema 1.4 na matriz de coe�cientes do sistema 1.5 :

0

B

@

1 0 0

0 0 1

0 1 0

1

C

A

0

B

@

1 2 1 4

0 0 �3 3

0 �8 �2 �14

1

C

A

=

0

B

@

1 2 1 4

0 �8 �2 �14

0 0 �3 3

1

C

A

:

A matriz que multiplicou a matriz de coe�cientes do sistema 1.4, �a

esquerda, �e uma matriz de permuta�c~ao. Em geral, uma matriz de per-

muta�c~ao �e qualquer matriz cujas linhas s~ao os vetores da base canônica

em alguma ordem. Elas ser~ao vistas novamente na pr�oxima se�c~ao. Ou-

tro exemplo de produto de matrizes �e o que transforma o sistema 1.1

no sistema 1.2 :

0

B

@

1 0 0

�3 1 0

�2 0 1

1

C

A

0

B

@

1 1 1 4

3 2 2 10

2 �1 3 �2

1

C

A

=

0

B

@

1 1 1 4

0 �1 �1 �2

0 �3 1 �10

1

C

A

:
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A transforma�c~ao operada no sistema 1.1 e que resultou no sistema 1.2 �e

composta de duas opera�c~oes elementares. Isso �e traduzido em matrizes

do seguinte modo: a matriz que multiplica a matriz das constantes

num�ericas do sistema 1.1 ( ver acima ) �e o produto de duas matrizes

elementares. Ou seja,

0

B

@

1 0 0

0 1 0

�2 0 1

1

C

A

0

B

@

1 0 0

�3 1 0

0 0 1

1

C

A
=

0

B

@

1 0 0

�3 1 0

�2 0 1

1

C

A

Matrizes elementares s~ao matrizes que multiplicadas �a esquerda de uma

matriz A resultam em opera�c~oes elementares nas linhas da matriz A.

S~ao de três tipos:

� diagonal, que equivale a multiplicar uma linha por um n�umero;

� de permuta�c~ao, que equivale a permutar duas linhas;

� do tipo E

ij

= I + k

ij

e

i

e

T

j

, onde e

i

�e a matriz nx1 correspondente

ao i-�esimo vetor da base canônica do R

n

, que equivale a somar �a

linha i um m�ultiplo da linha j.

Exerc��cio 1 Calcule a inversa de uma matriz elementar e veri-

�que que �e tamb�em uma matriz elementar.

Exerc��cio 2 Mostre que, �xada uma coluna j, quaisquer que se-

jam as linhas i

1

; i

2

> j, E

i

1

j

E

i

2

j

= E

i

2

j

E

i

1

j

.

Exerc��cio 3 Mostre que se E

i

1

j

1

; E

i

2

j

2

s~ao matrizes elementares

triangulares inferiores ent~ao

E

i

1

j

1

E

i

2

j

2

= E

i

2

j

2

E

i

1

j

1

; se i

1

< i

2

e j

1

� j

2

.

Consideremos o sistema linear

Ax = b;

onde A �e uma matriz nxn e b �e uma matriz nx1. Seja [Ajb] a ma-

triz aumentada correspondente ao sistema. A elimina�c~ao gaussiana do
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ponto de vista matricial �e a seguinte multiplica�c~ao sucessiva de matrizes

elementares, triangulares inferiores :

E

n n�1

� � �E

ni

� � �E

i+1 i

� � �E

n1

� � �E

21

[Ajb] = [U j

^

b];

onde U �e triangular superior. O pivô do i-�esimo passo de elimina�c~ao �e

o elemento u

ii

, da diagonal de U. Isso obviamente se n~ao precisarmos

permutar linhas durante o processo.

Exerc��cio 4 Mostre que a elimina�c~ao gaussiana chega ao mesmo

resultado se computada de modo que a cada linha i s~ao

eliminadas as i� 1 primeiras vari�aveis, isto �e,

E

n1

� � �E

nn�1

� � �E

i1

� � �E

i i�1

� � �E

21

=

E

nn�1

� � �E

ni

� � �E

i+1 i

� � �E

n1

� � �E

21

:

Esse produto de matrizes que triangulariza A �e uma matriz triangu-

lar inferior, com todas as entradas na diagonal iguais a 1. Denotando-a

por L

�1

, temos que L

�1

A = U e assim

A = LU:

Observemos que

L = L

1

L

2

� � �L

n�1

;

em que L

j

= E

�1

j+1 j

� � �E

�1

nj

. Se E

ij

= I + k

ij

e

i

e

T

j

, temos que

L

j

= I �

n

X

i=j+1

k

ij

e

i

e

T

j

:

Logo,

L = I �

X

i>j

k

ij

e

i

e

T

j

:

A cada passo da elimina�c~ao gaussiana, para eliminar uma vari�avel de

uma equa�c~ao, subtra��mos dela um m�ultiplo da equa�c~ao pivô. L �e a

matriz triangular inferior formada por esses n�umeros e com todos os

elementos da diagonal iguais a 1.

Se a matriz A �e fatorada em LU, o sistema Ax = b �e agora equiva-

lente a dois sistemas triangulares: Lz = b e Ux = z. Observemos que L



10 1. DECOMPOSI �C

~

AO LU

cont�em a informa�c~ao de como A se transforma numa matriz triangular

superior por opera�c~oes elementares. Ao se resolver o sistema triangular

Lz = b, transformamos o vetor b no vetor z =

^

b, que �e a �ultima coluna

da matriz aumentada [U j

^

b] ap�os elimina�c~ao gaussiana em [Ajb].

Exerc��cio 5 Mostre que a inversa de uma matriz triangular infe-

rior (resp. superior) �e uma matriz triangular inferior (resp.

superior).

Exerc��cio 6 Mostre que o produto de matrizes triangulares in-

feriores (resp. superiores) �e uma matriz triangular inferior

(resp. superior).

1.2.2 Pivôs e determinantes

A decomposi�c~ao LU de uma matriz s�o �e poss��vel se os pivôs na elimi-

na�c~ao gaussiana forem n~ao nulos. Se A = LU ,

det(A) = det(L):det(U) = det(U):

Mais ainda, se denotarmos por A(1 : i; 1 : i) a matriz ixi formada pelas

entradas de A que est~ao ao mesmo tempo nas linhas e colunas de 1 a i

( submatriz principal de A de ordem i ), temos

detA(1 : i; 1 : i) = detU(1 : i; 1 : i) = u

11

� � � u

ii

Assim, u

11

= a

11

e para i > 1

u

ii

=

detA(1 : i; 1 : i)

detA(1 : i� 1; 1 : i� 1)

Temos ent~ao a seguinte proposi�c~ao:

Proposi�c~ao 1.1 Uma matriz invers��vel tem decomposi�c~ao LU, onde L

�e uma matriz triangular inferior com 1 na diagonal e U �e uma matriz

triangular superior, se e s�o se para todo i ( 1 � i � n )

detA(1 : i; 1 : i) 6= 0
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Exerc��cio 7 Mostre que a decomposi�c~ao LU, quando existe, �e

�unica. Ou seja, se A = L

1

U

1

= L

2

U

2

, L

1

; L

2

s~ao triangu-

lares inferiores com 1 na diagonal e U

1

; U

2

s~ao triangulares

superiores ent~ao L

1

= L

2

e U

1

= U

2

.

Exerc��cio 8 Mostre que podemos escrever de modo �unico A =

LD

~

U , onde D �e uma matriz diagonal, L e

~

U s~ao matrizes

triangulares respectivamente inferior e superior, com todos

as entradas diagonais iguais a 1.

Exerc��cio 9 Use a unicidade da decomposi�c~ao LU para mostrar

que a fatora�c~ao LDU de uma matriz sim�etrica A (A = A

T

),

quando existe, �e da forma LDL

T

. Conclua ainda que a

fatora�c~ao LDU de uma matriz hermitiana A (A = A

H

, em

que A

H

�e a transposta conjugada de A), quando existe, �e

da forma LDL

H

.

Exerc��cio 10 Mostre que uma matriz real sim�etricaA �e positiva

de�nida

1

se e s�o se A = LDL

T

, com D positiva. Analoga-

mente, uma matriz hermitiana A �e positiva de�nida

2

se e

s�o se A = LDL

H

, com D positiva.

Exerc��cio 11 Mostre que uma matriz real e sim�etrica (complexa

e hermitiana) A �e positiva de�nida se e s�o se A = LL

T

(A = LL

H

), em que L �e uma matriz triangular inferior

(decomposi�c~ao de Cholesky).

Exerc��cio 12 Considere uma matriz A 2 C

n�n

. Mostre que se

(8x 2 C

n

) (x 6= 0)x

H

Ax > 0 ent~ao A = A

H

.

1.2.3 Pivotamento - fatora�c~ao PLU

Vimos na se�c~ao anterior que uma matriz A invers��vel admite fatora�c~ao

LU se e s�o se para todo i a submatriz A(1:i,1:i) �e invers��vel. Esse �e o

1

Uma matriz real sim�etrica A 2 R

n�n

�e positiva de�nida se e s�o se para todo

x 2R

n

, x 6= 0, x

T

Ax > 0.

2

Uma matriz A 2 C

n�n

�e hermitiana positiva de�nida se e s�o se para todo

x 2 C

n

, x 6= 0, x

H

Ax > 0.
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caso das matrizes hermitianas positivas de�nidas, como tamb�em, o das

matrizes diagonal-dominantes. Fato �e que se uma matriz A �e invers��vel

existe uma permuta�c~ao de linhas que transforma A emumamatriz cujas

submatrizes principais s~ao todas invers��veis. A demonstra�c~ao desse fato

�e o algoritmo de elimina�c~ao gaussiana com permuta�c~ao :

� Se a

11

�e zero permuta-se a primeira linha com uma linha cujo

primeiro elemento seja n~ao nulo. Isso �e poss��vel, pois A �e n~ao

singular e, logo, n~ao possui coluna formada por zeros.

