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Abstrazt - This paper describes new matrix transformations suited 
to the eficient calculation of critical eigenvalues of large scale 
power system dpamic models. The key advantage of these methods 
is their ability to converge to the critical eigenvalues (unstable or 
low damped) of the system almost independently of the given initial 
estimate. Matrix transforms such as inverse iteration and S-matrix 
can be thought as special cases of the described method. These 
transforms can also be used to inhibit convergence to a known 
eigenvalue, yielding better overall eficiency when finding several 
eigenvalues. 
Keyword3 - Small-signal stability, low damped oscillations, large 
scale systems, sparse eigenanalysis, matrix transforms. 

I. INTRODUCTION 

Fast stability assessment is still a major concern for engineers 
engaged in large scale power systems operation. There is a need for 
the development of efficient real-time stability functions to be 
included in modern EMS. 

Efficient methods for the small-signal stability analysis of 
large scale power systems were developed in the last decade [ 1, 2, 
3,4, 5, 6, 7, 8, 9, 101. Most of these methods are based in the use 
of the augmented system equations [2, 5 ,  6 ,  7, 81, exploiting the 
Jacobian matrix sparsity, and rely on iterative methods to obtain 
one or a few eigenvalues at a time [2,4,5, 101. 

The major drawback of these methods is the difficulty to 
ensure that all unstable or low damped eigenvalues of the system 
have been found. One way to overcome this problem is the use of 
the S-matrix [3], a special matrix transform which maps the 
eigenvalues in the left half-plane to the circle of unitary radius. The 
unstable eigenvalues are therefore the eigenvalues of greater 
modulus and could then be calculated by a plain power method [ 1 1, 
121 applied to S. Unfortunately the power method converges slowly 
due to the closeness of the moduli of the eigenvalues of S to one. 

This paper describes new matrix transforms that overcome 
this problem, yielding a better convergence rate: 

inverse iteration applied to the S-matrix [ 131; 
power method applied to a Mobius [14] (i.e., linear fractional) 
transform of the A matrix; 
an efficient and highly effective method to inhibit convergence 
to already known eigenpairs [ 131. This technique harnesses the 
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convergence properties of partial eigensolution methods. 
The Mobius transform allows the choice of three parameters, 

which can be used to modify the mapping properties. For instance, 
one can enhance convergence of eigenvalues within a certain region 
in the complex plane while simultaneously inhibiting convergence 
on another pre-specified region. 

All methods rely on the flexibility in handling separately 
regions of spectrum by making use of iterations of conveniently 
chosen functions of the state matrix A. 

The efficient implementation of these methods is obtained by 
expressing the basic step of each of these matrix transforms as the 
solution of a single linear system, with practically the same 
computational cost of an inverse iteration step [13]. 

The eigenvalue mapping properties of these matrix 
transforms are exemplified through a small test system. Results on 
the large scale Brazilian Interconnected System are then presented. 

II. ITERATIVE EIGENVALUE COMPUTATION 

Power Method 

The basic idea that underlies almost every partial eigenvalue 
computation method is that the sequence x, Ax, ..., Akx converges 
to the eigenvector q1 associated with the eigenvalue of largest 
modulus (hl) of matrix A, provided that lhll > lhzl 2 .../ 2 ILl  [l l ,  
121. The convergence of this method is linear and depends on the 
ratio 
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I41 
This method is not suitable for direct application to the small- 

signal stability analysis, since the modes of interest in this problem 
are not those with largest moduli in the state matrix A. 

The inverse iteration method 111, 121 has been successfully 
applied to the small-signal stability analysis [2, 51. This method 
uses the matrix transform 

M, =f,(A) =(A-qI)-' (2) 
where q is a complex shift, in place of the matrix A, in the power 
sequence. The eigenvalues of A closest to q will be mapped to the 
eigenvalues of largest moduli in MI and thus the convergence will 
be driven to these eigenvalues and respective eigenvectors. 

The S-matrix method proposed in [3] may be generalized to 
the matrix transform [ 131 

M, =f , (A)=(A+ZI) (A-hI ) - '  (3) 
where h is a complex number. 

Although its initial application with the Lanczos method [3], 
this matrix transform could also be used with the power method to 
converge to the eigenvalue of largest modulus in Mz. 
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Spectral Transforms 

Inverse iteration and S-matrix methods can be seen as power 
method applied to special functions of the state matrix A that 
suitably modify the spectrum of the original matrix A, allowing 
convergence to desired eigenvalues. 

