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CONTEUDO



Introducao

A Algebra Linear Computacional assume cada vez mais importancia no
ambito da Matematica Aplicada. Isso se deve principalmente ao desen-
volvimento da arquitetura de computadores que projeta maquinas com
processamento numeérico cada vez mais rapido e mais preciso. Proble-
mas de grande porte, que envolvem grande armazenamento de dados
e intenso processamento numérico, procuram na Algebra Linear Com-
putacional o suporte tedrico para a sua resolucao e assim o estudo dessa
matéria se torna cada vez mais necessaria e complexa. A sua conexao
com outras areas da Matematica é as vezes surpreendente. Por exem-
plo, demonstra-se que o metodo QR converge para matrizes simétricas
em aritmética exata por fluxo de matrizes. Esse método, que a cada
passo conjuga uma dada matriz por matrizes ortogonais e que no limi-
te tende a uma matriz diagonal, é na realidade a avaliacao em tempos
inteiros da solucao de uma equacao diferencial matricial.
Basicamente, a Algebra Linear Computacional se envolve com dois
problemas: a resolucao de sistemas lineares e o calculo de autovalo-
res e autovetores de uma matriz, procurando dar a esses problemas
uma resposta com o maximo de precisao em um tempo minimo de
computacao. Em aritmética de ponto flutuante, os truncamentos e os
arredondamentos nas operacgoes algébricas podem resultar em respostas
muito diferentes das respostas em aritmética exata. Otimizar o nimero
de operacoes algébricas é, por isso, uma preocupacao constante na hora
de se propor uma solucao para um determinado problema. A Trans-
formada de Fourier Rapida (FFT) é um exemplo de um algoritmo de
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multiplicacao de matriz por vetor que utiliza %loggn multiplicacoes em
vez das n® usuais. Isso se torna possivel pelas propriedades intrinsecas
da matriz de Fourier. A diferencga se traduz num resultado mais preciso
e obtido mais rapidamente.

Os capitulos a seguir estao divididos da seguinte forma: no primeiro
capitulo, aborda-se a resolucao de sistemas lineares, cujas matrizes de
coeficientes sao inversiveis, por decomposicao PLU. No segundo capi-
tulo, sistemas lineares determinados e indeterminados sao formulados
como um problema de minimos quadrados (por exemplo, os proble-
mas de ajuste linear de dados). Para resolvé-lo, entao, estudamos mais
duas decomposicoes de matriz: QR e DVS (decomposicao em valores
singulares). No terceiro capitulo, estudam-se alguns métodos computa-
cionais para calcular autovalores de uma matriz. Ao final de cada
capitulo ha dois tipos de exercicios: os usuais (dedutivos ou constru-
tivos) e os computacionais. Estes foram elaborados para se utilizar o
MATLAB, sistema interativo no qual se processam algoritmos matri-
ciais (em alto nivel). Para isso, incluiu-se uma pequena introducao ao
MATLAB, com alguns comandos basicos, suficientes para resolver os
exercicios propostos.



1

Decomposicao LU

1.1 Eliminacao Gaussiana

O modelo mais simples e o mais utilizado em Matematica Aplicada é
um sistema de equacoes lineares. Nesse capitulo, discutiremos a reso-
lucao de sistemas lineares da forma Ax = b, em que A é uma matriz
quadrada e inversivel. Mais precisamente, focalizaremos nossa atencao
sobre a eliminagao gaussiana e a algebra matricial nela envolvida. Va-
mos comegcar com o seguinte exemplo :

r+ y+ z = 4
Jr+2y+22 = 10 (1.1)
20 — y+3z = =2

O primeiro passo é eliminar a variavel x das duas ultimas equacoes. O
pivo dessa operacao € o coeficiente de x na primeira equacao. Algebri-
camente, isso é equivalente a

a) subtrair 3 vezes a primeira equacao da segunda ;

b) subtrair 2 vezes a primeira equacao da terceira.
Essas operacgoes elementares resultam no seguinte sistema

r+y+z = 4
—y—z = =2 (1.2)
=3y +z =-10
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que é equivalente ao anterior ( isto é, ambos tém o mesmo conjunto de
solugoes ). No préximo passo, ignoremos a primeira equacao e consi-
deremos apenas as duas ultimas equacoes. O objetivo agora é eliminar
a variavel y da ultima equacao. Para isso, devemos subtrair dessa
equacao trés vezes a segunda. O pivo é o coeficiente de y na segunda
equacgao, (—1). Chegamos entao ao seguinte sistema triangular:

r+y+z = 4
—y—z = =2 (1.3)
4z = —4

que se resolve por retrossubstituicao. Ou seja, calcula-se o valor de z
na terceira equacao: z = -1. Substitui-se esse valor na segunda equacao
e entao calcula-se o valor de y : y = 3. Finalmente, substituindo-se
esses valores na primeira equacao, obtemos x = 2.

Essa sistematica se generaliza para sistemas de n equacgoes lineares
com n variaveis: elimina-se uma variavel apds outra até que reste so-
mente uma variavel, x,,. Resolve-se entao esta variavel que, em seguida,
¢é substituida na equacao anterior. Esse procedimento se repete assim
por diante até que finalmente se resolve x1. Esse método de resolucao
de sistemas lineares, que é conhecido como eliminacao gaussiana, € li-
mitado aos casos em que os pivos sao nao nulos. Um exemplo no qual
o método falha é o seguinte:

r+2y+z = 4
2044y —2z = 11
dr+2y+3z = 6

Para eliminar a variavel x nas duas ultimas equacoes, subtrai-se da
segunda equacao duas vezes a primeira e da terceira, cinco vezes a
primeira. O resultado dessas operacoes é o seguinte sistema equivalente:

r+2y+z = 4
-3z = 3 (1.4)
-8y —2z = —14

Nao é possivel eliminar a variavel y da terceira equacao subtraindo-se
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dela um multiplo da segunda, pois o pivo € zero. Contudo, esse proble-
ma se resolve simplesmente permutando-se as duas ultimas equacoes:

r+2y+z = 4
-8y —2z = —14 (1.5)
-3z = 3

1.2 Matrizes

1.2.1 Matrizes Elementares

Sejam C e A duas matrizes tais que seja possivel o seu produto CA. As
linhas de CA sao combinacoes das linhas de A, como se pode ver no
seguinte exemplo :

=ax(ay aiz aiz)+y(an axp ax)+z(as; as ass).

Por exemplo, o seguinte produto transforma a matriz de coeficientes do
sistema 1.4 na matriz de coeficientes do sistema 1.5 :

100 12 1 4 12 1 4
0 0 1 0 0 =3 3 1=10 -8 -2 —14
010 0 -8 =2 —14 0 0 =3 3

A matriz que multiplicou a matriz de coeficientes do sistema 1.4, a
esquerda, é uma matriz de permutacao. FEm geral, uma matriz de per-
mutacao é qualquer matriz cujas linhas sao os vetores da base canonica
em alguma ordem. Elas serao vistas novamente na proxima secao. Ou-
tro exemplo de produto de matrizes é o que transforma o sistema 1.1
no sistema 1.2 :

100 1 11 4 1 11 4
-3 10 3 22 10||=10 -1 -1 =2
-2 01 2 -1 3 =2 0 -3 1 —10
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A transformacao operada no sistema 1.1 e que resultou no sistema 1.2 é
composta de duas operacoes elementares. Isso é traduzido em matrizes
do seguinte modo: a matriz que multiplica a matriz das constantes
numéricas do sistema 1.1 ( ver acima ) é o produto de duas matrizes
elementares. Ou seja,

100 1 00 1 00
010 -3 1 0f=]-3120
-2 01 0 01 -2 0 1

Matrizes elementares sao matrizes que multiplicadas a esquerda de uma
matriz A resultam em operacoes elementares nas linhas da matriz A.
Sao de trés tipos:

o diagonal, que equivale a multiplicar uma linha por um numero;
e de permutacao, que equivale a permutar duas linhas;

o do tipo E;; =1+ kijeie;r, onde ¢; é a matriz nx1l correspondente
ao i-ésimo vetor da base candnica do R”, que equivale a somar a
linha i um multiplo da linha j.

Exercicio 1 Calcule a inversa de uma matriz elementar e veri-
fique que é também uma matriz elementar.

Exercicio 2 Mostre que, fixada uma coluna j, quaisquer que se-
jam as linhas il,iz > j, Eilein =F jEilj-

12

Exercicio 3 Mostre que se IV; ;. , F; . sao matrizes elementares

11719 272

triangulares inferiores entao

Eil]lEZé]é = Ei2j2Ei1j17 sev; <1y €] < J2-

Consideremos o sistema linear

Arx =10

Y

onde A é uma matriz nxn e b é uma matriz nxl. Seja [A]|b] a ma-
triz aumentada correspondente ao sistema. A eliminagao gaussiana do
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ponto de vista matricial é a seguinte multiplicacao sucessiva de matrizes
elementares, triangulares inferiores :

Byt B By By - Eag[Alb] = [U|?)]7

onde U é triangular superior. O pivo do i-ésimo passo de eliminacao é
o elemento u;;, da diagonal de U. Isso obviamente se nao precisarmos
permutar linhas durante o processo.