� Suponha que j�a foram eliminadas as i primeiras vari�aveis permu-

tando-se eventualmente as linhas buscando-se um pivô n~ao nulo.

A matriz de coe�cientes do sistema �e mais ou menos o seguinte :

0

B

B

B

B

B

B

B

B

B

@

u

11

� � � � � � � � �

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

u

ii

� � � � �

� � � � �

.

.

.

.

.

.

.

.

.

� � � � �

1

C

C

C

C

C

C

C

C

C

A

Essa matriz �e invers��vel, logo pelo menos uma das n-i �ultimas

linhas tem o elemento da coluna i+1 diferente de zero. Caso n~ao

seja a linha i+1, permuta-se ela com alguma n~ao nula.

Demonstramos acima a seguinte proposi�c~ao:

Proposi�c~ao 1.2 (Decomposi�c~ao PLU) Se A �e uma matriz inver-

s��vel ent~ao existe uma matriz de permuta�c~ao P, uma matriz triangular

inferior L com entradas diagonais iguais a 1 e uma matriz triangular

superior U tais que A = PLU.

Se a cada passo escolhêssemos o maior pivô poss��vel em valor abso-

luto, apenas permutando linhas, ter��amos o algoritmo que �e chamado

de pivotamento parcial. Na resolu�c~ao do sistema triangular Ux = z

(z = L

�1

b), h�a n opera�c~oes de divis~ao, que ocorrem quando dividimos

express~oes alg�ebricas pelos pivôs. O algoritmo de pivotamento parcial

procura pivôs grandes para otimizar o processamento num�erico, os er-

ros causados por arredondamento na divis~ao s~ao relativamente menores

quanto maior for o quociente.
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1.2.4 Matrizes Especiais

Uma fatora�c~ao resultante da fatora�c~ao LU �e a decomposi�c~ao LDU, em

que D �e a matriz diagonal formada pelos pivôs e U �e agora uma matriz

triangular superior com 1 na diagonal. As matrizes hermitianas se

decomp~oem ent~ao em LDL

H

e s~ao positivas de�nidas se e somente se

D > 0 ( exerc��cios 9 e 10 ). Nesse caso, A = LDL

H

= L

p

D

p

DL

H

=

PP

H

. A decomposi�c~ao de uma matriz hermitiana positiva de�nida na

forma A = PP

H

, onde P �e triangular inferior, �e chamada de fatora�c~ao

de Cholesky.

Exerc��cio 13 Mostre que se uma matriz A �e hermitiana, diago-

nal estritamente dominante ( 8i ja

ii

j >

P

j 6=i

ja

ij

j ) e, para

todo i, a

ii

> 0 ent~ao A �e positiva de�nida.

Um fato interessante �e que a decomposi�c~ao LDU de matrizes de

banda ( quando existem ) preserva bandas. Por exemplo, os fatores

triangulares L e U de uma matriz tridiagonal s~ao bidiagonais, de uma

pentadiagonal, tridiagonais, e assim por diante.

A An�alise Num�erica gerou uma outra classe de matrizes n~ao sin-

gulares, que s~ao sens��veis no que diz respeito a solu�c~ao de sistemas

lineares a pequenas perturba�c~oes do vetor independente b e que, em

geral, resistem a invers~ao por algoritmos tipo LU

3

- as matrizes mal

condicionadas. Um exemplo interessante �e o seguinte [2]:

u + v = 2

u + 1:0001v = 2

e

u + v = 2

u + 1:0001v = 2:0001

A solu�c~ao do primeiro sistema �e u = 2; v = 0; a solu�c~ao do segundo,

u = v = 1. A varia�c~ao relativa do vetor independente do primeiro para

o segundo sistema foi

jj�bjj

jjbjj

=

p

2

4

10

�4

;

a varia�c~ao relativa da solu�c~ao,

jj�xjj

jjxjj

=

p

2

2

:

3

Os m�etodos de resolu�c~ao de sistemas alg�ebricos lineares baseados em alguma

fatora�c~ao da matriz de coe�cientes do sistema, que d~ao a solu�c~ao em um n�umero

�nito de passos, s~ao chamados em geral de m�etodos diretos
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Ou seja, a varia�c~ao do vetor independente foi ampli�cada 20000 vezes !

1.3 Condi�c~ao de uma Matriz

Dado p � 1, a p-norma de um vetor de C

n

�e de�nida por

kxk

p

= (jx

1

j

p

+ � � �+ jx

n

j

p

)

1

p

:

Dois exemplos de p-normas s~ao

kxk

2

= (jx

1

j

2

+ � � �+ jx

n

j

2

)

1

2

= (x

H

x)

1

2

e

kxk

1

= max

1�i�n

jx

i

j:

As p-normas podem ser estendidas �as matrizes do seguinte modo:

kAk

p

= max

x6=0

kAxk

p

kxk

p

:

As p-normas satisfazem a seguinte propriedade (al�em obviamente das

que de�nem uma norma num espa�co vetorial):

kAxk

p

� kAk

p

kxk

p

:

A 2-norma satisfaz ainda mais uma:

kABk

2

� kAk

2

kBk

2

; (1:6)

quaisquer que sejam as matrizes A 2 C

m�n

, B 2 C

n�r

.

1.3.1 A Sensibilidade de Sistemas Alg�ebricos Li-

neares

Consideremos os sistemas

Ax = b e A(x+�x) = b+�b:

Logo, A�x = �b. Ou seja, �x = A

�1

�b. Passando �a norma,

kbk � kAk kxk e k�xk � kA

�1

k k�bk:
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Logo,

k�xk

kxk

� kAk kA

�1

k

k�bk

k�bk

= �(A)

k�bk

k�bk

: (1:7)

Dizemos que

�(A) = kAk kA

�1

k

�e o n�umero de condi�c~ao da matriz A, que �e sempre maior ou igual a

1. Quanto maior �(A), maior pode ser o erro relativo na solu�c~ao do

sistema, mais mal condicionada �e a matriz A.

Se perturbarmos a matriz A no lugar de b,

(A+�A)(x+�x) = b;

obtemos se Ax = b

�x = �A

�1

�A (x+�x):

Passando �a 2-norma ( ou qualquer norma que satisfaz (1.6) ),

k�xk � kA

�1

k k�Ak kx+�xk;

ou seja,

k�xk

kx+�xk

� kA

�1

k k�Ak = �(A)

k�Ak

kAk

: (1:8)

As desigualdades (1.7) e (1.8) revelam que os erros de arredondamento

têm duas fontes: a sensibilidade do problema, que tem o n�umero de

condi�c~ao como uma medida, e os erros �b e �A. Esses erros s~ao cometi-

dos, por exemplo, na fatora�c~ao LU em aritm�etica de ponto 
utuante,

em que computamos na verdade A+�A =

^

L

^

U (e n~ao A = LU), e na

resolu�c~ao dos sistemas triangulares, onde computamos x̂ = x+�x tal

que Ax̂ = b+�b. Uma classe de matrizes mal condicionadas (n�umero

de condi�c~ao grande) �e a das matrizes de Hilbert, cujas entradas s~ao

de�nidas por a

ij

= 1=(i + j � 1) (ver MATLAB-exerc��cios na pr�oxima

se�c~ao).
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1.4 F�ormula de Sherman-Morrison

Suponhamos que A 2 R

n�n

�e invers��vel. Sejam u e v dois vetores tais

que v

T

A

�1

u 6= �1. Ent~ao

(A+ uv

T

)

�1

= A

�1

�

A

�1

uv

T

A

�1

1 + v

T

A

�1

u

:

Essa �e a f�ormula de Sherman-Morrison para invers~ao de perturba�c~oes

de posto 1 de uma matriz A. Essa f�ormula se generaliza se U 2 R

n�p

e

V 2 R

p�n

:

(A+ UV

T

)

�1

= A

�1

�A

�1

U(I + V

T

A

�1

U)

�1

V

T

A

�1

:

Perturba�c~oes de posto p de matrizes facilmente invers��veis s~ao muito

frequentes. Um exemplo cl�assico �e a matriz resultante da discretiza�c~ao

da equa�c~ao

�

d

2

u

dx

2

= f(x)

em que u �e peri�odica:

A =

0

B

B

B

@

2 �1 0 �1

�1 2 �1 0

0 �1 2 �1

�1 0 �1 2

1

C

C

C

A

:

Umexemplo de perturba�c~ao de posto 1 �e o de umamatriz que �e diagonal

em blocos a menos de uma coluna, que representa a comunica�c~ao de

um dos blocos com todos os outros. Isso �e o que acontece, por exemplo,

na gera�c~ao de energia em usinas hidrel�etricas: a velocidade (angular)

de cada m�aquina s��ncrona pode ser formulada tomando-se uma delas

como referência. Assim, na coluna associada a velocidade angular dessa

m�aquina aparecer~ao elementos n~ao nulos, nas linhas correspondentes �a

varia�c~ao de velocidade angular das outras m�aquinas. Outro exemplo

(dram�atico) �e o de uma matriz que, a menos de uma entrada n~ao nula,

�e triangular superior (ver exerc��cio 11 da pr�oxima se�c~ao).

Exerc��cio 14 Veri�que a f�ormula de Sherman-Morrison.
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1.5 Exerc��cios

Os exerc��cios seguintes foram especialmente elaborados para o sistema

iterativo MATLAB. A descri�c~ao detalhada dos comandos desse sistema

pode ser encontrado em The MATLAB User's Guide[1] ou mais sucin-

tamente no pr�oprio on-line help (�e s�o digitar help comando). A seguir

algumas dicas.

