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Abstract

This paper derives new inexact variants of the Douglas-Rachford splitting method
for maximal monotone operators and the alternating direction method of multipliers
(ADMM) for convex optimization. The analysis is based on a new inexact version of
the proximal point algorithm that includes both an inertial step and overrelaxation. We
apply our new inexact ADMM method to LASSO and logistic regression problems and
obtain somewhat better computational performance than earlier inexact ADMM meth-
ods.
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1 Introduction

This paper develops a sequence of three algorithms, each building on the previous one. The
first algorithm is a new variant of the proximal point algorithm [31] for the general, abstract
problem 0 ∈ T (z), where T is a set-valued maximal monotone operator on Rn for which
T−1(0) 6= ∅. Our proposed method is a new inertial variant of the relaxed hybrid proximal
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projection (HPP) method introduced in [34]; see also [33]. It lacks the full generality of [34],
but introduces a new “inertial” step modification.

Using this first algorithm, we then develop a new inexact variant of the Douglas-Rachford
(DR) splitting method for monotone inclusion problems of the form 0 ∈ A(x) + B(x), where
A,B : Rn ⇒ Rn are set-valued maximal monotone operators.

Finally, based on this latter method, we derive a new inexact variant of the alternating
direction method of multipliers (ADMM) algorithm for solving convex optimization problems
of the form minx∈Rn{f(x) + g(x)}, where f, g : Rn → R ∪ {+∞} are closed proper convex
functions. Using the well known LASSO and logistic regression problems as examples, we
perform some computational tests on this last algorithm in Section 5 below, finding somewhat
better practical performance than earlier proposed inexact ADMM methods from [20, 21].

This path for developing approximate DR and ADMM methods was pioneered in [19], and
is also taken in the more recent paper by Eckstein and Yao [21]: in each case, one takes an
approximate form of proximal point algorithm (PPA) [31] and uses it to obtain an approximate
form of DR splitting, which can then be used to obtain a new “admm primDR” variant of
the ADMM; the iteration complexity of the “admm primDR” ADMM was later studied in [3].
The main difference between this paper and the development of “admm primDR” in [21] is in
the underlying variant of the PPA. The “admm primDR” analysis used the hybrid proximal
extragradient (HPE) method [32] due to Solodov and Svaiter, whereas here we instead use
the new inexact HPP developed in Section 2.

Our general approach resembles that of [21] in that it uses a primal derivation and the
“coupling matrix” between f and g in the optimization formulation must be the identity,
whereas [19], drawing on early work in [25], uses a dual derivation and allows for more general
coupling matrices. Our analysis is also much closer to [21] than that of [20], which uses a
primal-dual “Lagrangian splitting” analysis patterned after [22].

Inertial algorithms for convex optimization and monotone inclusions [2] have been a sub-
ject of intense research in recent years. They appear in connection with continuous dynamics
— see, e.g. [2, 7, 8] — accelerated first- and second-order algorithms, and operator splitting
methods — see e.g. [5, 6, 11, 13, 14, 15, 27] — with good theoretical and practical perfor-
mance improvements over prior methods. The inertial methods we propose here have the
novel property of simultaneously combining inexact iterations, inertia, and relaxation, with
the maximum inertial step α and maximum relaxation factor ρ̄ being subject to a mutual
constraint; see (20) and (21) below. However, the inertial and relaxation parameters may be
chosen independently of the relative-error tolerances.

The remainder of this paper is organized as follows: Section 2 presents our inertial-relaxed
HPP method (Algorithm 1) and its convergence analysis (Theorems 2.4 and 2.5). Section 3
then uses the HPP method to develop an inexact inertial-relaxed DR method (Algorithm 2),
for which convergence is established in Theorem 3.3. Section 4 then uses inertial-relaxed DR
method to derive a partially inexact relative-error ADMM method (Algorithm 3). The main
result of this section is Theorem 4.4. Section 5 presents numerical experiments on LASSO
and logistic regression problems.
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2 An inertial-relaxed hybrid proximal projection

(HPP) method

We begin by developing a new method for the problem

0 ∈ T (z), (1)

where T : Rn ⇒ Rn is a maximal monotone operator; we assume that this problem has a
solution. Our new proposed procedure for this problem, related to the method of [34] but
having a new “inertial” step feature, is given below as Algorithm 1.