Exercicio 4 Mostre que a eliminacdo gaussiana chega ao mesmo
resultado se computada de modo que a cada linha ¢ sao
eliminadas as 1 — 1 primeiras variaveis, isto é,

Eo- Bpnoa- By By By =
Enn—l"'Eni"'Ei-l—li"'Enl"'E21-

Esse produto de matrizes que triangulariza A é uma matriz triangu-
lar inferior, com todas as entradas na diagonal iguais a 1. Denotando-a
por L™, temos que L™'A = U e assim

A=LU.

Observemos que

L — L1L2 "'Ln—17

em que L; = Ej__l_llj e E;jl. Se Fij =1+ kijeie?, temos que

LJ‘ =1 Z kijeief.

i=7+1

Logo,
L=1-— Z kijeief.
1>7

A cada passo da eliminacao gaussiana, para eliminar uma variavel de
uma equacao, subtraimos dela um miltiplo da equacgao pivo. L é a
matriz triangular inferior formada por esses numeros e com todos os
elementos da diagonal iguais a 1.

Se a matriz A é fatorada em LU, o sistema Ax = b é agora equiva-
lente a dois sistemas triangulares: Lz = be Uz = z. Observemos que L
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contém a informacao de como A se transforma numa matriz triangular
superior por operacoes elementares. Ao se resolver o sistema triangular
Lz = b, transformamos o vetor b no vetor z = ?), que ¢ a ultima coluna
da matriz aumentada [U/]B] ap6s eliminacao gaussiana em [A|b].

Exercicio 5 Mostre que a inversa de uma matriz triangular infe-
rior (resp. superior) é uma matriz triangular inferior (resp.
superior).

Exercicio 6 Mostre que o produto de matrizes triangulares in-
feriores (resp. superiores) é uma matriz triangular inferior
(resp. superior).

1.2.2 Pivos e determinantes

A decomposicao LU de uma matriz s6 é possivel se os pivos na elimi-
nacao gaussiana forem nao nulos. Se A = LU,

det(A) = det(L).det(U) = det(U).

Mais ainda, se denotarmos por A(1 :¢,1 :7) a matriz tx¢ formada pelas
entradas de A que estao ao mesmo tempo nas linhas e colunas de 1 a i
( submatriz principal de A de ordem i ), temos

detA(l1:4,1:0) =detU(1 0,1 :4) = ugp---uy
Assim, u1; = aq1 e para 1 > 1

o detA(1:1¢,1:4)
YT et AL — 11— 1)

Temos entao a seguinte proposicao:

Proposigcao 1.1 Uma matriz inversivel tem decomposicio LU, onde L
€ uma matriz triangular inferior com 1 na diagonal e U € uma matriz
triangular superior, se e s6 se para todo i (1 <1< n )

detA(l1:4,1:2)#0
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Exercicio 7 Mostre que a decomposicao LU, quando existe, é
unica. Ou seja, se A = LUy = LyU,, Ly, Ly sdo triangu-
lares inferiores com 1 na diagonal e Uy,U, sdo triangulares
superiores entao L1 = Ly e Uy = U,.

Exercicio 8 Mostre que podemos escrever de modo tinico A =
LDU, onde D é wina matriz diagonal, L e U sao matrizes
triangulares respectivamente inferior e superior, com todos
as entradas diagonais iguais a 1.

Exercicio 9 Use a unicidade da decomposicdo LU para mostrar
que a fatoracao LDU de uma matriz simétrica A (A = AT),
quando existe, é da forma LDLY. Conclua ainda que a
fatoracao LDU de uma matriz hermitiana A (A = A em
que A é a transposta conjugada de A), quando existe, é

da forma LDIL™M .

Exercicio 10 Mostre que uma matriz real simétrica A é positiva
definida' se e s6 se A = LDLY, com D positiva. Analoga-
mente, uma matriz hermitiana A é positiva definida® se e
s6 se A= LDLY, com D positiva.

Exercicio 11 Mostre que uma matriz real e simétrica (complexa
e hermitiana) A é positiva definida se e s6 se A = LLT
(A = LLY), em que L é uma matriz triangular inferior
(decomposicao de Cholesky ).

Exercicio 12 Considere uma matriz A € C"*™. Mostre que se

(Vz € C") (z # 0) 2T Ax > 0 entao A = A,

1.2.3 Pivotamento - fatoracao PLU

Vimos na secao anterior que uma matriz A inversivel admite fatoracao
LU se e s6 se para todo i a submatriz A(1:1,1:i) é inversivel. Esse é o

11

!Uma matriz real simétrica A € R™*" ¢é positiva definida se e s6 se para todo

reR? 2 #£0, 27 Az > 0.

2Uma matriz A € C?*" é hermitiana positiva definida se e sé se para todo

reCr x40, 274z > 0.
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caso das matrizes hermitianas positivas definidas, como também, o das
matrizes diagonal-dominantes. Fato é que se uma matriz A é inversivel
existe uma permutacao de linhas que transforma A em uma matriz cujas
submatrizes principais sao todas inversiveis. A demonstracao desse fato
é o algoritmo de eliminacao gaussiana com permutacao :

® Se a1 ¢ zero permuta-se a primeira linha com uma linha cujo
primeiro elemento seja nao nulo. Isso é possivel, pois A é nao
singular e, logo, nao possui coluna formada por zeros.

e Suponha que ja foram eliminadas as 1 primeiras variaveis permu-
tando-se eventualmente as linhas buscando-se um pivo nao nulo.
A matriz de coeficientes do sistema é mais ou menos o seguinte :

ull o >< >< o ><
uy; X X

>< o ><

>< o ><

Essa matriz é inversivel, logo pelo menos uma das n-1 ultimas
linhas tem o elemento da coluna i+1 diferente de zero. Caso nao
seja a linha i+1, permuta-se ela com alguma nao nula.

Demonstramos acima a seguinte proposicao:

Proposicao 1.2 (Decomposigao PLU) Se A € uma matriz inver-
sivel entdo existe uma matriz de permuta¢ao P, uma matriz triangular
inferior L com entradas diagonais iguais a 1 e uma matriz triangular
supertor U tais que A = PLU.

Se a cada passo escolhéssemos o maior pivo possivel em valor abso-
luto, apenas permutando linhas, teriamos o algoritmo que é chamado
de pivotamento parcial. Na resolucao do sistema triangular Uz = =z
(2 = L7'b), ha n operacoes de divisao, que ocorrem quando dividimos
expressoes algébricas pelos pivos. O algoritmo de pivotamento parcial
procura pivos grandes para otimizar o processamento numérico, os er-
ros causados por arredondamento na divisao sao relativamente menores
quanto maior for o quociente.
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1.2.4 Matrizes Especiais

Uma fatoracao resultante da fatoracao LU é a decomposicao LDU, em
que D é a matriz diagonal formada pelos pivos e U é agora uma matriz
triangular superior com 1 na diagonal. As matrizes hermitianas se
decompdem entdao em LDLY e sdao positivas definidas se e somente se
D > 0 ( exercicios 9 e 10 ). Nesse caso, A = LDLH = /DD LH =
PP A decomposicao de uma matriz hermitiana positiva definida na
forma A = PPH onde P é triangular inferior, é chamada de fatoracao

de Cholesky.

Exercicio 13 Mostre que se uma matriz A é hermitiana, diago-
nal estritamente dominante ( Vi|a;| > 3,4, |ai;| ) e, para
todo i, a;; > 0 entao A é positiva definida.

Um fato interessante é que a decomposicao LDU de matrizes de
banda ( quando existem ) preserva bandas. Por exemplo, os fatores
triangulares I e U de uma matriz tridiagonal sao bidiagonais, de uma
pentadiagonal, tridiagonais, e assim por diante.

A Analise Numérica gerou uma outra classe de matrizes nao sin-
gulares, que sao sensiveis no que diz respeito a solucao de sistemas
lineares a pequenas perturbacoes do vetor independente b e que, em
geral, resistem a inversdo por algoritmos tipo LU? - as matrizes mal
condicionadas. Um exemplo interessante é o seguinte [2]:

u 4+ v o= 2 u 4+ v o= 2
v + 1.000lv = 2 © u + 1.000lv = 2.0001
A solucao do primeiro sistema é uv = 2, v = 0; a solucao do segundo,
u=v = 1. A variacao relativa do vetor independente do primeiro para
o segundo sistema foi
1ab_ V2,
ol 4 ’

a variacao relativa da solucao,

[Az]] V2
5

30s métodos de resolugao de sistemas algébricos lineares baseados em alguma
fatoracao da matriz de coeficientes do sistema, que dao a solucdo em um nimero
finito de passos, sao chamados em geral de métodos diretos
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Ou seja, a variacao do vetor independente foi amplificada 20000 vezes !