� Matrizes s~ao de�nidas por

A = [a

11

� � � a

1n

; a

21

� � � a

2n

; � � � ; a

m1

� � � a

mn

]

Por exemplo, se eu digito

A = [1 2 ; 1 � 1]

MATLAB me responde:

A =

�

1 2

1 �1

�

� Se n~ao se quer eco na tela, deve se por ponto e v��rgula ao �nal do

comando. Nesse caso, no exemplo acima, digitar-se-ia

A = [1 2 ; 1 � 1];

� O comando

B = A;

de�ne a matriz B como sendo igual a A. A matriz A n~ao se perde.

� MATLAB gera matrizes mxn com n�umeros randômicos atrav�es

dos comandos

A = rand(m;n)

ou, no caso de uma matriz nxn,

A = rand(n)

� A matriz identidade �e gerada por

eye(n)
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� Eis algumas matrizes especiais de�nidas por comandos MATLAB:

compan companheira

diag diagonal

gallery exemplos

hadamard Hadamard

hankel Hankel

hilb Hilbert

invhilb inversa de Hilbert

magic quadrado m�agico

pascal triângulo de Pascal

toeplitz Toeplitz

vander Vandermonde

Para saber como de�nir um quadrado m�agico, por exemplo, digite

help magic.

� A transposta conjugada de uma matriz A pode ser de�nida pelo

comando

B = A

0

e o produto de matrizes A e B,

C = A �B

Por exemplo, se x �e um vetor de n coordenadas (uma matriz nx1)

ent~ao

A = x � x

0

�e uma matriz nxn de posto 1.

� Se for necess�ario continuar o comando na linha seguinte, digite

dois pontos um ao lado do outro ( .. ) para se interpretar como

uma continua�c~ao.

� Subtrair 3 vezes a primeira linha de A da segunda linha de A �e

traduzido pelo comando

A(2; :) = A(2; :)� 3 �A(1; :)

A matriz A �e modi�cada. Se se digitar A, aparecer�a a matriz

resultante da opera�c~ao elementar acima.
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� Em geral, se se quer alterar ou destacar uma submatriz de uma

matriz A, os seguintes comandos s~ao poss��veis.

{ A(:,2) = eye(:,4) faz com que a segunda coluna de A

seja substitu��da pelo quarto vetor da base canônica;

{ B = A(2:3,3:5) de�ne a matriz formada pelos ele-

mentos que est~ao ao mesmo tempo nas linhas 2 e 3

e nas colunas 3,4 e 5;

{ A([1 3],[2 4]) = [ 0 1; -1 2 ] de�ne A

12

= 0, A

14

= 1,

A

32

= �1 e A

34

= 2.

Um exemplo �e a programa�c~ao de uma rota�c~ao de Givens:

J = eye(n)

J([i j]; [i j]) = [cos(�) sen(�); �sen(�) cos(�)]

� Se se quer trabalhar com complexos, de�ne-se por comando i =

sqrt(�1); e ent~ao durante toda a sess~ao, se n~ao for rede�nido, i

ser�a

p

�1.

� Se se quer saber o n�umero de 
ops de uma sequência de oper-

a�c~oes, digita-se 
ops(0) logo antes da sequência se iniciar, para

zerar o contador. Ap�os a sequência, digita-se ent~ao 
ops. Para

n�umeros reais, cada opera�c~ao aritm�etica equivale a um 
op. Para

complexos, somas e subtra�c~oes equivalem a dois 
ops enquanto

multiplica�c~oes e divis~oes, seis 
ops.

� A vari�avel eps �e a precis~ao da m�aquina, o menor n�umero positivo

tal que 1 + eps > 1. Digita eps que MATLAB te dar�a esse

n�umero.

Matlab 1 1. Gere uma matriz A, 3x3, randômica, e compute

passo a passo as opera�c~oes elementares para triangu-

lariz�a-la ( U = A, U(2; :) = U(2; :)� U(2; 1)=U(1; 1) �

U(1; :) etc ).

2. Construa as matrizes elementares E, F e G correspon-

dentes �as opera�c~oes acima.

3. Fa�ca o produto G*F*E*A e compare com U acima.
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4. Para i > 1, calcule det(A(1:i,1:i)) / det(A(1:i-1,1:i-1))

e compare com U

ii

.

Matlab 2 Gere uma matriz real 4x4, diagonal dominante, e ache

sua decomposi�c~ao LDU.

Matlab 3 Gere uma matriz tridiagonal sim�etrica positiva de�ni-

da e encontre sua fatora�c~ao de Cholesky ( comando L =

chol(A) ).

Matlab 4 O comando [L,U] = lu(A) n~ao gera a "verdadeira" fa-

tora�c~ao LU de A. O algoritmo de pivotamento parcial cal-

cula a decomposi�c~ao PA =

^

L

^

U , enquanto MATLAB gera

uma decomposi�c~ao LU, onde

L = P

T

�

^

L e U =

^

U:

Se for dado o comando [L,U,P] = lu(a), MATLAB exibe a

matriz P. Use-o para computar os fatores P, L e U de uma

matriz de Toeplitz (o comando A = Toeplitz(c,r) gera uma

matriz tal que a

ij

= c

i�j+1

, se i � j, e a

ij

= r

j�i+1

, se

i < j).

Matlab 5 Se b �e um vetor, o comando x = Anb calcula a solu�c~ao

x do sistema Ax = b por elimina�c~ao gaussiana com pivota-

mento parcial. Fa�ca alguns testes com a matriz do exerc��cio

anterior.

Matlab 6 De modo geral, se B �e uma matriz n� p, o comando

X = AnB

calcula a solu�c~ao X do sistema AX = B por elimina�c~ao

gaussiana com pivotamento parcial. Inverta matrizes de

Hilbert por esse comando. Compare com as inversas das

matrizes de Hilbert dadas pelo comando invhilb.

Matlab 7 O comando inv(A) inverte uma matriz quadrada A,

por elimina�c~ao gaussiana com pivotamento parcial, com-

putando primeiro inv(L) e inv(U): inv(A) = inv(U) �
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inv(L). Inverta matrizes de Hilbert com esse comando e

compare os resultados com os obtidos no exerc��cio anterior,

com o comando Aneye(n).

Matlab 8 Pode-se de�nir uma matriz por um programa. Exem-

plo:

for i = 1:n

for j = 1:n

A(i,j) = 1/(i+j+1);

end

end

Fa�ca n = 5 e gere uma matriz A como acima. Ache sua

decomposi�c~ao LU, sua inversa e seu determinante.

Matlab 9 O comando cond(A) computa o n�umero de condi�c~ao

da matriz A, segundo a 2-norma. Teste-o com matrizes de

Hilbert, por exemplo.

Matlab 10 Seja A a parte triangular superior de uma matriz de

Hilbert, por exemplo, 7 � 7 (comando A=triu(hilb(7))).

Compute A

�1

v, onde v �e o vetor cujas coordenadas s~ao

todas iguais a 1. Lembre-se que, para calcular A

�1

v, n~ao se

calculaA

�1

e, sim, resolve-seAx = v. Compare a `
opagem'

de A

�1

� v com a de Anv.

Matlab 11 Seja B igual a A, a matriz do exerc��cio anterior, a

menos da entrada (7; 1): B(7; 1) = 1=3. Resolva Bx = v,

onde v �e o mesmo vetor do exerc��cio acima, por elimina�c~ao

gaussiana. Depois resolva a mesma equa�c~ao usando a f�or-

mula de Sherman-Morrison. Compare as `
opagens' dos

dois processos.
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2

Ortogonalidade

Nesse cap��tulo, discutiremos a solu�c~ao de equa�c~oes do tipo Ax = b,

em que A 2 C

m�n

, uma matriz n~ao necessariamente quadrada, e b �e

um vetor que pode n~ao pertencer ao espa�co coluna de A. A fatora�c~ao

triangular ainda �e v�alida para matrizes retangulares:

Proposi�c~ao 2.3 Se A 2 C

m�n

, existe uma matriz de permuta�c~ao P ,

uma matriz quadrada triangular inferior L e uma matriz retangular

triangular superior

1

U tais que PA = LU .

Entretanto, abordaremos aqui o problema de resolver sistemas li-

neares de outra forma, como um problema de minimiza�c~ao de uma

forma quadr�atica, o que d�a origem a uma outra fatora�c~ao de matriz -

a fatora�c~ao QR.

2.1 O Problema de M��nimos Quadrados

Um sistema de equa�c~oes lineares do tipo

Ax = b;

onde A �e uma matriz real m � n, pode ter a seguinte interpreta�c~ao:

de que modo o vetor b pertence ao espa�co coluna da matriz A, isto

1

Nesse cap��tulo, uma matriz triangular superior ( ou inferior ) M �e uma matriz

tal que M

ij

= 0 se i > j ( i < j ); uma matriz diagonal, uma matriz triangular ao

mesmo tempo superior e inferior.

23
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�e, que combina�c~ao linear dos vetores-coluna de A resulta no vetor b ?