Any analytic function of the matrix A can be used with the 
power method (provided the evaluation of the power sequence is 
affordable). Therefore, matrix transforms suited to the eigenvalue 
problem in hand can be defined. 

Mobius transform of the matrix A can be expressed as 
M = fM(A) = (aA + bI)(cA + a)-' = kl(A + k>I)(A+ k3I)-l (4) 

where a, b, c and d are complex constants (ad-bc # 0) and I is the 
identity matrix. The complex parameters kl, k2 and k3 are defmed as 

b d 
k l = a  , k,=- > k3=; 

c 
This transform yields a power method iterative step with only 

one resolution of a set of linear algebraic equations in the form 
Cx = b, as in the inverse iteration and S-matrix methods. 

It can be easily seen that the matrices A and M have the same 
eigenvectors and the eigenvalues of M are related to those of A by 
the same function that defines M 

The power method can be readily applied to obtain the 
eigenvectors associated with the eigenvalues of largest moduli of 
the matrix transformation M [ 1 1, 131. 

Each step of the power method requires a matrix-vector 
multiplication, which can be efficiently evaluated as follows: 

Mx = (aA + bI)(cA + dI-' x = 

a bc-ad 
=-X +(T)w 

where 

(A+$I)W=X 

Therefore, the basic power method applied to the Mobius 
transform could be described as follows: 

Power Method with Miibius Transform Algorithm 

Given the a, b, c, d parameters that defme the Mobius 
transform, provide an initial estimate xk for the eigenvector, 
where k is the iteration counter. 

Solve A + - I  wk =xk  ( 9 
a bc-ad 

Compute zk = -xk +- wk c C2 

Obtain new estimates for the eigenvalueleigenvector pair I 

where Clk is the element of the vector Zk with maximum 
modulus. 
Test the convergence of the method by a chosen criterion, 
e.g., calculate the residue 

E Ilrk+lu, is greater than a tolerance, update iteration 

counter k = k + 1 and return to step 2. 
Otherwise the algorithm has converged to the eigenvalue of 
greatest modulus in M and to its associated eigenvector. 

Spectral Transform Definition 

One must note that both inverse iteration and S-matrix 
methods are particular cases of a Mobius transform with 
predetennined parameters a, b, c, d. In both cases, there is only one 
parameter to be selected to achieve convergence to the desired 
eigenvalue. 

More powerful matrix transformations can be obtained by 
conveniently choosing the parameters a, b, c, d. As a matter of fact, 
there are three degrees of freedom in the definition of a Mobius 
transform, though one can pick three points in the complex plane 
( p l f ' , p f  and ,ut) and assign their transformed values 

( p f" , p and p 3" ). Thus, the Mobius transform is defined by 
solving the simultaneous equations [ 141 

(9) 

for the unknown parameters kl, kz and k3. 
Note that the choice of the points p p depends on the region 

in the complex plane where the desired eigenvalues are located. 
One special Mobius transform deffition is the following. 

send a point p1 to 03 by setting k3 = - p1 (equivalent to 
enhance convergence to eigenvalues in its neighborhood, as 
in the inverse iteration method); 
send a point p2 to 0 by setting kz = - p~ (equivalent to 
inhibit convergence to eigenvalues in this neighborhood). 

Furthermore, all the points in the mediatrix of the segment 
defined by the points pi and p2 will be mapped to a value with 
constant modulus equal to lkll. 

Another special Mobius transform that can be easily defined 
is that involved in the inverse iteration with matrix S: 

M3 =f3(A)=(S-qI)-l =[(A+hI)(A-hI)-'-qI] -I = 

L - 

where h and q are complex constants. 
It can be readily seen that this is a Mobius transform 

expressed in the same form of equation (7). 
Table 1 presents the choices of parameters to define the 

various matrix transforms presented in this paper through use of a 
Mobius transform. 