1.3 Condicao de uma Matriz
Dado p > 1, a p-norma de um vetor de C* é definida por
2/l = ([za]” + - -+ [2a]”)7.

Dois exemplos de p-normas sao

llls = (Jer [P+ 4 [ea])F = (2T2)? e

llleo = max - a:].

As p-normas podem ser estendidas as matrizes do seguinte modo:

A
Al = max 1Al
B el

As p-normas satisfazem a seguinte propriedade (além obviamente das
que definem uma norma num espaco vetorial):

[Az|l, < ||A[lp [|][,-
A 2-norma satisfaz ainda mais umas:
[ABl2 < [[All2 || B2, (1.6)

quaisquer que sejam as matrizes A € C"*", B € C"*",

1.3.1 A Sensibilidade de Sistemas Algébricos Li-
neares

Consideremos os sistemas
Ar=b e A(x+ Az)=b+ Ab.
Logo, AAz = Ab. Ou seja, Az = A7 Ab. Passando a norma,

IBIF < NAIz] e f[Az] < AT AB].
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Logo,
[Az]]

]

I VAN
< A A~ S = ()

]
2]

(1.7)

Dizemos que

r(A) = | AJHIATY|

é o numero de condicao da matriz A, que é sempre maior ou igual a
1. Quanto maior x(A), maior pode ser o erro relativo na solugao do
sistema, mais mal condicionada é a matriz A.

Se perturbarmos a matriz A no lugar de b,
(A+AA)(z+ Az) = b,
obtemos se Ax = b
Ar=—A"TAA (x + Az).
Passando a 2-norma ( ou qualquer norma que satisfaz (1.6) ),
[Az] < JATHIAA] o + Az,

ou seja,
[AA]

Tal - (1.8)

|Az|] _
T £ Az < JJATHAA] = K(A)

As desigualdades (1.7) e (1.8) revelam que os erros de arredondamento
tém duas fontes: a sensibilidade do problema, que tem o nimero de
condicao como uma medida, e os erros Abe AA. Esses erros sao cometi-
dos, por exemplo, na fatoracao LU em aritmética de ponto flutuante,
em que computamos na verdade A + AA = LU (enao A = LU), e na
resolucao dos sistemas triangulares, onde computamos & = = + Ax tal
que AZ = b+ Ab. Uma classe de matrizes mal condicionadas (nimero
de condicao grande) é a das matrizes de Hilbert, cujas entradas sao
definidas por a;; = 1/(i + 7 — 1) (ver MATLAB-exercicios na préxima
$€¢ao).



16 1. DECOMPOSICAO LU

1.4 Formula de Sherman-Morrison

Suponhamos que A € R™"*" é inversivel. Sejam u e v dois vetores tais
que v A7y £ —1. Entao

Ayl AT

A Nt =
(At u?) 1+ 0vTA Ty

Essa é a férmula de Sherman-Morrison para inversao de perturbacoes
de posto 1 de uma matriz A. Essa féormula se generaliza se U € R"*P e

Ve RP™
(A+UVH) ' = AT — AT U+ VTATU) T VTAT

Perturbacoes de posto p de matrizes facilmente inversiveis sao muito
frequentes. Um exemplo classico é a matriz resultante da discretizacao
da equacao

d*u
T de = f(x)

em que u ¢é periddica:

2 -1 0 -1
-1 2 -1 0
0o -1 2 -1
-1 0 -1 2

Um exemplo de perturbacao de posto 1 é o de uma matriz que é diagonal
em blocos a menos de uma coluna, que representa a comunicacao de
um dos blocos com todos os outros. Isso é o que acontece, por exemplo,
na geracao de energia em usinas hidrelétricas: a velocidade (angular)
de cada maquina sincrona pode ser formulada tomando-se uma delas
como referéncia. Assim, na coluna associada a velocidade angular dessa
maquina aparecerao elementos nao nulos, nas linhas correspondentes a
variacao de velocidade angular das outras maquinas. Outro exemplo
(draméatico) é o de uma matriz que, a menos de uma entrada nao nula,
é triangular superior (ver exercicio 11 da préxima segao).

Exercicio 14 Verifique a férmula de Sherman-Morrison.
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1.5 Exercicios

Os exercicios seguintes foram especialmente elaborados para o sistema
iterativo MATLAB. A descricao detalhada dos comandos desse sistema
pode ser encontrado em The MATLAB User’s Guide[l] ou mais sucin-
tamente no préprio on-line help (é s6 digitar help comando). A seguir
algumas dicas.

Matrizes sao definidas por

A:[all'"aln;a21"'a2n;"';am1"'amn]

Por exemplo, se eu digito

A=[1 2;1 -1
MATLAB me responde:
a=(1 5)
Se ndo se quer eco na tela, deve se por ponto e virgula ao final do
comando. Nesse caso, no exemplo acima, digitar-se-ia
A=[1 2;1 -—1]
O comando

B=A;

define a matriz B como sendo igual a A. A matriz A ndo se perde.

MATLAB gera matrizes mxn com nimeros randomicos através
dos comandos

A =rand(m,n)

ou, no caso de uma matriz nxn,

A =rand(n)
A matriz identidade é gerada por

eye(n)
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o Fis algumas matrizes especiais definidas por comandos MATLAB:

compan companheira

diag diagonal

gallery exemplos
hadamard Hadamard
hankel Hankel

hilb Hilbert

invhilb inversa de Hilbert
magic quadrado magico
pascal triangulo de Pascal
toeplitz Toeplitz

vander Vandermonde

Para saber como definir um quadrado magico, por exemplo, digite
help magic.

o A transposta conjugada de uma matriz A pode ser definida pelo
comando

B=A’
e o produto de matrizes A e B,
C=AxB

Por exemplo, se x é um vetor de n coordenadas (uma matriz nx1)
entao
A=xxx

é uma matriz nxn de posto 1.

o Se for necessario continuar o comando na linha seguinte, digite
dois pontos um ao lado do outro ( .. ) para se interpretar como
uma continuacao.

e Subtrair 3 vezes a primeira linha de A da segunda linha de A é
traduzido pelo comando

A(2,:)=A(2,:)) —3*xA(1,:)

A matriz A é modificada. Se se digitar A, aparecera a matriz
resultante da operacao elementar acima.
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o Em geral, se se quer alterar ou destacar uma submatriz de uma
matriz A, os seguintes comandos sao possivelis.

— A(:,2) = eye(:,4) faz com que a segunda coluna de A
seja substituida pelo quarto vetor da base canodnica;

— B = A(2:3,3:5) define a matriz formada pelos ele-
mentos que estao ao mesmo tempo nas linhas 2 e 3
e nas colunas 3,4 e 5;

- A([]_ 3],[2 4]) = [ 0 1; -1 2 ] deﬁne A12 = 0, A14 = 1,
A32 =—le A34 = 2.

Um exemplo é a programacao de uma rotacao de Givens:
J = eye(n)
J((i 31,16 1) = [cos(8) sen(0), —sen(8) cos(®)]

e Se se quer trabalhar com complexos, define-se por comando 1 =
sqrt(—1); e entdo durante toda a sessdo, se néo for redefinido, 1

serd /—1.

e Se se quer saber o niumero de flops de uma sequéncia de oper-
acoes, digita-se flops(0) logo antes da sequéncia se iniciar, para
zerar o contador. Apos a sequeéncia, digita-se entao flops. Para
nimeros reais, cada operacao aritmética equivale a um flop. Para
complexos, somas e subtracoes equivalem a dois flops enquanto
multiplicacoes e divisées, seis flops.

o A variavel eps ¢ a precisdo da maquina, o menor numero positivo
tal que 1 + eps > 1. Digita eps que MATLAB te dara esse

nimero.

Matlab 1 1. Gere uma matriz A, 3x3, randomica, e compute
passo a passo as operacoes elementares para triangu-
larizé-la (U= A, U(2,:) =U(2,:) = U(2,1)/U(1,1) *
U(l,:) etc ).

2. Construa as matrizes elementares E, F' e GG correspon-
dentes as operacoes acima.

3. Faca o produto G*IF*E*A e compare com U acima.
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4. Para i > 1, calcule det(A(1:,1:1)) / det(A(1:i-1,1:i-1))

e compare com Uj;.