Por

�

Algebra Linear, sabemos ent~ao que esse sistema �e poss��vel se e s�o

se o vetor b pertence ao espa�co coluna de A. Al�em disso, o sistema

ser�a determinado se e s�o se esses vetores-coluna s~ao linearmente in-

dependentes. Um outro modo ainda de se resolver o sistema acima �e

minimizando-se a forma quadr�atica

E

2

(x) = kAx� bk

2

2

:

Se o sistema for imposs��vel ainda assim poderemos encontrar um vetor

x tal que a sua imagem por A, p = Ax, seja a mais pr�oxima poss��vel

de b. Geometricamente, o vetor p corresponde �a proje�c~ao ortogonal

do vetor b sobre o espa�co-coluna da matriz A. Denotaremos por x

mq

o

vetor cuja imagem �e p e tem norma euclidiana m��nima - a solu�c~ao de

m��nimos quadrados. Se o posto da matriz A for n, veri�ca-se que

� x

mq

= (A

T

A)

�1

A

T

b;

� p = A(A

T

A)

�1

A

T

b.

Exerc��cio 1 Mostre que E

2

(x) = kAx � bk

2

2

tem um m��nimo

absoluto e veri�que que E(x) �e m��nimo absoluto se e s�o se

A

T

Ax = A

T

b.

Exerc��cio 2 Seja M = fkxk

2

jE(x) �e m��nimog. Mostre que M

tem um �unico m��nimo.

Exerc��cio 3 Mostre que as colunas de uma matriz A s~ao linear-

mente independentes se e s�o se A

T

A �e invers��vel.

Exerc��cio 4 Mostre que um operador linear P �e uma proje�c~ao

sobre um subespa�co vetorial se e s�o se P �e sim�etrica e P

2

=

P . Veri�que que P = A(A

T

A)

�1

A

T

�e uma proje�c~ao.

Achar p �e uma tarefa simples se conhecemos uma base ortonormal

do espa�co-coluna de A: p �e a soma das proje�c~oes ortogonais de b sobre

cada vetor da base. Em termos matriciais, se Q �e a matriz cujas colunas

s~ao os vetores daquela base ortonormal,

p = QQ

T

b:
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Se as colunas da matrizA s~ao linearmente independentes, x

mq

�e a �unica

solu�c~ao de Ax = p. Calcular x

mq

se torna um problema simples, basta

fatorar A como um produto QR, onde Q �e uma matriz com os vetores-

coluna ortonormais e R, triangular inferior invers��vel. O sistemaAx = p

�e equivalente ent~ao a QRx = QQ

T

b, ou seja,

Rx = Q

T

b:

Exerc��cio 5 Ajuste de Dados por M��nimos Quadrados

O problema de se aproximar uma fun�c~ao por um polinômio

tem sentido como um problema de m��nimos quadrados. Por

exemplo, para ajustar os seguintes dados,

y = 2 em t = 1; y = 1 em t = 2 e y = 3 em t = 3;

por uma fun�c~ao do tipo y = c + dt, resolve-se por m��nimos

quadrados o seguinte sistema

8

>

<

>

:

c+ d:1 = 2

c+ d:2 = 1

c+ d:3 = 3

Exerc��cio 5 .1 Qual �e a reta que melhor ajusta os se-

guintes dados:

y = 2 em t = -1, y = 0 em t = 0,

y = -3 em t = 1, y = -5 em t = 2 ?

Exerc��cio 5 .2 Qual �e a par�abola que melhor ajusta

os seguintes dados:

y = 2 em t = -1, y = 0 em t = 0,

y = 2 em t = 2, y = 6 em t = 3 ?

Exerc��cio 5 .3 A tabela abaixo fornece dados expe-

rimentais obtidos com machos albinos de til�apia

do Nilo pelo Centro de Pesquisas Ictiol�ogicas de

Pentecostes (CE):
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tempo t comprimento m�edio

(mês) (cm)

0 11.0

1 15.0

2 17.4

3 20.5

4 22.7

5 25.3

6 27.4

7 28.0

8 29.3

Encontre a fun�c~ao linear que melhor ajusta esses

dados.

2

Exerc��cio 6 Qual a fun�c~ao da forma y = ax

2

+ bx + c; a 6= 0,

mais pr�oxima de y = cos x, em [�

�

2

;

�

2

] ?

( k f � g k=

r

R

�

2

�

�

2

(f � g)

2

(x)dx )

2.2 Decomposi�c~ao QR

Se as colunas de uma matrizA s~ao linearmente independentes podemos

ortonormaliz�a-las pelo m�etodo de Gram-Schmidt.

Exemplo: Consideremos a matriz

A =

0

B

@

1 1

1 2

1 1

1

C

A

= ( v

1

v

2

) :

Por Gram-Schmidt,

q

1

=

v

1

kv

1

k

q

2

=

v

2

� q

1

(v

T

2

q

1

)

kv

2

� q

1

(v

T

2

q

1

)k

;

2

Exerc��cio do livro Equa�c~oes Diferenciais com Aplica�c~oes, de Bassanezi e Ferreira

Jr.
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ou seja,

v

1

=

p

3 q

1

v

2

=

4

p

3

q

1

+

p

6

3

q

2

:

Em nota�c~ao matricial,

0

B

@

1 1

1 2

1 1

1

C

A

=

0

B

B

B

@

1

p

3

�

p

6

6

1

p

3

p

6

3

1

p

3

�

p

6

6

1

C

C

C

A

 

p

3

4

p

3

0

p

6

3

!

De modo geral, se A �e uma matriz m � n, de posto 1 � r � n,

pode-se ortonormalizar r colunas de A por Gram-Schmidt de tal modo

que AP = QR, em que P �e uma matriz de permuta�c~ao n�n, Q �e uma

matriz m � r com colunas ortonormais e R �e uma matriz retangular

rxn tal que R

ij

= 0, se i > j. Se r < n, h�a v�arias solu�c~oes para o

problema de m��nimos quadrados e a determina�c~ao da solu�c~ao x

mq

�e

mais complicada (exerc��cio 11).

A implementa�c~ao computacional do m�etodo de ortogonaliza�c~ao de

Gram-Schmidt pode ser feita de dois modos equivalentes em aritm�etica

exata, mas com resultados diferentes computacionalmente, em arit-

m�etica de ponto 
utuante, que �e como chamamos a matem�atica do pro-

cessamento num�erico de uma m�aquina. O primeiro, chamado de Gram-

Schmidt Cl�assico, �e o procedimento utilizado para ortonormalizar bases

nos cursos usuais de

�

Algebra Linear. O segundo, o Gram-Schmidt

Modi�cado, �e uma reorganiza�c~ao dos c�alculos do primeiro, que tem se

mostrado mais e�ciente que o Gram-Schmidt Cl�assico no que diz re-

speito �a ortogonalidade dos vetores computados. A seguir s~ao descritos

os dois algoritmos, que decomp~oem uma matrizA, cujos vetores-coluna

s~ao denotados por v

i

, i = 1; : : : ; n, no produto QR. O segundo algo-

ritmo sobrep~oe a matriz Q �a matriz A.

1. Gram-Schmidt Cl�assico

Para k = 1

q

1

:=

v

1

kv

1

k

Para k = 2; : : : ; n
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s

ik

:= q

H

i

v

k

(i = 1; : : : ; k � 1)

w

k

:= v

k

�

P

k�1

i=1

s

ik

q

i

r

kk

:=

q

w

H

k

w

k

q

k

:= w

k

=r

kk

r

ik

:= s

ik

=r

kk

(i = 1; : : : ; k � 1)

2. Gram-Schmidt Modi�cado

Para k = 1; : : : ; n

r

kk

:=

q

v

H

k

v

k

v

k

:= v

k

=r

kk

Para j = k + 1; : : : ; n

r

kj

:= v

H

k

v

j

v

j

:= v

j

� r

kj

v

k

Exerc��cio 7 Fa�ca o seguinte teste dos dois algoritmos GS acima:

seja a matriz diagonal D, 20 � 20, formada pelos n�umeros

de 1 a 20, nessa ordem. A seguir, partindo do vetor v

T

0

=

(1 : : : 1), calcule

v

i

=

Dv

i�1

kDv

i�1

k

; i = 1; : : : ; 20:

Compute os fatores QR da matriz A, cujos vetores-coluna

s~ao os v

0

i

s acima. Para cada m�etodo, compute tamb�em os

produtos internos entre os vetores q

0

i

s.

Vimos acima como decompor uma matriz A, m � n, de posto n, em

um produto QR, onde Q tem colunas ortonormais e R �e triangular

superior. No caso em que a matriz A tem posto r < n, ainda assim

pode-se fator�a-la como A = QRP

T

, onde P �e de permuta�c~ao. Por�em,

o que usualmente chamamos de decomposi�c~ao QR de uma matriz �e o

produto de uma matriz ortogonal (unit�aria) Q por uma matriz R, tal

que r

ij

= 0 se i > j.

Uma matriz ortogonal (unit�aria) �e uma matriz real (complexa) qua-

drada tal que todas as suas colunas s~ao ortonormais. Poder��amos

completar os vetores ortonormais dados por Gram-Schmidt at�e formar
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uma base do R

m

, mas tem um modo de decompor uma matriz A muito

mais preciso no que diz respeito a ortogonalidade: Householder. Esse

m�etodo aplica transforma�c~oes unit�arias seguidamente na matriz A at�e

que todos os elementos abaixo da diagonal principal (linha = coluna)

se anulem.

O sucesso desse m�etodo se sustenta no fato de que essas trans-

forma�c~oes unit�arias, chamadas de transforma�c~oes de Householder, s~ao

muito simples. O m�etodo constr�oi passo a passo uma sequência de

matrizes unit�arias

Q

1

; : : : ; Q

n�1

tais que

Q

1

A =

0

B

B

B

@

� � � � � �

0 � � � � �

.

.

.

.

.

.

.

.

.

.

.

.