Table 1. Special Mobius Transforms Parameters Definition 

IIL INHIBITING CONVERGENCE FOR EIGENVALUES 

A vector x may be expressed as a linear combination of the 
eigenvectors of matrix A (provided that A is non-defective): 
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This Section will present some surface plots to highlight the 
effect of different Mobius transforms over the spectrum of the state 
matrix A of New England Test System. Each plot represents the 
modulus of the transform evaluated over a mesh defined in a small 
region of the complex plane. A contour plot including the 
eigenvalues of the system is also presented together with its surface 

Figure 1 shows the plots for the inverse iteration transform 
(MI) with q = j  7. Only three eigenvalues close to the given shift 
are transformed to moduli greater than 1.5 and thus the 
convergence will occur for one of them. 

Figure 2 presents the plots for the S-matrix transform (Mz) 
with h = 7 +j 5. Note that almost all the eigenvalues have their 
moduli in the range 0.8 to 1. This is a characteristic of this 
transform and will slow down the convergence of the power 
method, as can be seen from equation (1). It is also worth of 
mention the fact that all points in the imaginary axis have modulus 
equal 1, i.e., that axis was mapped as the circle of unitary radius, as 
expected [3]. 

The plots for the inverse iteration on matrix S (M3) with h = 
7 +j 7 and q = -1 are shown in Figure 3. Note that these figures are 
quite similar to those for the inverse iteration on matrix A (figure 
I), but for the scale. This is due to a higher gradient of the modulus 
of the M3 function near the singularity. This characteristic may 
yields a better convergence of the power method with this 
transform. 

The plots for a special Mobius transform are presented in 
Figure 4. The zero of the transform (-k$ was calculated as a 
function of the given pole (-k3$ to assure the mapping of the line of 
constant damp E, = 0.1 to a constant modulus equal 1, i.e., all 
eigenvalues with a damp greater than 0.1 will be mapped to a 
modulus less than 1. Therefore, the convergence of the power 
method with this transform will occur to low damped or unstable 
eigenvalues only. 

plot. 

where ql, ..., qn are eigenvectors associated with lhll>1h~l>...> lk.,,l. 
The power method applied to the vector x will converge to 

the eigenpair (hl, ql), if c1# 0. 
Once the first eigenpair is obtained, the power method may 

be restarted to search for h2 with the iteration vector occasionally 
multiplied by (A - 111). This procedure will idubit the eigenvector 
direction q1 due to the product: 

This procedure can be readily applied in association with the 
matrix transforms described in Section II yielding a new transform 
of the state matrix A. 

The new matrix transform 
.fA(A)=M(A-/ZI) (13) 

can thus be used to inhibit convergence for a known eigenvalue h 
during power method iteration without changing the predetermined 
Mobius transform M. 

IV. NEW ENGLAND TEST SYSTEM RESULTS 

The New England Test System has been widely used as a 
benchmark model in power system stability analysis [ 1,2,4, 9, 151. 
The state matrix has 66 eigenvalues, whose numeric values are the 
same as those of [2, 91 and differ slightly from those of [ 1, 41 since 
speed-governor and exciter saturation effects were here neglected. 

Table 2 lists the nine electromechanical modes of interest of 
the New England Test System (least damped eigenvalues) and the 
generators with highest participation in each mode. 

Generators 

-0.282 &j 7.537 I 32,31 
~ 

-0.1 12 +j 7.095 I 30 
6 1  -0.297 3 6.956 I 35,36,31 

1 7 )  -0.283 &j 6.282 1 31,32,34,38 
8 1  -0.301 ~ 5.792 I 38,34 
9 1  -0.249 kj 3.686 I 39,38,34 

Table 2. New England Test System Critical Eigenvalues 

M 

lmag 0 -5 Real 5 0 5 
Real 

Figure 1. Mapping Properties of Inverse Iteration on Matrix A (Matrix Transform MI) (q  = j  7 )  
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lmag 0 -5 Real -5 0 
Real 

Figure 2. Mapping Properties of SMatrix (Matrix Transform Mz) (h = 7 +j 5 )  
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lmag 0 -5 Real 
Real 

Figure 3. Mapping Properties of Inverse Iteration on S (Matrix Transform M3) (h = 7 +j 7 ; q = - 1 )  
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Figure 4. Mapping Properties of Mobius Transform (a = 1; b = 1.39298 -j 6.86; c = 1; d = -j 7)  



V. LARGE SCALE SYSTEM RESULTS 

The large scale test system used is derived from a practical 
stability model for the Brazilian South-southeast Interconnected 
System having 1477 buses, 2200 lines, 103 generators, 1 HVDC 
link, and 272 induction motors. The Jacobian matrix for this system 
model has 7037 equations with 1976 state variables. 