Algorithm 1. A relative-error inertial-relaxed HPP method for solving (1)

Initialization: Choose z0 = z−1 ∈ Rn and 0 ≤ α, σ < 1 and 0 < ρ < ρ < 2

for k = 0, 1, . . . do

Choose αk ∈ [0, α] and define

wk = zk + αk(z
k − zk−1) (2)

Find (z̃k, vk) ∈ Rn × Rn and λk > 0 such that

vk ∈ T (z̃k), ‖λkvk + z̃k − wk‖2 ≤ σ2
(
‖z̃k − wk‖2 + ‖λkvk‖2

)
(3)

If vk = 0, then stop. Otherwise, choose ρk ∈ [ ρ, ρ ] and set

zk+1 = wk − ρk
〈wk − z̃k, vk〉
‖vk‖2

vk (4)

end for

We make the following remarks concerning this algorithm:

(i) The extrapolation step in (2) introduces inertial effects — see e.g. [1, 2] — controlled
by the parameter αk. The effect of the overrelaxation parameter ρk in (4) is similar but
not identical, as shown in Figure 1 below. Conditions on {αk}, α ∈ [0, 1) and ρ ∈ (0, 2)
that guarantee the convergence of Algorithm 1 are given in Theorem 2.5 — see (20) and
(21) and Figure 2 below.

(ii) If α = 0, in which case αk ≡ 0, Algorithm 1 reduces to a special case of the HPP
method of [34]; see also [33]. Algorithm 1 is also closely related to the inertial version of
the HPP method presented in [1], although that method uses a different relative error

3



zk−1

zk
wk

zk+1

Hk

wk+1

Figure 1: Geometric interpretation of steps (2) and (4) in Algorithm 1. The overrelaxed
projection step (4) is orthogonal to the separating hyperplane Hk, which can differ from the
direction between zk−1, zk, and wk when αk > 0.

criterion. During the reviewing process, one of the referees pointed out that Algorithm 1
is a special instance of Algorithm 1 in [28]. While this is true, it also appears that the
convergence analysis in [28, Theorem 2.1] has a flaw: in particular, the key inequality
(54) in that analysis reduces to 3 ≤ −1 if one sets α = −1, γ = 1, µ = 0 and τn ≡ τ = 1,
so it is unclear whether the convergence result claimed in [28, Theorem 2.1] is valid.

(iii) At each iteration k, condition (3) is a relative error criterion for the inexact solu-
tion of the proximal subproblem z̃k = (I + λkT )−1(wk) := JλkT (wk). If σ = 0, then
this equation must be solved exactly and the pair (z̃k, vk) may be written (z̃k, vk) =
(JλkT (wk), λ−1

k (wk− z̃k)). Here, we are primarily concerned with situations in which the
calculation of JλkT (wk) is relatively difficult and must be approached with an iterative
algorithm. In such cases, we use the condition (3) as an acceptance criterion to truncate
such an iterative calculation, possibly saving computational effort. We do not specify
the exact form of the iterative algorithm used to produce a pair (z̃k, vk) satisfying (3),
as it depends on the class of problems to which the algorithm is being applied (and
thus the structure of the operator T ). See [33, 34] for a related discussion; an abstract
formalism of the class of algorithm needed to find a solution to (3) is the “B-procedure”
described in [21] and also used in Section 3 below.

(iv) The point zk+1 in (4) may be viewed as zk+1 = wk + ρk(PHk
(wk) − wk), where PHk

denotes orthogonal projection onto the hyperplane

Hk := {z ∈ Rn | 〈z, vk〉 = 〈z̃k, vk〉}, (5)

which strictly separates wk from the solution set T−1(0) of (1). This kind of projective
approach to approximate proximal point algorithms was pioneered in [33].

(v) Algorithm 1 is an inexact variant of the proximal point algorithm (PPA) [31]. In par-
ticular, each of its iterations performs an approximate resolvent calculation subject a
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relative error criterion, and then executes a projection operation in the manner intro-
duced in [33]; see [32, 34] for related work. The main difference from [33] is the inertial
step (2).

If vk = 0 in Algorithm 1, then it follows from the inclusion in (3) that z̃k is a solution
of (1), that is, 0 ∈ T (z̃k), so we halt immediately with the solution z̃k. For the remainder of
this section, we assume that vk 6≡ 0 and hence that Algorithm 1 generates an infinite sequence
of iterates. The following well-known identity will be useful in the analysis of Algorithm 1:

‖(1− ρ)p+ ρq‖2 = (1− ρ)‖p‖2 + ρ‖q‖2 − ρ(1− ρ)‖p− q‖2 ∀p, q ∈ Rn ∀ρ ∈ R. (6)

Lemma 2.1. [34, Lemma 2] For each k ≥ 0, condition (3) implies that

1− σ2

1 +
√

1− (1− σ2)2
‖z̃k − wk‖ ≤ ‖λkvk‖ ≤

1− σ2

1−
√

1− (1− σ2)2
‖z̃k − wk‖. (7)

An immediate implication of Lemma 2.1 is that vk = 0 if and only if z̃k = wk.
The proof of the following proposition can be found, using different notation, in [34]. For

the convenience of the reader, we also present it here.