0 � � � � �

1

C

C

C

A

Q

2

Q

1

A =

0

B

B

B

B

B

B

@

� � � � � � �

0 � � � � � �

0 0 � � � � �

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 0 � � � � �

1

C

C

C

C

C

C

A

Q

n�1

� � �Q

2

Q

1

A =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

� � � � � � �

0 � � � � � �

0 0 � � � � �

.

.

.

.

.

. 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

�

0 0 0 � � � 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 0 0 � � � 0

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

As �unicas condi�c~oes impostas sobre a natureza de Q

1

s~ao que ela seja

unit�aria e que leve o primeiro vetor-coluna de A, v

1

, em um m�ultiplo

do primeiro vetor da base canônica, e

1

. A simetria em rela�c~ao a um

hiperplano bissetor desses dois vetores satisfaz essas condi�c~oes e, mais

ainda, �e muito simples: �e uma perturba�c~ao de posto um da matriz

identidade, como veremos a seguir.
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Existem dois hiperplanos bissetores aos vetores v

1

e e

1

e para de-

terminar as duas transforma�c~oes correspondentes, H

1

e H

2

, basta cal-

cular a normal de cada hiperplano, n

1

e n

2

. Como s~ao unit�arias (logo,

kHvk = kvk),

H

1

(v

1

) = kv

1

ke

1

;

H

2

(v

1

) = �kv

1

ke

1

:

Logo, as duas normais s~ao

n

1

= v

1

�H

1

(v

1

) e n

2

= v

2

�H

2

(v

1

):

Um c�alculo simples resulta em

H

1

= I � 2

n

1

n

H

1

n

H

1

n

1

e H

2

= I � 2

n

2

n

H

2

n

H

2

n

2

:

Essas transforma�c~oes s~ao ditas de Householder. Agora, um crit�erio

pr�atico para a escolha de qual das duas transforma�c~oes ser�a Q

1

: aquela

que tiver o maior denominador na fra�c~ao acima ( que ocasionar�a menor

erro de arredondamento ). Ou seja, escolhe-se a transforma�c~ao de�nida

pela normal

n = v

1

+ sinal(e

T

1

v

1

)kv

1

ke

1

:

Continuando a sequência, Q

2

deve preservar a primeira coluna de Q

1

A,

al�em de satisfazer as condi�c~oes impostas sobre Q

1

. Para isso, basta que

Q

2

=

0

B

B

B

@

1 0 � � � 0

0

.

.

.

~

Q

2

0

1

C

C

C

A

e

~

Q

2

seja uma transforma�c~ao de Householder. Observemos que dessa

forma a dimens~ao do problema diminui a cada passo de obten�c~ao das

matrizes da sequência. Assim, obtemos a seguinte proposi�c~ao:

Proposi�c~ao 2.4 (Decomposi�c~ao QR) Seja A 2 C

m�n

, uma matriz

de posto n. Ent~ao existe uma �unica matriz unit�aria Q e uma �unica

matriz triangular superior R, (8i � n) R

ii

> 0, tal que A = QR.
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Exerc��cio 8 Calcule a express~ao da transforma�c~ao de House-

holder e veri�que que ela �e ortogonal e sim�etrica ( unit�aria

e hermitiana, no caso complexo ).

Exerc��cio 9 Mostre que toda matriz unit�aria �e um produto de

matrizes de Householder.

Exerc��cio 10 Mostre que a matriz de Fourier F de�nida por

F

ij

=

1

p

n

!

(i�1)(j�1)

;

em que ! = e

2�i

n

(ou e

�

2�i

n

, como em MATLAB), �e unit�aria.

2.2.1 QR com pivotamento de coluna

Se a matriz A, m � n, �e de posto r < n, o algoritmo acima com

uma estrat�egia de pivotamento nos fornece uma decomposi�c~ao do tipo

AP = QR, em que P �e uma matriz de permuta�c~ao e

R =

�

R

11

R

12

0 0

�

;

com R

11

, r � r, triangular inferior. A estrat�egia �e a seguinte: suponha

que no passo k, k < r, temos

Q

k

� � �Q

1

AP

1

� � �P

k

= R

k

;

onde

R

k

=

 

R

(k)

11

R

(k)

12

0 R

(k)

22

!

;

R

(k)

11

, k � k, e

R

(k)

22

=

�

v

(k)

k+1

� � � v

(k)

n

�

:

Seja k + 1 � s � n tal que

kv

(k)

s

k = max

k+1�i�n

kv

(k)

i

k:
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Seja P

k+1

a matriz de permuta�c~ao que troca as colunas s e k+1. Agora,

�e s�o obter pelo algoritmo acima a matriz Q

k+1

. Ao �nal, temos que

para todo 1 � i � r, para todo i+ 1 � j � n,

r

2

ii

�

j

X

k=i

r

2

kj

:

2.2.2 Decomposi�c~ao em Valores Singulares - DVS

A decomposi�c~ao de uma matriz em valores singulares nos revela que

qualquer transforma�c~ao linear entre espa�cos vetoriais de dimens~ao �ni-

ta, analisada a partir de referenciais apropriados no dom��nio e no con-

tradom��nio, nada mais �e que uma transforma�c~ao diagonal n~ao negativa.

Proposi�c~ao 2.5 (Decomposi�c~ao em Valores Singulares) Se A 2

C

m�n

�e uma matriz de posto r > 0 ent~ao existem matrizes unit�arias

V 2 C

n�n

e U 2 C

m�m

tais que A = U�V

H

, onde � �e uma matriz

diagonal positiva, isto �e, �

11

� �22 � � � � � �rr > 0. Esses elementos

s~ao ditos os valores singulares de A.

A demonstra�c~ao �e a seguinte: seja �

1

= maxfkAvk ; kvk = 1g.

Sejam v

1

e u

1

tais que Av

1

= �

1

u

1

. Sejam V

1

e U

1

duas matrizes

unit�arias tais que suas primeiras colunas s~ao respectivamente v

1

e u

1

.

�

E f�acil veri�car que

U

H

1

AV

1

=

�

�

1

0

0 A

1

�

:

Repetindo o procedimento com a matrizA

1

e assim por diante, chega-se

na matriz �.

Exerc��cio 11 Seja A uma matriz m� n de posto r e

A = U�V

H

=

r

X

i=1

�

i

u

i

v

H

i

;

a sua decomposi�c~ao em valores singulares. Veri�que que

kAx� bk

2

2

=

r

X

i=1

(�

i

y

i

� u

H

i

b)

2

+

m

X

i=r+1

(u

H

i

b)

2

;
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em que y = V

H

x. Mostre que x �e uma solu�c~ao para o

problema de m��nimos quadrados se e s�o se

y

i

= u

H

i

b=�

i

; para i = 1; : : : ; r.

Conclua que x

mq

= V y �e a solu�c~ao de m��nimos quadrados se

y

i

= u

H

i

b=�

i

, para i = 1; : : : ; r e y

i

= 0, para i = r+1; : : : ; n.

Pelo exerc��cio acima,

x

mq

= V �

+

U

H

b;

em que �

+

�e a matriz diagonal tal que (8i � r) �

+

ii

= �

i

. A matriz

A

+

= V �

+

U

H

�e dita a pseudoinversa de A.

O problema de encontrar a DVS de uma matriz A �e n~ao linear, os

valores singulares s~ao as ra��zes quadradas dos autovalores n~ao nulos de

A

H

A ; V e U s~ao matrizes de autovetores ortonormais de A

H

A e AA

H

,

respectivamente. Por opera�c~oes lineares, chegamos no m�aximo a uma

decomposi�c~ao da forma

A = U�V

H

;

em que U e V s~ao unit�arias e � �e bidiagonal.

Se A = U�V

H

�e uma DVS da matriz A, temos que

kAk

2

= �

1

:

Se A �e invers��vel, o n�umero de condi�c~ao de A em rela�c~ao �a 2-norma �e

ent~ao

�

2

(A) =

�

1

�

n

:

Uma interpreta�c~ao geom�etrica para os valores singulares de uma matriz

de posto r �e a seguinte: o elips�oide dado pela equa�c~ao kAxk

2

= 1 tem os

eixos principais na dire�c~ao dos vetores coluna de V e os comprimentos

desses eixos s~ao 1=�

1

; : : : ; 1=�

r

. Para vermos isso, notemos que

x

H

A

H

Ax =

r

X

i=1

�

2

i

jy

i

j

2

;
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em que V y = x. Matrizes invers��veis mal condicionadas est~ao rela-

cionadas a elips�oides muito achatados. As matrizes unit�arias s~ao as que

têm melhor condicionamento, para essas matrizes o elips�oide acima �e

uma esfera.

No cap��tulo 1, vimos que a sensibilidade de um sistema linear Ax =

b, A invers��vel, era medida pela desigualdade

k�xk

kxk

� �(A)

k�bk

kbk

:

Se b est�a na dire�c~ao do �ultimo vetor coluna de V , b = �v

n

, e �b, na

dire�c~ao do primeiro vetor coluna de V , �b = �v

1

, temos pela DVS que

x = A

�1

b = �

n

�u

n

e �x = A

�1

�b = �

1

�u

1

:

Logo,

k�xk

kxk

=

�

1

�

n

�

�

= �

2

(A)

k�bk

kbk

:

Isso �e o pior que pode acontecer.

Exerc��cio 12 Dada uma matriz A 2 C

m�n

, mostre que existem

matrizes unit�arias U e V tais que

A = U�V

H

;

em que � �e bidiagonal (sugest~ao: multiplique os dois lados

de A por matrizes de Householder apropriadas).

Exerc��cio 13 (Decomposi�c~ao Polar) Seja A 2 C

n�n

. Mostre

que existe matriz unit�aria Q e matriz hermitiana n~ao nega-

tiva P tais que A = QP .