Matlab 2 Gere uma matriz real 4x4, diagonal dominante, e ache
sua decomposicao LDU.

Matlab 3 Gere uma matriz tridiagonal simétrica positiva defini-
da e encontre sua fatoracdo de Cholesky ( comando L =

chol(A) ).
Matlab 4 O comando [L,U] = lu(A) néo gera a "verdadeira” fa-

toracao LU de A. O algoritmo de pivotamento parcial cal-
cula a decomposicao PA = LU, enquanto MATLAB gera
uma decomposicao LU, onde

A

L=PT'«xl e U=1.

Se for dado o comando [L,U,P] = lu(a), MATLAB exibe a
matriz P. Use-o para computar os fatores P, L e U de uma
matriz de Toeplitz (o comando A = Toeplitz(c,r) gera uma
matriz tal que a;; = ¢;_j41, se © > J, € a;; = Tj_it1, S€
i< J)

Matlab 5 Se b é um vetor, o comando x = A\b calcula a solu¢ao
x do sistema Ax = b por eliminacao gaussiana com pivota-
mento parcial. Faca alguns testes com a matriz do exercicio
anterior.

Matlab 6 De modo geral, se B é uma matriz n X p, o comando
X =A\B

calcula a solucao X do sistema AX = B por eliminacao
gaussiana com pivotamento parcial. Inverta matrizes de
Hilbert por esse comando. Compare com as inversas das
matrizes de Hilbert dadas pelo comando invhilb.

Matlab 7 O comando inv(A) inverte uma matriz quadrada A,
por eliminacao gaussiana com pivotamento parcial, com-
putando primeiro inv(L) e inv(U): inv(A) = inv(lU) *
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inv(L). Inverta matrizes de Hilbert com esse comando e
compare os resultados com os obtidos no exercicio anterior,
com o comando A\eye(n).

Matlab 8 Pode-se definir uma matriz por um programa. Exem-
plo:

fori = 1:mn
for j = 1:n
Ai) = 1/(i++1);
end
end

Faca n = 5 e gere uma matriz A como acima. Ache sua
decomposicao LU, sua inversa e seu determinante.

Matlab 9 O comando cond(A) computa o nimero de condi¢do
da matriz A, segundo a 2-norma. Teste-o com matrizes de
Hilbert, por exemplo.

Matlab 10 Seja A a parte triangular superior de uma matriz de
Hilbert, por exemplo, 7 x 7 (comando A=triu(hilb(7))).
Compute A™'v, onde v é o vetor cujas coordenadas sao
todas iguais a 1. Lembre-se que, para calcular A~ v, nao se
calcula A™' e, sim, resolve-se Ax = v. Compare a ‘lopagem’

de A™' x v com a de A\v.

Matlab 11 Seja B igual a A, a matriz do exercicio anterior, a
menos da entrada (7,1): B(7,1) = 1/3. Resolva Bx = v,
onde v é o mesmo vetor do exercicio acima, por elimina¢ao
gaussiana. Depois resolva a mesma equacao usando a for-
mula de Sherman-Morrison. Compare as ‘flopagens’ dos
dois processos.
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Ortogonalidade

Nesse capitulo, discutiremos a solucao de equacoes do tipo Ax = b,
em que A € C"*", uma matriz ndo necessariamente quadrada, e b é
um vetor que pode nao pertencer ao espaco coluna de A. A fatoracao
triangular ainda é valida para matrizes retangulares:

Proposigao 2.3 Se A € C™*", existe uma matriz de permuta¢io P,
uma matriz quadrada triangular inferior L e uma matriz retangular
triangular superior' U tais que PA = LU.

Entretanto, abordaremos aqui o problema de resolver sistemas li-
neares de outra forma, como um problema de minimizacdo de uma
forma quadratica, o que da origem a uma outra fatoracao de matriz -
a fatoracao Q) R.

2.1 O Problema de Minimos Quadrados
Um sistema de equacoes lineares do tipo
Ax = b,

onde A é uma matriz real m x n, pode ter a seguinte interpretacao:
de que modo o vetor b pertence ao espaco coluna da matriz A, isto

!Nesse capitulo, uma matriz triangular superior ( ou inferior ) M é uma matriz
tal que M;; = 0se i > j (i< j); uma matriz diagonal, uma matriz triangular ao
mesmo tempo superior e inferior.

23
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é, que combinacao linear dos vetores-coluna de A resulta no vetor b 7

{ . ~ . z /. e
Por Algebra Linear, sabemos entdo que esse sistema é possivel se e s6
se o vetor b pertence ao espaco coluna de A. Além disso, o sistema
sera determinado se e s6 se esses vetores-coluna sdo linearmente in-
dependentes. Um outro modo ainda de se resolver o sistema acima é
minimizando-se a forma quadratica

E*(x) = || Az — b3,

Se o sistema for impossivel ainda assim poderemos encontrar um vetor
x tal que a sua imagem por A, p = Ax, seja a mais préxima possivel
de b. Geometricamente, o vetor p corresponde & projecao ortogonal
do vetor b sobre o espaco-coluna da matriz A. Denotaremos por x,, o
vetor cuja imagem é p e tem norma euclidiana minima - a solucao de
minimos quadrados. Se o posto da matriz A for n, verifica-se que

o 7, =(ATA)"ATh;
o p= A(ATA)"LAT).

Exercicio 1 Mostre que E*(z) = ||Az — b||3 tem um minimo
absoluto e verifique que E(x) é minimo absoluto se e s6 se

AT Az = A7),

Exercicio 2 Seja M = {||z||2 | E(x) é minimo}. Mostre que M
tem um tnico minimo.

Exercicio 3 Mostre que as colunas de uma matriz A sao linear-
mente independentes se e s6 se AT A é inversivel.

Exercicio 4 Mostre que um operador linear P é uma projecao

sobre um subespaco vetorial se e s6 se P é simétrica e P? =
P. Verifique que P = A(ATA)~' AT é uma projecao.

Achar p é uma tarefa simples se conhecemos uma base ortonormal
do espaco-coluna de A: p é a soma das projecées ortogonais de b sobre
cada vetor da base. Em termos matriciais, se () é a matriz cujas colunas
sao os vetores daquela base ortonormal,

p=QQ".
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Se as colunas da matriz A sao linearmente independentes, x,,, € a inica
solucao de Ax = p. Calcular x,,, se torna um problema simples, basta
fatorar A como um produto ()R, onde () é uma matriz com os vetores-
coluna ortonormais e R, triangular inferior inversivel. O sistema Ax = p
é equivalente entio a QRx = QQTb, ou seja,

Rz = QTh.

Exercicio 5 Ajuste de Dados por Minimos Quadrados
O problema de se aproximar uma funcao por um polinémio
tem sentido como um problema de minimos quadrados. Por
exemplo, para ajustar os seguintes dados,

y=2emt=1, y=lemt=2 e y=3emt =3,

por uma funcao do tipo y = ¢ + dt, resolve-se por minimos
quadrados o seguinte sistema

c+dl = 2
c+d?2 = 1
c+d3 = 3

Exercicio 5.1 Qual é a reta que melhor ajusta os se-
guintes dados:

y:Qth:—L yZOGthO,

y=-3emt =1, v=-bemt =27
Exercicio 5.2 Qual é a parabola que melhor ajusta

os seguintes dados:

v=2emt =-1, v=0emt =0,

v=2emt =2, v=6emt=37
Exercicio 5.3 A tabela abaixo fornece dados expe-

rimentais obtidos com machos albinos de tilapia

do Nilo pelo Centro de Pesquisas Ictiologicas de
Pentecostes (CE):
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tempo t | comprimento médio
(més) (cm)
0 11.0
1 15.0
2 17.4
3 20.5
4 22.7
5 25.3
6 27.4
7 28.0
8 29.3

Encontre a funcao linear que melhor ajusta esses

dados. 2

Exercicio 6 Qual a funcao da forma y = ax* + bx + ¢, a # 0,

mais proxima de y = cos x, em [—%7 %] ?

(U =gll= 15— 0p)de )

2.2 Decomposicao QR

Se as colunas de uma matriz A sao linearmente independentes podemos
ortonormaliza-las pelo método de Gram-Schmidt.

Exemplo: Consideremos a matriz

11
A=(1 2| =(v1 v2)
11
Por Gram-Schmidt,
v
¢t = -
[[04]]

_ Vg — Q1(02T%)
Hv2 - 91(”2TQ1)H7

q2

2Exercicio do livro Equacoes Diferenciais com Aplicacdes, de Bassanezi e Ferreira

Jr.
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ou seja,

0 = \/géh

Vg = —= + .
2 \/g% 3 q2
Em notacao matricial,
11 % -6
3 6 4
1 2= 1L & V3 V3
V3 3 0 &
L1 1 =6 3
V3 6

De modo geral, se A é uma matriz m X n, de posto 1 < r < n,
pode-se ortonormalizar r colunas de A por Gram-Schmidt de tal modo
que AP = QQR, em que P é uma matriz de permutacaon X n, () € uma
matriz m x r com colunas ortonormais e R é uma matriz retangular
ren tal que R;; = 0, se v > 3. Se r < n, ha varias solucoes para o
problema de minimos quadrados e a determinacao da solucao x,,, €
mais complicada (exercicio 11).