Proposition 2.2. Let {zk}, {z̃k} and {wk} be generated by Algorithm 1 and define, for all
k ≥ 1,

sk = (2− ρ) max
{
ρ−1‖zk − wk−1‖2, ρ (1− σ2) 2‖z̃k−1 − wk−1‖2

}
. (8)

Then, for any z∗ ∈ T−1(0),

‖zk+1 − z∗‖2 + sk+1 ≤ ‖wk − z∗‖2, ∀k ≥ 0. (9)

Proof. We start by defining ẑ k+1 as the orthogonal projection of wk onto the hyperplane
H := {z ∈ Rn | 〈z, vk〉 = 〈z̃k, vk〉}, i.e.,

ẑ k+1 := wk − 〈w
k − z̃k, vk〉
‖vk‖2

vk. (10)

Next we show that the hyperplane H strictly separates the current point wk from the solution
set Ω := T−1(0) 6= ∅, that is,

〈wk, vk〉 > 〈z̃k, vk〉 ≥ 〈z∗, vk〉 ∀z∗ ∈ Ω. (11)

To this end, 0 ∈ T (z∗), vk ∈ T (z̃k) and the monotonicity of T yield 〈z̃k − z∗, vk〉 ≥ 0, which
is equivalent to the second inequality in (11). On the other hand, note that from (3) and the
Young inequality 2ab ≤ a2 + b2 we have

〈wk − z̃k, vk〉 ≥ 1− σ2

2λk

(
‖z̃k − wk‖2 + ‖λkvk‖2

)
≥ (1− σ2)‖wk − z̃k‖‖vk‖,
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which in turn yields

〈wk − z̃k, vk〉
‖vk‖

≥ (1− σ2)‖wk − z̃k‖ > 0. (12)

One consequence of (12) is the first inequality in (11), so (11) must hold.
From (10) and (11), we may infer that ẑk+1 is the projection wk onto the halfspace

{z ∈ Rn | 〈z, vk〉 ≤ 〈z̃k, vk〉}, which is a convex set containing z∗. The well-known firm
nonexpansivess properties of the projection operation then imply that

‖wk − z∗‖2 − ‖ẑ k+1 − z∗‖2 ≥ ‖wk − ẑ k+1‖2. (13)

Algebraic manipulation of (4) and (10) yields z k+1 − z∗ = (1− ρk)(wk − z∗) + ρk(ẑ
k+1 − z∗).

Combining this equation with (6) with (p, q) = (wk − z∗, ẑ k+1 − z∗) gives

‖zk+1 − z∗‖2 = (1− ρk)‖wk − z∗‖2 + ρk‖ẑ k+1 − z∗‖2 − ρk(1− ρk)‖wk − ẑ k+1‖2,

which after some rearrangement yields

‖wk − z∗‖2 − ‖zk+1 − z∗‖2 = ρk
(
‖wk − z∗‖2 − ‖ẑ k+1 − z∗‖2

)
+ ρk(1− ρk)‖wk − ẑ k+1‖2.

Using (13) in the first term on the right-hand side of this identity produces

‖wk − z∗‖2 − ‖zk+1 − z∗‖2 ≥ ρk‖wk − ẑ k+1‖2 + ρk(1− ρk)‖wk − ẑ k+1‖2

= (ρk + ρk(1− ρk))‖wk − ẑ k+1‖2

= ρk(2− ρk)
(
〈wk − z̃k, vk〉
‖vk‖

)2

[by (10)] (14)

≥ ρk(2− ρk)(1− σ2)2‖wk − z̃k‖2. [by (12)] (15)

To finish the proof, we observe that (14) and (4) yield

‖wk − z∗‖2 − ‖zk+1 − z∗‖2 ≥ ρ−1
k (2− ρk)‖zk+1 − wk‖2.

Combining this inequality with (15), (8) and the bounds ρk ∈ [ ρ, ρ ] results in (9).

The inequality (17) presented in the following proposition plays a role in the convergence
analysis of inertial proximal algorithms — see e.g. [2] — similar to that played by Fejér
monotonicity in the analysis of standard proximal algorithms.

Proposition 2.3. Let {zk}, {wk} and {αk} be generated by Algorithm 1 and let {sk} be as
in (8). Further let z∗ ∈ T−1(0) and define

(∀k ≥ −1) ϕk := ‖zk − z∗‖2 and (∀k ≥ 0) δk := αk(1 + αk)‖zk − zk−1‖2. (16)

Then, ϕ0 = ϕ−1 and

ϕk+1 − ϕk + sk+1 ≤ αk(ϕk − ϕk−1) + δk ∀k ≥ 0, (17)

that is, the sequences {ϕk}, {sk}, {αk} and {δk} satisfy the assumptions of Lemma A.5 below.
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Proof. From (2) we obtain zk − z∗ = (1 + αk)
−1(wk − z∗) + αk(1 + αk)

−1(zk−1 − z∗), which in
conjunction with (6) and some algebraic manipulation yields

‖wk − z∗‖2 = (1 + αk)‖zk − z∗‖2 − αk‖zk−1 − z∗‖2 + αk(1 + αk)‖zk − zk−1‖2.