2.3 Exerc��cios

Matlab 1 O comando [Q;R;P ] = qr(A) computa a fatora�c~ao

QR com pivotamento de colunas de A. Teste-o com a matriz

A, 4 � 3, tal que A

ij

= i+ j.
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Matlab 2 Compute a decomposi�c~ao QR da matriz de Hilbert de

ordem 5 (comandos A = hilb(5) e [Q;R] = qr(A)).

Matlab 3 O comando [U;S; V ] = svd(A) computa a DSV de A.

Teste-o com as matrizes acima.

Matlab 4 O comando Q = orth(A) computa uma base ortonor-

mal para o espa�co coluna de A e o comando Q = null(A),

uma base ortonormal para o n�ucleo. Teste-os, pelo menos

com as matrizes acima.

Matlab 5 O comando B = pinv(A) computa a pseudoinversa

de A. Teste-o na matriz do primeiro exerc��cio acima.

Matlab 6 Ache o plano z = ax + by + c que melhor ajuste os

seguintes dados: z = 0 em x = y = 0, z = 1 no mesmo

ponto, e z = 1 em x = y = 1.

Matlab 7 Computar uma transforma�c~ao de Householder H tal

que Hx �e zero abaixo da sua primeira coordenada, em que

x �e uma matriz n � 1, �e feito em MATLAB a partir do

comando [H;R] = qr(x).

Tome uma matriz A real. Compute sua fatora�c~ao QR. Em

seguida, bidiagonalize R

T

por transforma�c~oes de House-

holder. Uma dica: para gerar uma matriz em blocos do

tipo

A =

�

I 0

0 H

�

;

onde I �e a matriz identidade r � r e H, uma matriz de

ordem n� r anteriormente de�nida, dê o comando

a = [eye(r)zeros(1;n� r); zeros(n� r;1)H]:

Seja P o produto dessas matrizes de Householder. Veri�que

que Q

T

AP

T

�e bidiagonal superior.
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3

Autovalores

Calcular autovalores de uma matrizA 2 C

n�n

�e equivalente a resolver o

problema n~ao linear de achar as ra��zes do seu polinômio caracter��stico,

det(A� �I) = 0:

Para cada raiz � dessa equa�c~ao, temos ent~ao que A� �I �e uma matriz

singular e o espa�co solu�c~ao do sistema homogêneo a ela associada, o

n�ucleo de A � �I, tem dimens~ao n~ao nula. Chamamos esse espa�co e

cada vetor n~ao nulo pertencente a ele de autoespa�co e de autovetor de

A, respectivamente, ambos associados ao autovalor �.

Exerc��cio 1 Ache os autovalores, e respectivos autoespa�cos, da

matriz

A =

�

2 �1

�1 2

�

:

Uma matriz �e diagonaliz�avel se existe uma matriz invers��vel P tal

que

AP = PD;

em que D �e diagonal.

�

E f�acil concluir que nesse caso as colunas de P

s~ao autovetores de A e que as entradas diagonais de D, os autovalores.

Exerc��cio 2 Mostre que se A �e uma matriz quadrada ent~ao ex-

iste matriz P tal que AP = PD, D diagonal, se e s�o se as

colunas de P s~ao autovetores de A. Conclua ent~ao que A �e

diagonaliz�avel se e s�o se existe uma matriz P cujos vetores

coluna s~ao uma base de autovetores de A.

37
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A seguir um exemplo da utiliza�c~ao de autovalores: considere a se-

quência de Fibonacci

x

0

= 0; x

1

= 1 e, para k > 1, x

k

= x

k�1

+ x

k�2

:

Em termos matriciais, para k � 1,

�

x

k

x

k+1

�

=

�

0 1

1 1

��

x

k�1

x

k

�

=

�

0 1

1 1

�

k

�

x

0

x

1

�

;

ou seja, u

k

= A

k

u

0

. Os autovalores de A s~ao

�

1

=

1 +

p

5

2

e �

2

=

1 �

p

5

2

;

(1; �

1

) e (1; �

2

) s~ao dois autovetores de A associados respectivamente a

�

1

e a �

2

. Assim,

A = SDS

�1

;

onde

S =

�

1 1

�

1

�

2

�

e D =

�

�

1

0

0 �

2

�

:

Logo, u

k

= SD

k

S

�1

u

0

e, como

S

�1

u

0

=

�

1 1

�

1

�

2

�

�1

�

0

1

�

=

 

1

�

1

��

2

1

�

2

��

1

!

;

u

k

=

1

�

1

� �

2

�

�

k

1

� �

k

2

�

k+1

1

� �

k+1

2

�

:

Assim,

x

k

=

�

k

1

� �

k

2

�

1

� �

2

=

1

p

5

2

4

 

1 +

p

5

2

!

k

�

 

1�

p

5

2

!

k

3

5

:

Agora, para todo k,

j�

2

j

k

p

5

< 0:5. Conclu��mos ent~ao que x

k

�e o inteiro

mais pr�oximo de

�

k

1

p

5

.

Como calcular os autovalores de uma matriz? Computar o seu

polinômio caracter��stico implica em muitas opera�c~oes num�ericas, oca-

sionando muitos erros de arredondamento. Uma vez computado, cal-

cular suas ra��zes deve ser feito por m�etodos iterativos, se a ordem da
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matriz for maior que 4, pois n~ao h�a formas fechadas de resolu�c~ao de

polinômios de grau � 5, conforme teoria de Galois. H�a outros m�etodos

para a computa�c~ao de autovalores que n~ao o c�alculo de ra��zes de um

polinômio, baseados em �algebra matricial. Dois deles se destacam na

literatura: um, os m�etodos de potência, que calculam alguns autoval-

ores; outro �e o m�etodo QR, que computa a forma de Schur da matriz.

Exerc��cio 3 Mostre o Teorema de Schur: (8A 2 C

n�n

) existe

uma matriz unit�aria Q tal que Q

H

AQ = T , em que T �e

triangular superior. (sugest~ao: princ��pio de indu�c~ao)

Exerc��cio 4 Mostre que se A �e uma matriz real e sim�etrica ent~ao

existe uma matriz ortogonal Q tal que Q

T

AQ �e diagonal.

Conclua ent~ao que os autovalores de uma matriz sim�etrica

s~ao reais e associados a eles existe uma base ortonormal do

R

n

de autovetores (sugest~ao: use o teorema de Schur).

Exerc��cio 5 Mostre que se T �e uma matriz triangular e T

H

T =

TT

H

, T �e diagonal. Conclua ent~ao que uma matriz A �e

normal (AA

H

= A

H

A) se e somente se existe uma base

ortonormal de C

n

de autovetores de A.

Exerc��cio 6 Mostre que se P �e invers��vel, A e P

�1

AP têm o

mesmo polinômio caracter��stico.

Exerc��cio 7 Mostre que se T �e uma matriz triangular (superior

ou inferior) e p(x) �e o seu polinômio caracter��stico, p(T ) = 0.

Conclua ent~ao, pelo teorema de Schur, que se A �e uma

matriz complexa e p

A

(x), o seu polinômio caracter��stico,

p

A

(A) = 0 (Teorema de Cayley-Hamilton).

Exerc��cio 8 O polinômio m��nimo de umamatrizA �e o polinômio

mônico de menor grau que se anula em A (logo, divide p

A

).

Mostre que se P �e invers��vel, as matrizes A e P

�1

AP têm

o mesmo polinômio m��nimo.

Uma consequência interessante do Teorema de Schur (exerc��cio 3)

�e a seguinte: os autovalores dependem continuamente das en-

tradas da matriz. Para provar, seja uma sequência fA

k

g de matrizes
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tais que A

k

! A, quando k ! 1. Seja A

k

= Q

k

T

k

Q

H

k

, onde Q

k

�e

unit�aria e T

k

, triangular superior. O grupo das matrizes unit�arias �e

compacto e, portanto, existe uma subsequência fQ

k

i

g de fQ

k

g tal que

Q

k

i

converge a uma matriz unit�aria Q. Assim,

lim

k!1

Q

H

k

A

k

Q

k

= lim

k

i

!1

Q

H

k

i

A

k

i

Q

k

i

= Q

H

AQ

Mas, 8kQ

H

k

A

k

Q

k

�e triangular superior e, assim, Q

H

AQ s�o pode ser tri-

angular superior. Conclus~ao: os autovalores de A

k

, que s~ao as entradas

diagonais de T

k

, convergem para os autovalores de A que est~ao, todos,

na diagonal de Q

H

AQ.

3.1 M�etodos de Potência

Vimos que na sequência de Fibonacci o autovalor

1+

p

5

2

�e dominante na

avalia�c~ao de um termo qualquer da sequência. Em geral, se fx

1

; : : : ; x

n

g

�e uma base de autovetores deA associados respectivamente a �

1

; : : : ; �

n

,

tais que

j�

1

j > j�

2

j � : : : � j�

n

j;

e

u

0

= c

1

x

1

+ : : :+ c

n

x

n

; c

1

6= 0;

temos que a sequência

u

k

= Au

k�1

;

quando k cresce, tende a um autovetor associado ao autovalor �

1

. Isso

porque

u

k

= A

k

u

0

= c

1

�

k

1

x

1

+ : : :+ c

n

�

k

n

x

n

=

= �

k

1

2

4

c

1

x

1

+ c

2

 

�

2

�

1

!

k

x

2

+ : : :+ c

n

 

�

n

�

1

!

k

x

n

3

5

e assim, quanto maior for k, menor a in
uência das dire�c~oes dos au-

tovetores x

2

; : : : ; x

n

em u

k

.