A implementacao computacional do método de ortogonalizacao de
Gram-Schmidt pode ser feita de dois modos equivalentes em aritmética
exata, mas com resultados diferentes computacionalmente, em arit-
mética de ponto flutuante, que é como chamamos a matematica do pro-
cessamento numeérico de uma maquina. O primeiro, chamado de Gram-
Schmidt Classico, é o procedimento utilizado para ortonormalizar bases
nos cursos usuais de Algebra Linear. O segundo, o Gram-Schmidt
Modificado, é uma reorganizacao dos calculos do primeiro, que tem se
mostrado mais eficiente que o Gram-Schmidt Cldssico no que diz re-
speito a ortogonalidade dos vetores computados. A seguir sao descritos
os dois algoritmos, que decompoem uma matriz A, cujos vetores-coluna
sao denotados por v;, 1 = 1,....,n, no produto QR. O segundo algo-
ritmo sobrepoe a matriz () a matriz A.

1. Gram-S5chmidt Clédssico

Para k=2,...,n
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si 1= qlloy, (t=1,...,k—=1)
Wy, = v — 0 sigi

Qr = Wi [Tk

ik 3:5ik/7“kk (i:1,...,k—1)

2. Gram-Schmidt Modificado

Parak=1,...,n
Tk ‘— vak
VE ‘= vk/rkk
Paraj=k+1,....n
TRy o= v,?vj
Vj 1= V5 — TV

Exercicio 7 Faca o seguinte teste dos dois algoritmos GS acima:
seja a matriz diagonal D, 20 x 20, formada pelos nimeros

de 1 a 20, nessa ordem. A seguir, partindo do vetor vl =

(1...1), calcule

Dv;_y .
v = ——— =1

, ..., 20.
[Dv]

Compute os fatores QR da matriz A, cujos vetores-coluna
sdo os v.s acima. Para cada método, compute também os
produtos internos entre os vetores ¢.s.

Vimos acima como decompor uma matriz A, m X n, de posto n, em
um produto QR, onde () tem colunas ortonormais e R é triangular
superior. No caso em que a matriz A tem posto r < n, ainda assim
pode-se fatord-la como A = QRPT, onde P é de permutacio. Porém,
o que usualmente chamamos de decomposicao QR de uma matriz é o
produto de uma matriz ortogonal (unitdria) () por uma matriz R, tal
quer;; =0se1 > j.

Uma matriz ortogonal (unitédria) é uma matriz real (complexa) qua-
drada tal que todas as suas colunas sdo ortonormais. Poderiamos
completar os vetores ortonormais dados por Gram-Schmidt até formar
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uma base do R, mas tem um modo de decompor uma matriz A muito
mais preciso no que diz respeito a ortogonalidade: Householder. Esse
método aplica transformacoes unitarias seguidamente na matriz A até
que todos os elementos abaixo da diagonal principal (linha = coluna)
se anulem.

O sucesso desse método se sustenta no fato de que essas trans-
formacoes unitarias, chamadas de transformacoes de Householder, sdao
muito simples. O método constréi passo a passo uma sequéncia de
matrizes unitarias

le"'in—l

tais que
X X X
X
Q1A = :
0 x X
X X X X
0 x x X
Q:01A=10 0 X X
0 0 x X
X X X X
0 x x X
0 0 x X
S0
Qur - QaQi A = - :
0 0 0 0
o o o0 --- 0

As unicas condicoes impostas sobre a natureza de () sao que ela seja
unitaria e que leve o primeiro vetor-coluna de A, vy, em um multiplo
do primeiro vetor da base canonica, e;. A simetria em relacao a um
hiperplano bissetor desses dois vetores satisfaz essas condi¢oes e, mais
ainda, é muito simples: é uma perturbacao de posto um da matriz
identidade, como veremos a seguir.
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Existem dois hiperplanos bissetores aos vetores vy e ¢; e para de-
terminar as duas transformacoées correspondentes, Hy e H,, basta cal-
cular a normal de cada hiperplano, ny e ny. Como sdo unitérias (logo,

| Holl = []v]|),
Hy(v1) = |Jv1]lex,

Hy(v1) = —|lvi|er.

Logo, as duas normais sao
(a0 :Ul—Hl(Ul) e N :UQ—HQ(Ul).

Um calculo simples resulta em

H H
mn non
H1:]—2H1 (& H2:]_2H2.

Essas transformacoes sao ditas de Householder. Agora, um critério
pratico para a escolha de qual das duas transformacoes sera ()1: aquela
que tiver o maior denominador na fracao acima ( que ocasionard menor
erro de arredondamento ). Ou seja, escolhe-se a transformacao definida
pela normal

n=uv + Sinal(eirvl)ﬂvlﬂel.

Continuando a sequéncia, () deve preservar a primeira coluna de ()1 A,
além de satisfazer as condi¢ées impostas sobre ()1. Para isso, basta que

e ()2 seja uma transformacao de Householder. Observemos que dessa
forma a dimensao do problema diminui a cada passo de obtencdo das
matrizes da sequéncia. Assim, obtemos a seguinte proposicao:

Proposic¢ao 2.4 (Decomposi¢ao QR) Seja A € C™*" | wma matriz
de posto n. Entdo exviste uma unica matriz unitdria () e uma unica
matriz triangular superior R, (Vi < n) Ry > 0, tal que A = QR.
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Exercicio 8 Calcule a expressao da transformacdo de House-
holder e verifique que ela é ortogonal e simétrica ( unitéria
e hermitiana, no caso complexo ).

Exercicio 9 Mostre que toda matriz unitaria é um produto de
matrizes de Householder.

Exercicio 10 Mostre que a matriz de Fourier I' definida por

Fy = —— w61

1
Vi ’

27 27 . .
em quew = en (oue n, comoem MATLAB), é unitéria.

2.2.1 QR com pivotamento de coluna

Se a matriz A, m x n, é de posto r < n, o algoritmo acima com
uma estratégia de pivotamento nos fornece uma decomposicdo do tipo
AP = @R, em que P é uma matriz de permutacao e

(R Rao
R‘(O 0)’

com Ry, r X r, triangular inferior. A estratégia é a seguinte: suponha
que no passo k, k < r, temos

Qk"'QlAPI"'Pk:RIm

R(k) R(k)
R (0BG

onde

Rg§)7 k X k, (&)
k
R(QQ) = (v]gk)l c v(k)) .

n

Seja k+1 < s <n tal que

(k)| — (k)
los?lf = max ol
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Seja Pryq a matriz de permutacao que troca as colunas s e k+1. Agora,
é s6 obter pelo algoritmo acima a matriz (Jry1. Ao final, temos que
para todo 1 <1 <r, para todo1+1 < 53 <n,

2.2.2 Decomposicao em Valores Singulares - DVS

A decomposicdo de uma matriz em valores singulares nos revela que
qualquer transformacao linear entre espacos vetoriais de dimensao fini-
ta, analisada a partir de referenciais apropriados no dominio e no con-
tradominio, nada mais é que uma transformacao diagonal nao negativa.

Proposig¢ao 2.5 (Decomposi¢dao em Valores Singulares) Se A €
C™*"™ € uma matriz de posto r > 0 entdo existem matrizes unitdrias
Ve O el € C™ tais que A = USVH, onde ¥ € wma matriz
diagonal positiva, isto €, ¥y > 222 > -+ > Yrr > 0. Esses elementos
sao ditos os valores singulares de A.

A demonstracido é a seguinte: seja op = max{||Av|;||v|| = 1}.
Sejam vy e uy tais que Avy = ojuy. Sejam Vi e Uy duas matrizes
unitarias tais que suas primeiras colunas sao respectivamente vy e uy.
E f4cil verificar que

UH AV, = (“01 jl) .

Repetindo o procedimento com a matriz A, e assim por diante, chega-se
na matriz 3.

Exercicio 11 Seja A uma matriz m x n de posto r e
A=UxVH = Zaiuivﬁ,
=1

a sua decomposicao em valores singulares. Verifique que

T m

[Az = bl[3 = Y (oiy; —ul0)* + 3 (uffb)?,

=1 i=r+1
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em que y = VHx. Mostre que x é uma solucdo para o
problema de minimos quadrados se e s6 se

y; = ullbjo;, parai=1,...,r.