Using the above identity and (16) we obtain, for all k ≥ 0, that

‖wk − z∗‖2 = (1 + αk)ϕk − αkϕk−1 + δk.

From (9) in Proposition 2.2 and the definition of ϕk in (16), the above inequality yields (17).
Finally, ϕ0 = ϕ−1 follows from the initialization z0 = z−1 and the first definition in (16).

The following theorem presents our first result on the asymptotic convergence of Algo-
rithm 1 under the summability assumption (18). Next, Theorem 2.5 gives sufficient condi-
tions (20) and (21) on the inertial and relaxation parameters to assure that (18) is satisfied.

Theorem 2.4 (Convergence of Algorithm 1). Let {zk}, {z̃k}, {vk}, {λk} and {αk} be gener-
ated by Algorithm 1. If infk λk > 0 and

∞∑
k=0

αk‖zk − zk−1‖2 < +∞ (18)

then {zk} converges to a solution of the monotone inclusion problem (1). Moreover, {z̃k}
converges to the same solution and {vk} converges to zero.

Proof. Define {sk} is as in (8). Using Proposition 2.3, (18), that αk ≤ α < 1 for all k ≥ 0,
and Lemma A.5, it follows that (i) limk→∞ ‖zk − z∗‖ exist for every z∗ ∈ Ω := T−1(0) 6= ∅
and

∑∞
k=1 sk < +∞. So, in particular, {zk} is bounded and (ii) limk→∞ sk = 0 . From the

form of (8), that limk→∞ sk = 0, and the assumption that inf λk > 0, and Lemma 2.1, we
conclude that

lim
k→∞

‖zk − wk−1‖ = lim
k→∞

‖z̃k − wk‖ = lim
k→∞

‖vk‖ = 0. (19)

Now let z∞ ∈ Rn be any cluster point of the bounded sequence {zk}. By (19), this point is
also a cluster point of {wk} and {z̃k}. Let {kj}∞j=0 be an increasing sequence of indices such
that z̃kj → z∞. We then have

(∀j ≥ 0) vkj ∈ T (z̃kj), lim
j→∞

vkj = 0 and lim
j→∞

z̃kj = z∞,

which by the standard closure property of maximal monotone operators yields z∞ ∈ Ω =
T−1(0). Hence, the desired result on {zk} follows from (i) and Opial’s lemma (stated below
as Lemma A.4). On the other hand, the convergence of {zk} and (19) yields the remaining
results regarding {z̃k} and {vk}.

7



β

ρ̄(β)

0 1

2

1
3

1

Figure 2: The relaxation parameter upper bound ρ(β) from (21) as a function of inertial step
upper bound β > 0 of (20). Note that ρ(1/3) = 1, while ρ(β) > 1 whenever β < 1/3.

Theorem 2.5 (Convergence of Algorithm 1). Let {zk}, {αk} and {λk} be generated by Algo-
rithm 1. Assume that α ∈ [0, 1), ρ ∈ (0, 2) and {αk} satisfy the following (for some β > 0):

0 ≤ αk ≤ αk+1 ≤ α < β < 1 ∀k ≥ 0 (20)

and

ρ = ρ(β) :=
2(β − 1)2

2(β − 1)2 + 3β − 1
. (21)

Then,

∞∑
k=1

‖zk − zk−1‖2 < +∞. (22)

As a consequence, it follows that under the assumptions (20) and (21) the sequence {zk}
generated by Algorithm 1 converges to a solution of the monotone inclusion problem (1)
whenever inf λk > 0. Moreover, under the above assumptions, {z̃k} converges to the same
solution and {vk} converges to zero.

Proof. Using (2), the Cauchy-Schwarz inequality and the Young inequality 2ab ≤ a2 + b2 with
a := ‖zk+1 − zk‖ and b := ‖zk − zk−1‖ we find

‖zk+1 − wk‖2 = ‖zk+1 − zk‖2 + α2
k‖zk − zk−1‖2 − 2αk〈zk+1 − zk, zk − zk−1〉

≥ ‖zk+1 − zk‖2 + α2
k‖zk − zk−1‖2 − αk

(
2‖zk+1 − zk‖‖zk − zk−1‖

)
≥ (1− αk)‖zk+1 − zk‖2 − αk(1− αk)‖zk − zk−1‖2. (23)
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Starting with a rearrangement of (17), we then obtain