Agora, se j�

1

j >> 1 (ou j�

1

j << 1), kA

k

u

0

k pode ser muito grande

(ou muito pequeno). Para evitar erros de arredondamento, �e melhor

que se divida eventualmente (ou a cada passo) o vetor de itera�c~ao por

algum n�umero, por exemplo, a sua primeira coordenada. Melhor ainda
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dividir pela coordenada de maior valor absoluto. Dados A e u

0

como

acima, o algoritmo

û

k

= Au

k�1

a

k

= e

T

k

û

k

; ja

k

j = kû

k

k

1

u

k

= û

k

=a

k

gera vetores u

0

k

s cada vez mais pr�oximos de [x

1

], o subespa�co gerado

pelo vetor x

1

. A rapidez com que esse m�etodo converge depende do

quociente j

�

2

�

1

j: quanto menor, mais r�apido converge.

Os m�etodos de potência têm a seguinte forma geral

u

k

=

f(A)u

k�1

a

k

;

onde f(A) �e em geral uma fun�c~ao anal��tica e a

k

, um normalizador,

para evitar n�umeros muito grandes ou muito pequenos (note que o

conceito de n�umero grande ou pequeno faz sentido em aritm�etica de

ponto 
utuante). Se tudo correr bem, o vetor de itera�c~ao converge para

um autovetor associado ao maior autovalor de f(A) em valor absoluto,

isto �e,

max

1�i�n

jf(�

i

)j:

Exerc��cio 9 Suponha queA �e uma matriz diagonaliz�avel. Seja f

um polinômio. Mostre que se v �e autovetor de A associado a

� ent~ao v �e autovetor de f(A) associado a f(�). Ou seja, se

A = PDP

�1

ent~ao f(A) = Pf(D)P

�1

. Generalize, usando

s�erie de Taylor, para fun�c~oes anal��ticas.

Vimos acima o m�etodo de potência cl�assico, com f(A) = A. Obser-

vamos tamb�em que a taxa de convergência depende da raz~ao dos dois

maiores autovalores em valor absoluto. Interessante seria se tiv�essemos

uma fun�c~ao que fosse ao mesmo tempo f�acil de ser computada e para

a qual esse quociente fosse o menor poss��vel. Observe que o quociente

agora �e entre os dois maiores autovalores em valor absoluto de f(A);

logo, se eu estiver interessado em computar �

12

, por exemplo, f deve ser
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de tal modo que f(�

12

) seja o maior dos autovalores, em valor absoluto.

Uma boa escolha �e a fun�c~ao

f(A) = (A� �I)

�1

;

onde � �e uma estimativa do autovalor em que eu estou interessado.

3.1.1 Itera�c~ao Inversa com Deslocamento

Vamos supor que A �e diagonaliz�avel, com autovetores x

1

; : : : ; x

n

, as-

sociados respectivamente a �

1

; : : : ; �

n

. Seja u

0

= c

1

x

1

+ : : : + c

n

x

n

.

Ent~ao

(A� �I)

�k

u

0

=

c

1

(�

1

� �)

k

x

1

+ : : :+

c

n

(�

n

� �)

k

x

n

:

Na express~ao acima, a dire�c~ao mais importante �e aquela associada ao

autovalor mais pr�oximo de �, ou seja, a

j

1

�� �

j = max

1�i�n

j

1

�

i

� �

j:

Quanto mais pr�oximo for � de algum autovalor, mais r�apido o m�etodo

convergir�a. Assim, al�em da escolha do vetor inicial, �e importante a

escolha do deslocamento (shift) inicial �

0

; inicial, porque o pr�oprio

m�etodo pode dar melhores estimativas para deslocamentos durante o

processamento. Por exemplo, o algoritmo seguinte utiliza uma estrat�e-

gia em que deslocamentos s~ao atualizados a partir de itera�c~oes anteri-

ores:

u

0

6= 0

Para k � 1

û

k

= (A� �

k�1

I)

�1

u

k�1

a

k

= e

T

k

û

k

; ja

k

j = kû

k

k

1

u

k

= û

k

=a

k

�

k

= �

k�1

+ 1=a

k

Quando A �e real e sim�etrica, se x �e um vetor real n~ao nulo,

r(x) =

x

T

Ax

x

T

x



3.1. M

�

ETODOS DE POT

^

ENCIA 43

minimiza a forma quadr�atica kAx � �xk

2

e, logo, �e uma boa escolha

para deslocamento inicial. Esse n�umero �e chamado de quociente de

Rayleigh de x. Quando A �e sim�etrica, seus autovalores e respectivos

autovetores s~ao reais e o algoritmo de itera�c~ao inversa, nesse caso, pode

ser reescrito da seguinte forma:

u

0

6= 0

Para k � 1

�

k�1

= r(u

k�1

)

û

k

= (A� �

k�1

I)

�1

u

k�1

a

k

= kû

k

k

2

u

k

= û

k

=a

k

Esse algoritmo converge globalmente e sua convergência �e r�apida,

at�e c�ubica [3]. Ou seja, a partir de um certo momento o erro diminui

cubicamente (por exemplo, 10

�1

; 10

�3

; : : :).

3.1.2 M�etodos de Itera�c~ao Simultânea

Seja A 2 C

n�n

. Vamos supor que A �e diagonaliz�avel, que �

1

; : : : ; �

n

s~ao seus autovalores e que

j�

1

j � : : : � j�

p

j > j�

p+1

j � : : : � j�

n

j:

Aplicando o m�etodo de potência com f(A) = A a p vetores, simultane-

amente, a tendência �e dos vetores se aproximarem de um subespa�co

invariante sob a matriz A, de dimens~ao p, associado a�

1

; : : : ; �

p

desde

que se tomem alguns cuidados. Um �e normaliz�a-los de algum modo,

para que os vetores n~ao �quem muito "grandes" ou muito "pequenos";

outro, evitar que se tornem linearmente dependentes, por exemplo,

ortogonalizando-os eventualmente, ou a cada passo. Esse m�etodo �e

chamado de Itera�c~ao Ortogonal. H�a outros aspectos pr�aticos e te�ori-

cos envolvidos nesses m�etodos ([4],[5]), que se tornam particularmente

interessantes quando se quer localizar autovalores em uma regi~ao do

plano complexo, por exemplo, os autovalores mais pr�oximos de um

complexo � (f(A) = (A� �I)

�1

).
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3.2 M�etodo QR

Seja A 2 C

n�n

tal que seus autovalores, �

1

; : : : ; �

n

, s~ao tais que

j�

1

j > : : : > j�

n

j > 0:

Seja A = U

0

R

0

, a fatora�c~ao QR de A. Tomando U

0

como ponto de

partida para o m�etodo de itera�c~ao ortogonal, obter��amos a seguinte

sequência:

Para k � 0

A

k+1

:= AU

K

U

k+1

R

k+1

:= A

k+1

(fatora�c~ao QR deA

k+1

)

Da sequência acima, conclu��mos que

A

2

= U

1

R

1

R

0

; : : : ; A

k+1

= U

k

R

k

R

k�1

� � �R

1

R

0

;

ou seja, a cada passo k a matriz U

k

�e a matriz unit�aria da decomposi�c~ao

QR de A

k+1

. Assim, o primeiro vetor coluna de U

k

tende ao espa�co [x

1

],

o segundo, ao espa�co [x

1

; x

2

], etc. Logo, U

H

k

AU

k

tende a uma matriz

triangular superior - a forma de Schur de A, com os autovalores na

diagonal, em ordem decrescente por valor absoluto. Esse ainda n~ao �e o

m�etodo QR, mas tem estreita liga�c~ao com ele. O m�etodo QR se baseia

no seguinte algoritmo:

A

0

:= A

Para k � 0

Q

k

R

k

:= A

k

(fatora�c~ao QR de A

k

)

A

k+1

:= R

k

Q

k

(= Q

H

k

A

k

Q

k

)

Exerc��cio 10 Mostre por indu�c~ao que

U

k

= Q

0

Q

1

� � �Q

k

;

em que U

k

�e a matriz unit�aria da fatora�c~ao QR de A

k+1

e

Q

0

; � � � ; Q

k

s~ao as matrizes unit�arias geradas pelo algoritmo

acima (lembre-se que a fatora�c~ao QR de uma matriz inver-

s��vel �e �unica se exigimos que a diagonal de R seja positiva).
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Apliquemos agora o algoritmo acima �a matriz A =

�

6 2

2 3

�

, cujos

autovalores s~ao 7 e 2:

Q

0

R

0

=

1

p

40

�

6 �2

2 6

��

p

40 9

p

40=20

0 7

p

40=20

�

:= A

A

1

:= R

0

Q

0

=

�

7 � 1=10 7=10

7=10 2 + 1=10

�

Q

1

R

1

=

1

p

4810

�

69 �7

7 69

��

p

4810=10 63=

p

4810

0 140=

p

4810

�

:= A

1

A

2

:= R

1

Q

1

=

�

7� 4=481 98=481

98=481 2 + 4=481

�

Observemos que a sequência, j�a nos dois primeiros termos, mostra

tendência de convergir para a matriz diagonal formada por 7 e 2. Mas,

para cada decomposi�c~ao QR s~ao necess�arias O(n

3

) opera�c~oes se a ma-

triz n~ao �e esparsa. H�a um modo desse n�umero de opera�c~oes diminuir:

operar com uma matriz conjugada �a matriz original por uma matriz

unit�aria, a sua forma de Hessemberg H. Uma matriz de Hessemberg

superior �e uma matriz da forma

0

B

B

B

B

B

B

@

� � � � � � � � �

� � � � � � � � �

0 �

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 � � � 0 � �

1

C

C

C

C

C

C

A

Ou seja, �e uma matriz H tal que h

ij

= 0, se i � j + 2. A matriz de

Hessemberg inferior �e a transposta de uma Hessemberg superior.