Conclua que z,,, = Vy é a solucao de minimos quadrados se
y; = ullb/o;, parat =1,...,rey; =0, parat = r+1,...,n.

Pelo exercicio acima,
Tmg =V ST UMb,
em que ¥.7 é a matriz diagonal tal que (Vi <r) X} = 0,. A matriz
At =vytu?

é dita a pseudoinversa de A.

O problema de encontrar a DVS de uma matriz A é nao linear, os
valores singulares sao as raizes quadradas dos autovalores nao nulos de
A" A : Ve U sdo matrizes de autovetores ortonormais de A" A e AAH,
respectivamente. Por operacoes lineares, chegamos no maximo a uma
decomposicao da forma

A=UeVH,

em que U e V sao unitarias e © é bidiagonal.

Se A =UXVH éuma DVS da matriz A, temos que

[All2 = o1
Se A é inversivel, o numero de condicao de A em relacao a 2-norma é
entao -
1
ka(A) = —.
On

Uma interpretacao geométrica para os valores singulares de uma matriz
de posto r é a seguinte: o elipséide dado pela equacéo ||Az||2 = 1 tem os
eixos principais na direcao dos vetores coluna de V' e os comprimentos
desses eixos sdo 1/oy,...,1/0,. Para vermos isso, notemos que

2P AT Ax = Z Uf|yi|2,

=1
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em que Vy = x. Matrizes inversiveis mal condicionadas estao rela-
cionadas a elipséides muito achatados. As matrizes unitarias sao as que
tem melhor condicionamento, para essas matrizes o elipsoide acima é
uma esfera.

No capitulo 1, vimos que a sensibilidade de um sistema linear Ax =
b, A inversivel, era medida pela desigualdade

]
ol

Se b esta na direcao do ultimo vetor coluna de V, b = av,, e Ab, na
direcao do primeiro vetor coluna de V', Ab = evy, temos pela DVS que

=A% =oc,au, e Az = A7YAb = oy euy.

Logo,

Isso é o pior que pode acontecer.

Exercicio 12 Dada uma matriz A € C"*", mostre que existem
matrizes unitarias U e V tais que

A=U0VH,

em que O é bidiagonal (sugestdo: multiplique os dois lados
de A por matrizes de Householder apropriadas).

Exercicio 13 (Decomposig¢ao Polar) Seja A € C**". Mostre
que existe matriz unitaria () e matriz hermitiana nao nega-

tiva P tais que A = QP.

2.3 Exercicios

Matlab 1 O comando [Q, R, P] = ¢qr(A) computa a fatoracao
QR com pivotamento de colunas de A. Teste-o com a matriz

A, 4 x 3, tal que A;; =1+ 7.
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Matlab 2 Compute a decomposicao QR da matriz de Hilbert de
ordem 5 (comandos A = hilb(5) e [Q, R] = qr(A)).

Matlab 3 O comando [U, S, V] = svd(A) computa a DSV de A.

Teste-o com as matrizes acima.

Matlab 4 O comando ) = orth(A) computa uma base ortonor-
mal para o espaco coluna de A e o comando @) = null(A),
uma base ortonormal para o nicleo. Teste-os, pelo menos
com as matrizes acima.

Matlab 5 O comando B = pinv(A) computa a pseudoinversa
de A. Teste-o na matriz do primeiro exercicio acima.

Matlab 6 Ache o plano z = ax + by + ¢ que melhor ajuste os
seguintes dados: z = 0 em x =y = 0, z = 1 no mesmo
ponto,ez=1lemx =y = 1.

Matlab 7 Computar uma transformacao de Householder H tal
que Hx ¢é zero abaixo da sua primeira coordenada, em que

x € uma matriz n X 1, é feito em MATLAB a partir do
comando [H, R] = qr(z).

Tome uma matriz A real. Compute sua fatoracao QR. Em
seguida, bidiagonalize RT por transformacées de House-
holder. Uma dica: para gerar uma matriz em blocos do

tipo
I 0
1=(o u)

onde [ é a matriz identidade r x r e H, uma matriz de
ordem n — r anteriormente definida, dé o comando

a = [eye(r)zeros(1l,n — r); zeros(n — r, 1)H].

Seja P o produto dessas matrizes de Householder. Verifique
que QT APT é bidiagonal superior.

35
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3

Autovalores

Calcular autovalores de uma matriz A € C**" é equivalente a resolver o
problema nao linear de achar as raizes do seu polinémio caracteristico,

det(A — A) = 0.

Para cada raiz A dessa equacao, temos entao que A — A\l é uma matriz
singular e o espaco solucao do sistema homogéneo a ela associada, o
niicleo de A — A, tem dimensao nao nula. Chamamos esse espaco e
cada vetor nao nulo pertencente a ele de autoespaco e de autovetor de
A, respectivamente, ambos associados ao autovalor A.

Exercicio 1 Ache os autovalores, e respectivos autoespacos, da

A:(i}ﬂ.

Uma matriz é diagonalizavel se existe uma matriz inversivel P tal

matriz

que

AP = PD,

d
em que D € diagonal. E facil concluir que nesse caso as colunas de P
sao autovetores de A e que as entradas diagonais de D, os autovalores.

Exercicio 2 Mostre que se A é uma matriz quadrada entao ex-
iste matriz P tal que AP = PD, D diagonal, se e 56 se as
colunas de P sao autovetores de A. Conclua entdo que A é
diagonalizavel se e s6 se existe uma matriz P cujos vetores
coluna sao uma base de autovetores de A.
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A seguir um exemplo da utilizacao de autovalores: considere a se-
quéncia de Fibonacci

ro=0, x1=1 e parak>1, xp=2xp1+ Tr_o.

Em termos matriciais, para k > 1,

(e)=0 D=0 D) ()
Tre1/ A1 1 . ) \1 1) \x1/)’
ou seja, uy = Afug. Os autovalores de A sio

1++/5 1 -5
(& )\2_

A\ = — -
! 2 2

(1, A1) e (1, Ag) sdo dois autovetores de A associados respectivamente a
A1 e a Xy, Assim,

A= SDS™,

11 N0
S‘(A1 Az) ¢ D‘(o Az)'

Logo, uy, = SD*S™'ug e, como

4/ 1)‘1<0)_ T
5“0—<A1 Ay A G K

A2—Aq

b ( A — A )
R P A

onde

Assim,
R A N RV AN S VoA
R VI W 2 2 '
[Xo®

Agora, para todo k, 5 < 0.5. Concluimos entao que xj, € o inteiro

mais proximo de \A/—%

Como calcular os autovalores de uma matriz? Computar o seu
polinémio caracteristico implica em muitas operacées numeéricas, oca-
sionando muitos erros de arredondamento. Uma vez computado, cal-

cular suas raizes deve ser feito por métodos iterativos, se a ordem da
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matriz for maior que 4, pois ndao ha formas fechadas de resolucao de
polinomios de grau > 5, conforme teoria de Galois. Ha outros métodos
para a computacao de autovalores que nao o calculo de raizes de um
polinomio, baseados em algebra matricial. Dois deles se destacam na
literatura: um, os métodos de poténcia, que calculam alguns autoval-
ores; outro é o método QR, que computa a forma de Schur da matriz.

Exercicio 3 Mostre o Teorema de Schur: (VA € C"*") existe
uma matriz unitaria Q tal que QPAQ = T, em que T é
triangular superior. (sugestédo: principio de indu¢do)

Exercicio 4 Mostre que se A é uma matriz real e simétrica entao
existe uma matriz ortogonal Q) tal que QT AQ é diagonal.
Conclua entao que os autovalores de uma matriz simétrica
sao reais e associados a eles existe uma base ortonormal do
R™ de autovetores (sugestdo: use o teorema de Schur).

Exercicio 5 Mostre que se T' é uma matriz triangular e THT =
TTH, T é diagonal. Conclua entdo que uma matriz A é
normal (AAH = AHA) se e somente se existe uma base
ortonormal de C* de autovetores de A.

Exercicio 6 Mostre que se P é inversivel, A e P"'AP tém o
mesmo polinomio caracteristico.

Exercicio 7 Mostre que se T' é uma matriz triangular (superior
ou inferior) e p(x) é o seu polinémio caracteristico, p(T) = 0.
Conclua entao, pelo teorema de Schur, que se A é uma
matriz complexa e pa(x), o seu polinémio caracteristico,
pa(A) =0 (Teorema de Cayley-Hamilton).

Exercicio 8 O polinémio minimo de uma matriz A é o polinomio
monico de menor grau que se anula em A (logo, divide py ).
Mostre que se P é inversivel, as matrizes A e P"YAP tém
o mesmo polinémio minimo.