To search for critical eigenvalues, points over the imaginary 
axis were used as poles for the Mobius transform (shifts for inverse 
iteration on A). These poles varied from 1 rads to 10 rads with a 
step of 1 rads. 

e 

The following matrix transforms were applied: 
inverse iteration on matrix A (MI); 
inverse iteration on matrix S (M3); 
Mobius transform with a zero in the imaginary axis of 1 rad/s 
less than the pole. All eigenvalues with imaginary part less than 
the pole frequency minus 0.5 rad/s have modulus less than 1. 

e Mobius transform with a zero such that the line of constant 
damp E = 0.1 is mapped to the circle of unitary radius, i.e., all 

tvalues 
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These matrix transforms were applied with a Simultaneous 
Iteration algorithm [5, 10, 111 limited to 10 vectors, 10 iterations, 
each iteration composed of a fast iteration cycle of 3 power method 
steps and a full complex matrix (10x10) eigensolution. 

Table 3 presents the results obtained. A convergence 
tolerance of for the m-norm of the residue vector was utilized 
for all the shown eigenvalues. This is a very tight convergence 
criterion that could be relaxed for most practical studies. 

The Mobius transforms converged less eigenvalues than 
inverse iteration on A and on S. This was expected due to the 
numerator in the Mobius transform that inhibits convergence on a 
certain region of the complex plane. On the other hand, these 
transforms behaved exactly as expected, i.e., the eigenvalues 
obtained by them are located in the half plane defined by the 
mediatrix of the segment defined by the pole and the zero of the 
transform: 

for the first Mobius transform, only eigenvalues with imaginary 
part greater than (pole + zer0)/2 were detected; 
for the second one, only eigenvalues with 4 < 0.1 were detected. 

2- 
Calculated by Different Matri 

e 

real imag # real imag 
1 -0.3542681 0.9524427 8 -0.3542681 -0.9524427 
2 -0.492743 1.793309 4 -0.492743 -1.793309 

eigenvalues with 6 0.1 will have modulus less than 1. 
INVERSE ITERATION ON A I INVERSE ITERATION ON S 
Converged Eigenvalue I iter I Converged Eigenvalue I iter 

-1.165507 
-0.5073684 
-7.59E-02 
-0.169365' 

3.777869 7 -1.165507 -3.777867 
4.526944 5 -0.5073684 -4.526944 
4.730554 4 -7.59E-02 -4.730554 
5.104331 7 -0.1473733 -5.097544 

1-1.027465 11.976434 I 10 1-1.027463 1-1.976431 
3 1-0.2831537 (3.462319 I 4 1-0.2831537 1-3.462319 

6 

-1.027491 1.976458 9 -1.165506 -3.777869 I (-1.165512 13.777867 I 10 (-0.5074013 (-4.526962 

-7.59E-02 4.730554 3 -0.1693647 -5.104332 
-0.1693647 5.104332 3 -7.59E-02 -4.730554 
-0.5073684 4.526944 5 -0.5073684 -4.526944 
-0.4093778 5.743621 6 -0.4093778 -5.743621 
-0.17842 5.629811 5 -0.17842 -5.629811 
-0.17842 5.629811 5 -0.17842 -5.629811 
-0.4093778 5.743621 5 -0.4093778 -5.743621 
-0.2280641 6.773929 9 -0.22801 12 -6.773918 
-0.246041 1 6.368391 5 -0.246041 1 -6.368391 

1-0.4927435 11.793309 I 10 I I 
4 1-0.2831537 13.462319 I 4 1-0.2831537 1-3.462319 

.0.1069953 

.0.2460411 
6.373759 7 
6.368391 7 

1-0.1473725 15.097544 I 7 1-0.1693624 1-5.104332 
5 1-0.1473728 15.097544 I 3 1-0.1473728 1-5.097544 

0.17842 
0.2460411 
0.1069953 

0.1661218 
0.1069955 
0.3504738 
0.4097608 
0.1949145 
0.2280635 
0.4097101 
0.3503849 

0.249553 
0.4741304 

5.629811 8 
6.368391 8 
6.373759 7 

7.114723 4 
6.373759 10 
7.341526 9 
7.068548 9 
6.815865 5 
6.773909 5 
7.75503 8 
8.334722 8 