Proposi�c~ao 3.6 (Forma de Hessemberg) 8A 2 C

n�n

existe uma

matriz unit�aria Q tal que Q

H

AQ = H, matriz de Hessemberg superior.

A prova da proposi�c~ao acima se baseia num procedimento que gera a

matriz unit�aria Q como um produto de transforma�c~oes de Householder

[6]. Notemos que uma matriz de Hessemberg conjugada a uma matriz

hermitiana �e uma matriz tridiagonal. A seguir algumas propriedades

interessantes das matrizes de Hessemberg:
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� a fatora�c~ao QR de uma matriz de Hessemberg envolve O(n

2

) op-

era�c~oes e, se ela for tridiagonal, apenas O(n);

� se H = QR, Q e RQ = Q

H

HQ s~ao tamb�em de Hessemberg.

Exerc��cio 11 Mostre que se H �e uma matriz de Hessemberg e

H = QR, Q �e unit�aria e R �e triangular superior, Q e RQ

s~ao ambas matrizes de Hessemberg.

Agora, observemos o seguinte exemplo:

QR =

1

p

20

�

4 2

2 �4

��

p

20

p

20=2

0 0

�

:=

�

4 2

2 1

�

A

1

:= RQ =

�

5 0

0 0

�

O m�etodo convergiu acima numa s�o itera�c~ao. De modo geral, se A �e

de Hessemberg, o posto de A �e r < n e A = QR, ent~ao R tem r linhas

nulas correspondentes �as r colunas de Q que est~ao no espa�co ortogonal

ao espa�co coluna de A. Assim, o produto RQ tem r linhas nulas e o

problema de autovalores de A se desacopla em problemas menores de

autovalores. A id�eia �e fazer ent~ao um deslocamento em A pr�oximo a

algum autovalor. Que deslocamento escolher? J�a vimos que o m�etodo

QR tem estreita liga�c~ao com o m�etodo de potência (f(A) = A), que

privilegia as dire�c~oes associadas aos maiores autovalores de A em valor

absoluto. Se a matriz A for real e seus autovalores �

1

; : : : ; �

n

forem

tais que j�

1

j > � � � > j�

n

j (logo, todos reais), a entrada (n; n� 1) de A

k

tende a �car pequena,

A

k

=

0

B

B

B

@

� � � �

� � � �

0 � � �

0 0 �

^

�

n

1

C

C

C

A

ou seja, a entrada (n; n) de A

k

tende a �

n

e, assim por diante. Para

matrizes reais e sim�etricas com espectro simples (autovalores distintos

dois a dois), j�a foi mostrado que esse algoritmo converge para uma

matriz diagonal [7].
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Vejamos ent~ao como �ca o m�etodo QR com esta estrat�egia de deslo-

camento aplicado �a mesma matriz A de um exemplo anterior:

Q

0

R

0

=

1

p

13

�

3 2

2 �3

��

p

13 6=

p

13

0 4=

p

13

�

:= A� 3I

A

1

:= R

0

Q

0

+ 3I =

�

7 � 1=13 8=13

8=13 2 + 1=13

�

Q

1

R

1

=

1

p

4033

�

63 8

8 �63

��

p

4033=13 8=

p

4033

0 64=13

p

4033

�

:= A

1

�

�

2 +

1

13

�

I

�

7� 1=52429 512=52429

512=52429 2 + 1=52429

�

= R

1

Q

1

+

�

2 +

1

13

�

I

Vemos acima que o m�etodo QR com deslocamento converge muito mais

rapidamente que o m�etodo QR simples (pelo menos nas duas primeiras

itera�c~oes).

M�etodo QR com deslocamento Seja A 2 C

n�n

uma matriz de

Hessemberg superior. O algoritmo seguinte �e dito o algoritmo QR com

deslocamento simples:

A

0

:= A

Para k � 0

�

k

:= (A

k

)

nn

Q

k

R

k

:= A

k

� �

k

I (fatora�c~ao QR de A

k

� �I)

A

k+1

:= R

k

Q

k

+ �

k

I (= Q

H

k

A

k

Q

k

)

Se A �e uma matriz real n~ao sim�etrica, uma estrat�egia de desloca-

mento para detectar poss��veis autovalores complexos seria a seguinte:

suponhamos que no passo k

A

k

=

0

B

B

B

@

� � � �

� � � �

0 � a b

0 0 c d

1

C

C

C

A
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�e uma matriz real e que a matriz

�

a b

c d

�

tenha autovalores complexos

conjugados, � e �. Fazemos ent~ao dois deslocamentos simples consecu-

tivos, um com �, outro com �:

Q

k

R

k

:= A

k

� �I

A

k+1

:= R

k

Q

k

+ �I

Q

k+1

R

k+1

:= A

k+1

� �I

A

k+2

:= R

k+1

Q

k+1

+ �I

H�a por�em um modo [6] de se fazer os dois deslocamentos acima

apenas em aritm�etica real, pelo fato de

(Q

k

Q

k+1

)(R

k+1

R

k

) = (A

k

� �I)(A

k

� �I):

Como a matriz que est�a �a direita da igualdade �e real (A

k

�e real), a

equa�c~ao acima �e a sua fatora�c~ao QR. Logo, Q

k

Q

k+1

e R

k+1

R

k

s~ao reais.

Lembremos que

A

k+2

= Q

H

k+1

Q

H

k

A

K

Q

k

Q

k+1

;

ou seja, podemos passar de A

k

para A

k+2

achando a fatora�c~ao QR de

umamatriz real, tudo em aritm�etica real. Se tudo der certo, chegaremos

a uma matriz do tipo

0

B

B

B

@

� � � �

� � � �

0 � e f

0 0 g h

1

C

C

C

A

;

em que � �e bem pequeno e, logo, os autovalores da matriz

�

e f

g h

�

s~ao autovalores da matriz A.
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3.3 Exerc��cios

Matlab 1 O comando p = poly(A) d�a os coe�cientes do po-

linômio caracter��stico de A. O comando roots(p) d�a as

ra��zes do polinômio p. Compute os autovalores de matrizes

do tipo

0

B

B

B

B

B

B

@

0 1

n� 1 0 2

n� 2 0

.

.

.

.

.

.

.

.

.

n� 1

1 0

1

C

C

C

C

C

C

A

:

Matlab 2 O comando polyvalm(p,A) avalia o polinômio p na

matriz A. Veri�que o Teorema de Cayley-Hamilton em ma-

trizes randômicas ou em matrizes de sua escolha.

Matlab 3 Seja A =

�

2 �2

�1 2

�

. Aplique o m�etodo QR em A.

Matlab 4 Aplique o m�etodo QR com deslocamento na mesma

matriz do exerc��cio anterior.

Matlab 5 De�na uma matriz A, compute p = poly(A) e suas

ra��zes. Escolha uma das ra��zes ou um n�umero pr�oximo para

deslocamento no m�etodo de itera�c~ao inversa. Para isso, es-

colha um vetor inicial v

0

e inverta a matriz por elimina�c~ao

gaussiana. O comando max(v) calcula a coordenada de v

de maior valor absoluto. Se escolher um n�umero pr�oximo de

uma das ra��zes do polinômio caracter��stico, mude o deslo-

camento eventualmente usando a f�ormula �

k

= �

k�1

+ 1=s,

onde s �e a coordenada de maior valor absoluto do vetor

resultante da itera�c~ao (A� �

k�1

I)

�1

v

k�1

.

Matlab 6 O comando eig(A) acha os autovalores de A. Se eu

der o comando [X,D] = eig(A), MATLAB computa a ma-

triz X de autovetores de A e a matriz diagonal D, com

seus autovalores. Calcule os autovalores e autovetores de

matrizes de Vandermonde (digite help vander).
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Matlab 7 O comando �t(A) aplica a transformada r�apida de

Fourier a cada coluna de A, se a ordem de A for uma potên-

cia de 2. Se A = eye(n), a matriz identidade, n�n, a matriz

de Fourier �e de�nida por

F =

1

p

n

fft(A):

Mostre que as colunas de F s~ao autovetores da matriz de

permuta�c~ao P , matriz cuja primeira linha �e e

T

2

, o segundo

vetor da base canônica, a segunda linha �e e

T

3

e, assim por

diante, at�e a �ultima linha, que �e e

T

1

.

Matlab 8 MATLAB computa os autovalores e autovetores de

uma matriz pelo m�etodo QR. Ou seja,

� primeiro acha H, a forma Hessemberg de A. Teste o

comando H=hess(A) em alguma A de sua escolha,

de preferência, real com autovalores complexos.

� Depois, se H �e complexa, tenta computar a forma de

Schur de H; se for real e tiver autovalores complexos,

computa a forma real de Schur, QSQ

T

, em que S

�e quase triangular superior (uma matriz de Hessem-

berg superior desacoplada em blocos 2� 2, correspon-

dentes a autovalores complexos, ou em blocos 1 � 1,

correspondentes a autovalores reais). Teste o comando

S=schur(H) e veri�que se S coincide com a forma de

Schur de A.

� Depois computa os autovetores pelo m�etodo de iter-

a�c~ao inversa (fa�ca isso tamb�em).

Esses s~ao os passos utilizados na implementa�c~ao computa-

cional do m�etodo QR [13]. Vimos que tudo deve correr

bem se os autovalores n~ao forem repetidos. Se você der o

comando help gallery, MATLAB vai te mostrar exemplos

em que nem tudo corre t~ao bem. Teste o comando eig(A)

em matrizes A do tipo A = PJP

�1

, em que J �e bidiagonal

com autovalores muito pr�oximos, quase Jordan.
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