ϕk+1 − ϕk − αk(ϕk − ϕk−1) ≤ δk − sk+1

≤ αk(1 + αk)‖zk − zk−1‖2 − (2− ρ)ρ−1‖zk+1 − wk‖2 [by (8) and (16)]

≤ αk(1 + αk)‖zk − zk−1‖2

− (2− ρ)ρ−1
[
(1− αk)‖zk+1 − zk‖2 − αk(1− αk)‖zk − zk−1‖2

]
[by (23)]

= −(2− ρ)ρ−1(1− αk)‖zk+1 − zk‖2 +
[
αk(1 + αk) + (2− ρ)ρ−1αk(1− αk)

]
‖zk − zk−1‖2

= −(2− ρ)ρ−1(1− αk)‖zk+1 − zk‖2 + γk‖zk − zk−1‖2, (24)

where

γk := −2(ρ−1 − 1)α2
k + 2 ρ−1αk ∀k ≥ 0. (25)

Some elementary algebraic manipulations of (24) then yield

ϕk+1 − ϕk − αk(ϕk − ϕk−1)− γk‖zk − zk−1‖2 ≤ −(2 ρ−1 − 1)(1− αk)‖zk+1 − zk‖2 ∀k ≥ 0.
(26)

Define now the scalar function:

q(ν) := 2(ρ−1 − 1)ν 2 − (4ρ−1 − 1)ν + 2ρ−1 − 1, (27)

and

µ0 := (1− α0)ϕ0 ≥ 0, µk := ϕk − αk−1ϕk−1 + γk‖zk − zk−1‖2 ∀k ≥ 1, (28)

where ϕk is as in (16). Using (26)-(28) and the assumption that {αk} is nondecreasing — see
(20) — we obtain, for all k ≥ 0,

µk+1 − µk ≤
[
ϕk+1 − ϕk − αk(ϕk − ϕk−1)− γk‖zk − zk−1‖2

]
+ γk+1‖zk+1 − zk‖2

≤
[
γk+1 − (2ρ−1 − 1)(1− αk+1)

]
‖zk+1 − zk‖2

= −
[
2(ρ−1 − 1)α2

k+1 − (4ρ−1 − 1)αk+1 + 2ρ−1 − 1
]
‖zk+1 − zk‖2

= −q(αk+1)‖zk+1 − zk‖2. (29)

We will now show that q(αk+1) admits a uniform positive lower bound. To this end, note first
that from (21) and Lemma A.2 below that we have

β =
2(2− ρ)

4− ρ+
√
ρ(16− 7ρ)

.

Using the latter identity, (27), and Lemma A.3 below with a = 2(ρ−1− 1), b = 4ρ−1− 1, and
c = 2ρ−1 − 1, we conclude that q(·) is decreasing in [0, β] and β > 0 is a root of q(·). Thus,
in view of (20), we conclude that

q(αk+1) ≥ q(α) > q(β) = 0, (30)
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which gives the desired uniform positive lower bound on q(αk+1).
Using (29) and (30) we find

‖zk+1 − zk‖2 ≤ 1

q(α)
(µk − µk+1), ∀k ≥ 0, (31)

which, in turn, combined with (20) and the definition of µk in (28), gives

k∑
j=0

‖zj+1 − zj‖2 ≤ 1

q(α)
(µ0 − µk+1),

≤ 1

q(α)
(µ0 + αϕk) ∀k ≥ 0. (32)

Note now that (31), (20) and (28) also yield

µ0 ≥ . . . ≥ µk+1 =ϕk+1 − αkϕk + γk+1‖zk+1 − zk‖2

≥ϕk+1 − αϕk, ∀k ≥ 0,

and so,

ϕk+1 ≤ αk+1ϕ0 +
µ0

1− α
≤ ϕ0 +

µ0

1− α
∀k ≥ −1. (33)

Hence, (22) follows directly from (32) and (33). On the other hand, the second statement of
the theorem follows from (22) and Theorem 2.4 (recall that αk ≤ α < 1 for all k ≥ 0).

We close this section with a few further remarks about the analysis of Algorithm 1:

(i) Conditions (20) and (21) on {αk}, α and ρ guarantee that the summability condition
(18) is satisfied, thus guaranteeing the convergence of Algorithm 1. Similar conditions
were also recently proposed and studied in [4, 6]. Since Algorithm 1 is be the basis of
the DR and ADMM methods developed in the next two sections, conditions (20) and
(21) will also play an important role in their convergence analysis.

(ii) If we set β = 1/3 in (20), then it follows immediately from (21) that ρ = 1. On the other
hand, we have ρ > 1 in (21) whenever β < 1/3 (see also Figure 2). Setting β = 1/3
in (20) is corresponds to the standard strategy in the literature of inertial proximal
algorithms; see e.g. [2, 13].