Uma consequéncia interessante do Teorema de Schur (exercicio 3)
é a seguinte: os autovalores dependem continuamente das en-
tradas da matriz. Para provar, seja uma sequéncia { Ay} de matrizes
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tais que A, — A, quando k — oo. Seja A, = QiTrQY, onde Qy é
unitaria e Ty, triangular superior. O grupo das matrizes unitarias é
compacto e, portanto, existe uma subsequéncia {Qy,} de {Q} tal que
Qi converge a uma matriz unitaria (). Assim,

lim QFALQi = lim QFALQw = Q"AQ

Mas, Vk QP ALQy é triangular superior e, assim, QT AQ s6 pode ser tri-
angular superior. Conclusdo: os autovalores de Ay, que sao as entradas
diagonais de T}, convergem para os autovalores de A que estdo, todos,

na diagonal de Q7 AQ).

3.1 Meétodos de Poténcia

Vimos que na sequéncia de Fibonacci o autovalor 1"'2—\/5 é dominante na
avaliagdo de um termo qualquer da sequéncia. Em geral, se {xq,... 2,}
é uma base de autovetores de A associados respectivamentea Ay, ..., A,
tais que

A1) > A2 =00 > A,

up =c1x1+ ...+ cpr,, ¢ #0,

temos que a sequéncia
up = Aug_q,

quando k cresce, tende a um autovetor associado ao autovalor . Isso
porque
k k k
up = Aug = \jr1+ ... F e A, =

A\ A\
c1ry + ¢ . T+ ...t ¢y N T
1 1

e assim, quanto maior for k, menor a influéncia das direcées dos au-

tovetores xg,...,%, em ug.

Agora, se |[M\| >> 1 (ou |\| << 1), || A*ug|| pode ser muito grande
(ou muito pequeno). Para evitar erros de arredondamento, é melhor
que se divida eventualmente (ou a cada passo) o vetor de iteracao por
algum namero, por exemplo, a sua primeira coordenada. Melhor ainda
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dividir pela coordenada de maior valor absoluto. Dados A e ug como
acima, o algoritmo

Uy = Aup_y

ap = el tn, |ag] = ||tk

Up = ﬁk/ak

gera vetores u}.s cada vez mais proximos de [x1], o subespago gerado
pelo vetor x1. A rapidez com que esse método converge depende do
quociente |§—f| quanto menor, mais rapido converge.

Os métodos de poténcia tém a seguinte forma geral

= f(A)u!H?
ay

onde f(A) é em geral uma funcao analitica e ay, um normalizador,
para evitar mimeros muito grandes ou muito pequenos (note que o
conceito de nimero grande ou pequeno faz sentido em aritmética de
ponto flutuante). Se tudo correr bem, o vetor de iteracao converge para
um autovetor associado ao maior autovalor de f(A) em valor absoluto,
isto é,

max |f(A:)].

1<i<n

Exercicio 9 Suponha que A é uma matriz diagonalizavel. Seja f
um polinémio. Mostre que se v é autovetor de A associado a
A entdo v é autovetor de f(A) associado a f(X). Ou seja, se
A= PDP" entiao f(A) = Pf(D)P~!. Generalize, usando

série de Taylor, para funcées analiticas.

Vimos acima o método de poténcia classico, com f(A) = A. Obser-
vamos também que a taxa de convergencia depende da razao dos dois
maiores autovalores em valor absoluto. Interessante seria se tivéssemos
uma funcao que fosse ao mesmo tempo facil de ser computada e para
a qual esse quociente fosse o menor possivel. Observe que o quociente
agora é entre os dois maiores autovalores em valor absoluto de f(A);
logo, se eu estiver interessado em computar A5, por exemplo, [ deve ser
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de tal modo que f(A12) seja o maior dos autovalores, em valor absoluto.
Uma boa escolha é a funcao

f(A) = (A - ﬂ])_lv

onde p é uma estimativa do autovalor em que eu estou interessado.

3.1.1 Iteracao Inversa com Deslocamento

Vamos supor que A é diagonalizavel, com autovetores xy,...,x,, as-
sociados respectivamente a Ay,...,\,. Seja ug = c1x1 + ... + ¢ x,.
Entao
_ &] Cn,
(A—pl)yFug= ———ay+ ... 4 — .
(A = p)* (An = )

Na expressao acima, a direcao mais importante é aquela associada ao
autovalor mais proximo de p, ou seja, a

1 1

BT T
QQuanto mais proximo for p de algum autovalor, mais rapido o método
convergira. Assim, além da escolha do vetor inicial, é importante a
escolha do deslocamento (shift) inicial po; inicial, porque o préprio
método pode dar melhores estimativas para deslocamentos durante o
processamento. Por exemplo, o algoritmo seguinte utiliza uma estraté-
gia em que deslocamentos sao atualizados a partir de iteracées anteri-
ores:

UO%O

Para k>1
g = (A — pp—1 1) rugp—
a = i, larl = 1ol
up = Uy /ay

pr = ftk—1 + 1/ag
Quando A é real e simétrica, se x é um vetor real nao nulo,

L Ax

T(l‘) - J}T

X
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minimiza a forma quadrdtica ||Az — A\z||? e, logo, é uma boa escolha
para deslocamento inicial. Esse nimero é chamado de quociente de
Rayleigh de x. Quando A é simétrica, seus autovalores e respectivos
autovetores sdo reais e o algoritmo de iteracao inversa, nesse caso, pode
ser reescrito da seguinte forma:

ug # 0
Para k>1
frk—1 = r(tUgp—1)
g = (A — pp—1 1) rugp—
ar = ||tg|2
up = Uy /ay

Esse algoritmo converge globalmente e sua convergéncia é rapida,
até cubica [3]. Ou seja, a partir de um certo momento o erro diminui
cubicamente (por exemplo, 10711073, ...).

3.1.2 Métodos de Iteracao Simultanea

Seja A € C**". Vamos supor que A € diagonalizavel, que Ay,..., A\,
sao seus autovalores e que

Ml > > > o > > A

Aplicando o método de poténcia com f(A) = A a p vetores, simultane-
amente, a tendéncia é dos vetores se aproximarem de um subespaco
invariante sob a matriz A, de dimensao p, associado aXq,..., A, desde
que se tomem alguns cuidados. Um é normaliza-los de algum modo,
para que os vetores nao fiquem muito "grandes” ou muito "pequenos”;
outro, evitar que se tornem linearmente dependentes, por exemplo,
ortogonalizando-os eventualmente, ou a cada passo. FEsse método é
chamado de Iteragao Ortogonal. Ha outros aspectos praticos e teéri-
cos envolvidos nesses métodos ([4],[5]), que se tornam particularmente
interessantes quando se quer localizar autovalores em uma regiao do
plano complexo, por exemplo, os autovalores mais proximos de um

complexo i (f(A) = (A —pul)™t).
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3.2 Meétodo QR

Seja A € C**™ tal que seus autovalores, A\1,...,\,, sao tais que
A1) > ... > |\ > 0.

Seja A = UgRy, a fatoracao QR de A. Tomando Uy como ponto de
partida para o método de iteracao ortogonal, obteriamos a seguinte
sequéncia:

Para k>0
Apy1 = AUk
U1 Ri41 := Apr (fatoracdo QR deApyr)

Da sequéncia acima, concluimos que
A*=UR\R A = ULRR RiR
— V14140, - ..y — VEgLtpLrgp—1 ° ° ° L1 g,

ou seja, a cada passo k a matriz Uy, € a matriz unitaria da decomposicao
QR de A*L. Assim, o primeiro vetor coluna de Uy, tende ao espago [r1],
o segundo, ao espaco [ry, 3], etc. Logo, U AU, tende a uma matriz
triangular superior - a forma de Schur de A, com os autovalores na
diagonal, em ordem decrescente por valor absoluto. Esse ainda nao € o
método QR, mas tem estreita ligacao com ele. O método QR se baseia
no seguinte algoritmo:

Ag = A

Para k>0
Qr Ry = Ay (fatoracdo QR de Ay)
AR = ReQr (= QF ArQy)

Exercicio 10 Mostre por inducao que

Ur = QoQ1 - @,

em que Uj é a matriz unitaria da fatoracio QR de A**! e
Qo, - -+, Qr sdo as matrizes unitarias geradas pelo algoritmo
acima (lembre-se que a fatoracao QR de uma matriz inver-
sivel é iinica se exigimos que a diagonal de R seja positiva).
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Apliquemos agora o algoritmo acima a matriz A = (g g), cujos
autovalores sao 7 e 2:
1 (6 —2) (JE 9\/@20)
- =A
VIO \2 6 0 7/40/20
. (T —1/10 7/10
A= ROQO_( 7/10 2+1/10)
O\ Ry = 1 (69 —7) (\/4810/10 63/v/4810 ) 4
VT8I0 AT 69 0 140/+/4810 !