8.681234 6 
8.60289 9 

1-0.1069953 16.373759 1 5 1-0.1069953 1-6.373759 
7 1-0.1661218 17.114723 I 3 (-0.1661218 1-7.114723 .0.1661218 

.0.2280633 

.0.3504735 

.0.409761 

.0.1949145 
7.114723 4 

6.773909 10 
7.341525 9 
7.068548 9 

6.815865 7 

1-0.1949145 16.815865 I 4 1-0.1949145 1-6.815865 
8 1-0.3503849 18.334722 I 7 1-0.40971 1-7.75503 

-0.3504729 
-0.4864469 
-0.4097608 
-0.2280635 

I 1-0.40971 17.75503 I 5 1-0.5059292 1-8.287663 

7.341525 8 -0.3504761 -7.34152 
7.150498 8 -0.4864479 -7.150497 
7.068548 6 -0.4097608 -7.068548 
6.773909 4 -0.2280635 -6.773909 

1-0.5059293 18.287663 I 9 1-0.3503849 (-8.334722 
9 1-0.249553 18.681234 I 6 1-0.249553 1-8.681234 

-0.2727972 
-0.7103217 

I 1-0.4741303 18.602891 I 8 1-0.4741309 1-8.602891 

9.681755 3 -0.2727972 -9.681755 
9.636901 10 -0.7103293 -9.63691 1 

1-0.613992 18.860255 I 10 1-0.2727946 1-9.681758 
10 1-0.1042566 110.44917 I 4 1-0.1042566 1-10.44917 

# 

4 
8 
4 
8 
9 

8 
- 

- 
5 
9 
5 
5 
8 
8 
3 
3 
3 
5 
7 
6 

- 

6 
6' 
9 
6 
5 
3 
9 
8 
6 
4 
4 
5 
9 
6 
6 
8 
9 
4 
3 

- 

- 

- 

- 

MOBIUS (1 ) 
Converged Eigenvalue I iter 

.0.3542681 0.9524427 =F+ 

.0.283 1537 3.462319 T 

,0.1042566 10.44917 7 

MOBIUS (2) 
Converged Eigenvalue I iter 

real I imag I # 
I I 

0.2727972 19.681755 I 7 
0.2727972 19.681755 I 5 
0.1042566 110.44917 1 5 

rransforms 
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VI. FINAL COMMENTS 

This paper dealt with new algorithms deveIoped for small- 
signal stability analysis by eigenvalue methods. New matrix 
transforms - Mobius transforms - were defrned so that inverse 
iteration and S-matrix methods were particular cases of power 
method applied to these transforms. It was shown that power 
method with these Mobius transforms have the same computational 
cost as inverse iteration with the state matrix A. 

The Mobius transforms are the result of the extension to 

matrices of the map f (x) = - , ad - bc # 0. Therefore, power 

method applied toAA) will converge to the eigenvalues closest to 
(k3 = - d/c) while inhibiting convergence to eigenvalues close to 
( k ~  = - Ha) if a # 0. With suitable definition of the parameters a, b, 
c, d ,  an improved control over eigenvalue calculation may be 
achieved. 

The numerical tests indicated that those transforms were 
efficient when convergence to low damped eigenvalues were 
desirable. Tests conducted with a large power system model clearly 
demonstrated how the use of different transforms could focuse the 
convergence of the power method. 

The inverse iteration method (power method applied to a 
particular Mobius transform) allows convergence only to 
eigenvalues in a region close to a point in the complex plane. A 
Mobius transform extends this characteristic to allow a second 
degree of freedom: the definition of another point such that 
convergence is inhibited in its neighborhood. 

The control of convergence of partial eigensolution methods 
through use of more general Mobius transforms indicates that this 
is a new powerful tool to be applied to small-signal stability 
analysis and equivalent sparse eigenproblems. 
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Discussion 

G. Angelidis and A. Semlyen (University of Toronto): We 
wish to commend the authors for their interesting paper. 
Although the concepts presented are not new, the paper has 
practical and tutorial value. We note that the S-matrix has 
been known for a long time as the Cayley transform of a 
matrix. Since the transformations are used in the paper in 
conjunction with the power method, where the modulus of the 
eigenvalue is of interest, the graphical approach used by the 
authors of representing a transform by surface and contour 
plots is very instructive. In practical applications, it seems 
however that some Lanczos or Arnoldi-type method should be 
used instead of the power method. 