3 A partially inexact inertial-relaxed Douglas-Rachford

(DR) algorithm

Consider the monotone inclusion problem of finding z ∈ Rn such that

0 ∈ A(z) +B(z) (34)
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where A and B are (set-valued) maximal monotone operators on Rn for which the solution
set (A+B)−1(0) of (34) is nonempty.

A popular operator splitting algorithms for finding approximate solutions to (34) is the
Douglas-Rachford (DR) algorithm [26, 19],

zk+1 = JγA
(
2JγB(zk)− zk

)
+ zk − JγB(zk) ∀k ≥ 0, (35)

where γ > 0 is a scaling parameter, zk is the current iterate and JγA = (γA + I)−1 and
JγB = (γB + I)−1 are the resolvent operators of A and B, respectively. The DR algorithm
(35) is a splitting algorithm for solving the (structured) inclusion (34) in the sense that the
resolvents JγA and JγB are employed separately, but the resolvent Jγ(A+B) of A + B is not.
Such methods may be useful in situation in which the values of JγA and JγB are relatively
easy to evaluate in comparison to those of Jγ(A+B). The method’s name derives from 1950’s
work on solving structured linear equations [17].

This section will develop an inexact version of the DR algorithm (35) for the situation in
which the resolvent of one of the operators, say B, is relatively hard, but evaluating JγA is a
simple calculation. To this end, we consider the following equivalent formulation of (35) (see,
e.g., [19]) 1 : given some rk, bk ∈ Rn,

Find (sk+1, bk+1) ∈ B such that sk+1 + γbk+1 = rk + γbk; (36)

Find (rk+1, ak+1) ∈ A such that rk+1 + γak+1 = sk+1 − γbk+1. (37)

In this case, zk = rk + γbk. Since the resolvent JγA of A is assumed to be easily computable,
the pair (rk+1, ak+1) in (37) is explicitly given by

rk+1 = JγA(sk+1 − γbk+1) ak+1 = γ−1(sk+1 − rk+1)− bk+1.

For B, we by contrast suppose that exact computation of the pair (sk+1, bk+1) satisfying (36)
requires a relatively time-consuming iterative process, which we model immediately below by
the notion of a B-procedure as introduced in [21]. We first remark that (36) can be posed in
the more general framework of solving monotone inclusion problems of the form

0 ∈ s+ γB(s)− (r + γb), (38)

where r, b ∈ Rn and γ > 0.

Definition 3.1 (B–procedure for solving (38)). A B–procedure for (approximately) solving
any instance of (38) is a mapping B : Rn×Rn×R++×Rn×Rn×N∗ → Rn×Rn such that if
one lets (s`, b`) = B(r, b, γ, s̄, b̄, `) for all ` ∈ N∗ and any given r, b, s̄, b̄ ∈ Rn and γ > 0, then
b` ∈ B(s`), for all ` ∈ N∗, the sequence {(s`, b`)} is convergent, and s` + γb` → r + γb.

Following [21], the intuitive meaning of (s`, b`) = B(r, b, γ, s̄, b̄, `) is that (s`, b`) is the `th trial
approximation generated by some iterative procedure for solving (38), starting from some
initial guess (s̄, b̄) ∈ Rn × Rn. We refer the interested reader to [21, Section 5] for a more
detalied discussion and interpretation on the B-procedure concept.

We make the following standing assumption:

1We identify any set-valued map T : Rn ⇒ Rn with its graph, i.e., T = {(z, v) ∈ Rn × Rn | v ∈ T (z)}.
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Assumption 1. There exists a B-procedure (according to Definition 3.1) for approximately
solving any instance of (38).

We now combine the hypothesized B-procedure with an acceptance criterion for the ap-
proximate solution of (36). We will follow the general approach of [21], which is to exploit
the connection between the DR algorithm (36)-(37) and the proximal point algorithm as es-
tablished in [19]. Specifically, the DR algorithm (36), (37) is a special instance of the PP
algorithm in the sense that,

rk+1 + γbk+1 = (Sγ,A,B + I)−1(rk + γbk) ∀k ≥ 0

where the “splitting” operator Sγ,A,B is defined as [19]

Sγ,A,B := {(r + γb, s− r) ∈ Rn × Rn | b ∈ B(s), a ∈ A(r), γa+ r = s− γb}. (47)

The operator defined in (47) is maximal monotone and

(A+B)−1(0) = JγB
(
S −1
γ,A,B(0)

)
, (48)

which, in particular, gives that any solution z∗ ∈ Rn of the monotone inclusion problem (1)
with T := Sγ,A,B, namely

0 ∈ Sγ,A,B(z) (49)

yields a solution x∗ := JγB(z∗) of (34).
Here, we follow a similar derivation to [21], but use Algorithm 1 of Section 2 to (49)

in place of the HPE method of [32]. The result is an inertial-relaxed inexact relative-error
DR algorithm for solving (34). We should emphasize that even when αk ≡ 0 (there is no
inertial step) and ρk ≡ 1 (no overrelaxation), the resulting algorithm differs from that of [21].
This difference arises because the underlying “convergence engine” of Algorithm 1 is a form
of hybrid proximal-projection (HPP) algorithm, whereas [21] used an HPE algorithm in the
equivalent role, using an extragradient step instead of projection.