- (T —4/481 98/481)
Az:= RlQl_( 98/481 2 +4/481

Observemos que a sequéncia, ja nos dois primeiros termos, mostra

Qoflo =

tendéncia de convergir para a matriz diagonal formada por 7 e 2. Mas,
para cada decomposi¢ido QR sdo necessdrias O(n®) operagoes se a ma-
triz nao é esparsa. Ha um modo desse numero de operacées diminuir:
operar com uma matriz conjugada a matriz original por uma matriz
unitaria, a sua forma de Hessemberg H. Uma matriz de Hessemberg
superior é uma matriz da forma

>< >< o o ><
>< >< o o ><
0 .
o --- 0 X X

Ou seja, é uma matriz H tal que h;; = 0, se 1 > j + 2. A matriz de
Hessemberg inferior é a transposta de uma Hessemberg superior.

Proposic¢ao 3.6 (Forma de Hessemberg) VA € C'*" existe uma
matriz unitdria Q tal que Q¥ AQ = H, malriz de Hessemberg superior.

A prova da proposicao acima se baseia num procedimento que gera a
matriz unitaria () como um produto de transformacoes de Householder
[6]. Notemos que uma matriz de Hessemberg conjugada a uma matriz
hermitiana é uma matriz tridiagonal. A seguir algumas propriedades
interessantes das matrizes de Hessemberg:
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e a fatoracao QR de uma matriz de Hessemberg envolve O(n?) op-
eragoes e, se ela for tridiagonal, apenas O(n);

o se H =QR, Q e RQ = Q" HQ sdo também de Hessemberg.

Exercicio 11 Mostre que se H é uma matriz de Hessemberg e
H = @R, () é unitaria e R é triangular superior, () e RQ)
sao ambas matrizes de Hessemberg.

Agora, observemos o seguinte exemplo:

(8 2 ()

QR:\/% 2 —4)\ 0 0 2 1

= (3 )

O método convergiu acima numa s6 iteracao. De modo geral, se A é
de Hessemberg, o posto de A ér <n e A = QR, entao R tem r linhas
nulas correspondentes as r colunas de () que estdao no espaco ortogonal
ao espaco coluna de A. Assim, o produto RQ tem r linhas nulas e o
problema de autovalores de A se desacopla em problemas menores de
autovalores. A idéia é fazer entao um deslocamento em A proximo a
algum autovalor. Que deslocamento escolher? Ja vimos que o método
QR tem estreita ligacdo com o método de poténcia (f(A) = A), que
privilegia as direcées associadas aos maiores autovalores de A em valor
absoluto. Se a matriz A for real e seus autovalores Ay,...,\, forem
tais que |A1| > -+ > |A,| (logo, todos reais), a entrada (n,n — 1) de Ay
tende a ficar pequena,

A =

o o X X
o X X X
mn X X X
X X X

n

ou seja, a entrada (n,n) de Ay tende a A, e, assim por diante. Para
matrizes reais e simétricas com espectro simples (autovalores distintos
dois a dois), ja foi mostrado que esse algoritmo converge para uma
matriz diagonal [7].



3.2. METODO QR A7

Vejamos entao como fica o método QR com esta estratégia de deslo-
camento aplicado a mesma matriz A de um exemplo anterior:

5 28 B

T—1/13 8/13)
8/13  2+41/13

Qoflo =

Al = R()Qo—l—g] = (

1 63 8 \/4033/13 8/ 4033
R = —
4033 \ 8 —63 0 64/13\/4033
1
=A —(24+ —=) T
! ( + 13)

T—1/52429  512/52429 ) B ( _)
( 512/52429 2 +1/52429 ) Qi+ (24 3) 1

Vemos acima que o método QR com deslocamento converge muito mais
rapidamente que o método QR simples (pelo menos nas duas primeiras
iteragoes).

Método QR com deslocamento Seja A € C"*" uma matriz de
Hessemberg superior. O algoritmo seguinte é dito o algoritmo QR com
deslocamento simples:

AO = A
Para k>0

QrRy = Ap — upl (fatoracao QR de A, — pl)
A= RQp 4 ] (= Q1 ArQx)

Se A é uma matriz real nao simétrica, uma estratégia de desloca-
mento para detectar possiveis autovalores complexos seria a seguinte:
suponhamos que no passo k

A =

S O X X
S X X X
o 2 X X
Qo X X
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/7 . . a
é uma matriz real e que a matriz tenha autovalores complexos
c

d
conjugados, A e A. Fazemos entao dois deslocamentos simples consecu-
tivos, um com A, outro com A:

QkRk = Ak — Al

Ak+1 = Rka + A
Qk+1Rk+1 = Ak-|—1 - é]
ARF? = Ry Qrgr + A1

H& porém um modo [6] de se fazer os dois deslocamentos acima
apenas em aritmética real, pelo fato de

(QrQrs1)(Rip1 By) = (Ax — M)(Ax — XI).

Como a matriz que estd a direita da igualdade é real (Ay é real), a
equacao acima € a sua fatoracao QR. Logo, Q1Qr1+1 € Rry1 Ry sao reais.
Lembremos que

Appo = Qg_ngAKQka-I-lv

ou seja, podemos passar de Ay para Ajys achando a fatoracao QR de
uma matriz real, tudo em aritméticareal. Se tudo der certo, chegaremos
a uma matriz do tipo

S X X

O O X X
@ o X X
S~ X X

em que € é bem pequeno e, logo, os autovalores da matriz

(o #)

sao autovalores da matriz A.
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3.3 Exercicios

Matlab 1 O comando p = poly(A) dd os coeficientes do po-
linémio caracteristico de A. O comando roots(p) da as
raizes do polinomio p. Compute os autovalores de matrizes
do tipo

n—1

Matlab 2 O comando polyvalm(p,A) avalia o polinémio p na
matriz A. Verifique o Teorema de Cayley-Hamilton em ma-
trizes randomicas ou em matrizes de sua escolha.

2 =2

Matlab 3 Seja A= ( °|

). Aplique o método QR em A.
Matlab 4 Aplique o método QR com deslocamento na mesma
matriz do exercicio anterior.

Matlab 5 Defina uma matriz A, compute p = poly(A) e suas
raizes. Escolha uma das raizes ou um mimero proximo para
deslocamento no método de iteracao inversa. Para isso, es-
colha um vetor inicial vqg e inverta a matriz por eliminacao
gaussiana. O comando max(v) calcula a coordenada de v
de maior valor absoluto. Se escolher um niimero proximo de
uma das raizes do polinomio caracteristico, mude o deslo-
camento eventualmente usando a formula py = pr_1 + 1/s,
onde s é a coordenada de maior valor absoluto do vetor
resultante da iteragao (A — pp_y 1) op_y.

Matlab 6 O comando eig(A) acha os autovalores de A. Se eu
der o comando [X,D] = eig(A), MATLAB computa a ma-
triz X de autovetores de A e a matriz diagonal D, com
seus autovalores. Calcule os autovalores e autovetores de
matrizes de Vandermonde (digite help vander).

49
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Matlab 7 O comando fft(A) aplica a transformada rapida de
Fourier a cada coluna de A, se a ordem de A for uma potén-
ciade?2. Se A = eye(n), a matriz identidade, n xn, a matriz
de Fourier é definida por

F= \/Lﬁfft(A).

Mostre que as colunas de F' sao autovetores da matriz de

permutacao P, matriz cuja primeira linha é el o segundo

vetor da base canénica, a segunda linha é ¢l e, assim por

diante, até a iltima linha, que é eI
Matlab 8 MATLAB computa os autovalores e autovetores de
uma matriz pelo método QR. Ou seja,

e primeiro acha H, a forma Hessemberg de A. Teste o
comando H=hess(A) em alguma A de sua escolha,
de preferéncia, real com autovalores complexos.

e Depois, se H é complexa, tenta computar a forma de
Schur de H; se for real e tiver autovalores complexos,
computa a forma real de Schur, QSQT, em que S
é quase triangular superior (uma matriz de Hessem-
berg superior desacoplada em blocos 2 x 2, correspon-
dentes a autovalores complexos, ou em blocos 1 x 1,
correspondentes a autovalores reais). Teste o comando
S=schur(H) e verifique se S coincide com a forma de

Schur de A.

e Depois computa os autovetores pelo método de iter-
acao inversa (faca isso também ).

Esses sdao os passos utilizados na implementacdao computa-
cional do método QR [13]. Vimos que tudo deve correr
bem se os autovalores nao forem repetidos. Se vocé der o
comando help gallery, MATLAB vai te mostrar exemplos
em que nem tudo corre tao bem. Teste o comando eig(A)
em matrizes A do tipo A = PJP™', em que J é bidiagonal
com autovalores muito préximos, quase Jordan.
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