The spectral transformation of the Mobius transform can 
be more easily visualized if the three points pI, pz and p3, are 
viewed as defining a circle (or a straight line). Thus the 
transform maps circles to circles. The objective is to have 
concentric circles in the M-plane (the spectral domain of M). 
In the case of the Cayley transform, these result from the 
mapping of Apollonius circles in the A-plane. In the limit, as 
suggested in the paper, the mediatrix (locus of equidistant 
points) to the foci of the Apollonius circles in the A-plane is 
mapped to the unit-circle in the M-plane. 

The deflation by pre-multiplication of the working vector 
x by the matrix (A-?qI) is a very good and simple idea. This 
matrix-vector multiplication eliminates the component of x in 
the direction of ql, as indicated by (12). We have used 
successfully an alternative technique for implicit deflation in 
our sequential eigenanalysis algorithms [A]. According to 
this technique, Schur vectors, instead of eigenvectors, are 
calculated. The working vector is orthogonalized to the set of 
previously calculated Schur vectors. The orthogonalization is 
computationally much less demanding than a sparse matrix- 
vector product. The process for retrieving the eigenvectors 
from the Schur vectors is trivial. 

The authors' comments would be greatly appreciated. 

[A] G. Angelidis and A. Semlyen, ''Efficient Calculation of 
Critical Eigenvalue Clusters in the Small Signal Stability 
Analysis of Large Power Systems", Paper No. 
94 SM 556-1 PWRS, presented at the IEEEPES 
Summer Meeting, San Francisco, California, July 1994. 

Manuscript received February 22, 1995. 

Leonard0 T. G. Lima, Licio H. Bezerra, Carlos Tomei, 
Nelson Martins (UFF - Niteroi, RJ; UFSC - Florian6polis, 
SC; PUC-RJ - Rio de Janeiro, RJ; CEPEL - Rio de Janeiro, 
RJ, Brazil) - We thank Prof. Semlyen and Dr. Angelidis for 
their valuable comments and questions. We will try to 
address each point in the same order as they were raised. 

Cayley and Mobius transforms are well known and 
have been applied in other engineering fields. The proposal 
of this paper which is believed to be original is the use of 
these transforms with varying parameters and even mix 
different transforms in a single partial eigensolution run to 
achieve better convergence characteristics and/or to yield 
improved control over the eigenvalues (of A) of interest. 

The power method was used to simplify the 
description of each transform. The large scale system results 
in section 5 were all obtained through lop-sided simultaneous 
iteration [ 10, 1 1, 13 3. 

The choice of parameters a, b, c and d is the key point 
to the successful application of the Mobius transform to the 
iterative eigenvalue finding problem. 

The selection of the parameters requires the 
simultaneous solution of three nonlinear equations, shown in 
equation (9). This set of equations will have a solution only if 
three different points in the A-plane are specified to be 
mapped to three different points in the M-plane (including 0 
and CO). Obviously, the same parameters selection can be 
achieved from different sets of specified points. 

One of the best applications of the Mobius transform 
is the implicit deflation by pre-multiplying the working 
vector x by the matrix (A-AiI). Suppose one is using the 
inverse iteration method, defined by the matrix transform (A- 
qI)-'. The inverse iteration with the implicit deflation iterative 
step may be defined as 

I w = (A - q1)- (A - hi I) x = 

= (A - qI)-'(A - hi1 + qI - q1)x = 

= E+ (q- hi)(A - qI)-'$ = 

= X + (q - hi)(A - qI)-' x 

which is a MBbius transform as posed in (7). This derivation 
was ommited in the text of the paper for brevity. However, as 
one of the reviewers found it relevant we take the opportunity 
to include it in this closure. 

The computational effort demanded here is equivalent 
to that required for the inverse iteration method, with an extra 
sum of two vectors. Note that the matrix-vector 
multiplication (A-qI)-'x is carried out through the solution of 
the equation (A-qI)w=x and uses the LU decomposition to 
fully exploit the sparse nature of the problem. There is no 
need to refactorize the matrix to apply the implicit deflation. 
This procedure demands less computational effort than other 
deflation methods based on orthogonalization algorithms. 
The robustness and convergence characteristics of the method 
are to be evaluated in order to establish its overall 
performance when compared to other deflation algorithms. 

Manuscript received April 26, 1995. 