The proposed algorithm for solving (34) is shown as Algorithm 2. We should mention that
a different inexact DR splitting algorithm in which relative errors are allowed in both (40)
and (42) was recently proposed and studied in [35], but without computational testing. The
following proposition shows that Algorithm 2 is indeed a special instance of Algorithm 1 for
solving (1) with T := Sγ,A,B.

Proposition 3.2. Consider the sequences evolved by Algorithm 2 and for each k ≥ 0 let
`(k) denote the value of ` for which (43) is satisfied. For each k ≥ 0, define, with γ as in
Algorithm 2,

zk := rk + γbk wk := r̂k + γb̂k

z̃k := rk,`(k) + γbk,`(k) vk := sk,`(k) − rk,`(k).
(50)

Then these latter sequences satisfy the conditions (2)-(4) of Algorithm 1 with λk ≡ 1 and
T = Sγ,A,B.
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Algorithm 2. A partially inexact inertial–relaxed Douglas-Rachford splitting
algorithm for solving (34)

Choose γ > 0, 0 ≤ α, σ < 1 and 0 < ρ < ρ < 2. Initialize (s0, b0, r0) =
(s−1, b−1, r−1) ∈ (Rn)3.

for k = 0, 1, 2, . . . do

Choose αk ∈ [0, α] and define

(ŝk, b̂k, r̂k) = (sk, bk, rk) + αk
[
(sk, bk, rk)− (sk−1, bk−1, rk−1)

]
(39)

repeat {for ` = 1, 2, . . . }

Improve the solution to

bk,` ∈ B(sk,`), sk,` + γbk,` ≈ r̂k + γb̂k (40)

by setting

(sk,`, bk,`) = B(r̂k, b̂k, γ, ŝk, b̂k, `) (41)

(thus incrementally executing a step of the B–procedure)

Exactly find (rk,`, ak,`) ∈ Rn × Rn such that

ak,` ∈ A(rk,`), rk,` + γak,` = sk,` − γbk,` (42)

until

‖sk,` + γbk,` − (r̂k + γb̂k)‖2 ≤ σ2
(
‖rk,` + γbk,` − (r̂k + γb̂k)‖2 + ‖sk,` − rk,`‖2

)
(43)

if sk,` = rk,`, then stop

otherwise, choose ρk ∈ [ ρ, ρ ] and set

sk+1 = sk,`, rk+1 = rk,` (44)

θk+1 =
〈(r̂k − rk,`) + γ(b̂k − bk,`), sk,` − rk,`〉

‖sk,` − rk,`‖2
(45)

bk+1 = b̂k − γ−1
[
(1− ρk θk+1)rk+1 + ρk θk+1s

k+1 − r̂k
]

(46)

end for
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Proof. Fix any k ≥ 0. From (39) and the definitions of zk and wk in (50) we have

wk = r̂k + γb̂k = rk + γbk + αk[r
k + γbk − (rk−1 + γbk−1)]

= zk + αk(z
k − zk−1),

which is exactly (2). Now note that the inclusion in (3) follows from the fact that T := Sγ,A,B,
(47), (42), bk,`(k) ∈ B(sk,`(k)) from (40), and the definitions of vk and z̃k in (50).

Further, (50) and (43) yield

‖vk + z̃k − wk‖2 = ‖sk,`(k) + γbk,`(k) − (r̂k + γb̂k)‖2

≤ σ2
(
‖rk,`(k) + γbk,`(k) − (r̂k + γb̂k)‖2 + ‖sk,` − rk,`‖2

)
= σ2

(
‖z̃k − wk‖2 + ‖vk‖2

)
,

which is exactly the inequality in (3) with λk = 1. Finally,

zk+1 = rk+1 + γbk+1 [by (50)]

= rk,`(k) + γ

(
b̂k − 1

γ

[
(1− ρkθk+1)rk,`(k) + ρkθk+1s

k,`(k) − r̂k
])

[by (44) and (46)]

= r̂k + γb̂k + ρkθk+1

(
rk,`(k) − sk,`(k)

)
= wk − ρkθk+1v

k [by (50)]

= wk − ρk
〈wk − z̃k, vk〉
‖vk‖2

vk, [by (45) and (50)]

which establishes (4) and thus completes the proof of the proposition.

The following theorem states the asymptotic convergence properties of Algorithm 2, which
are essentially direct consequences of Proposition 3.2 and Theorem 2.5.

Theorem 3.3 (Convergence of Algorithm 2). Consider the sequences evolved by Algorithm 2
with the parameters α ∈ [0, 1), ρ ∈ (0, 2) and {αk} satisfying the conditions (20) and (21) of
Theorem 2.5. Then

(a) If the outer loop (over k) executes an infinite number of times, with each inner loop
(over `) terminating in a finite number of iterations ` = `(k), then {sk} and {rk} both
converge to some solution x∗ ∈ Rn of (34), and {bk,`(k)} and {bk} both converge to some
b∗ ∈ B(x∗), with {ak,`(k)} converging to −b∗ ∈ A(x∗).

(b) If the outer loop executes only a finite number of times, ending with k = k̄, with the
last invocation of the inner loop executing an infinite number of times, then {sk̄,`}∞`=1

and {rk̄,`}∞`=1 both converge to some solution x∗ ∈ Rn of (34), and {bk̄,`}∞`=1 converges
to some b∗ ∈ B(x∗), with {ak̄,`}∞`=1 converging to −b∗ ∈ A(x∗).

(c) If Algorithm 2 stops with sk,` = rk,`, then z∗ := sk,` = rk,` is a solution of (34).

14



Proof. (a) For each k ≥ 0, again let ` = `(k) be the index of inner iteration that first meets the
inner-loop termination condition. Using Proposition 3.2, (44), the descriptions of algorithms 1
and 2, and Theorem 2.5, we conclude that there exists z∗ ∈ Rn such that 0 ∈ Sγ,A,B(z∗) and

zk = rk + γbk → z∗ z̃k−1 = rk + γb(k−1),`(k−1) → z∗ vk−1 = sk − rk → 0. (51)

From 0 ∈ Sγ,A,B(z∗) and (48) we obtain that x∗ := JγB(z∗) is a solution of (34). Moreover, it
follows from (51), the inclusion in (40), (44), and the continuity of JγB that

sk + γb(k−1),` = vk−1 + z̃(k−1) → 0 + z∗ = z∗ sk = JγB(sk + γb(k−1),`)→ JγB(z∗) = x∗. (52)

We also have rk → x∗ since, from (51), sk − rk → 0. Altogether, we have that x∗ is a solution
of (34) and {sk} and {rk} both converge to x∗. From (52) we now have

bk,`(k) = γ−1(sk+1 + γbk,`(k) − sk+1)→ γ−1(z∗ − x∗) := b∗. (53)

From x∗ = JγB(z∗) we then obtain b∗ ∈ B(x∗). On the other hand, using the equation in (42),
(44), (51) and (53) we find

ak,`(k) = γ−1(sk+1 − rk+1)− bk,`(k) → 0− b∗ = −b∗.

Using the above convergence result, that rk,`(k) = rk+1 → x∗, the inclusion in (42), and Lemma
A.1, we obtain that −b∗ ∈ A(x∗). Finally, bk = γ−1(zk − rk)→ γ−1(z∗ − r∗) = b∗.

(b) First note that using (41) we obtain (sk̄,`, bk̄,`) = B(r̂k̄, b̂k̄, γ, ŝk̄, b̂k̄, `), which in view
of Definition 3.1 yields (sk̄,`, bk̄,`) ∈ B, for all ` ≥ 1, sk̄,` + γbk̄,` → r̂k̄ + γb̂k̄, sk̄,` → x∗, and
bk̄,` → b∗, for some x∗, b∗ ∈ Rn. Combining limits, we obtain that r̂k̄ + γb̂k̄ = x∗ + γb∗. From
Lemma A.1, we also have b∗ ∈ B(x∗). Now combining the limits with (42) and the continuity
of JγA, we also find

rk̄,` = JγA(sk̄,` − γbk̄,`)→ JγA(x∗ − γb∗) =: r∗

and so

ak̄,` = γ−1
(
sk̄,` − rk̄,`

)
− bk̄,` → γ−1(x∗ − r∗)− b∗ =: a∗. (54)

From the inclusion in (42) and (again) Lemma A.1 we obtain that a∗ ∈ A(r∗). On the other
hand, using (43) and the hypothesis that the inner loop executes an infinite number of times
at iteration k = k̄, we obtain, for all ` ≥ 1, that

‖sk̄,` + γbk̄,` − (r̂k̄ + γb̂k̄)‖2 > σ2
(
‖rk̄,` + γbk̄,` − (r̂k̄ + γb̂k̄)‖2 + ‖sk̄,` − rk̄,`‖2

)
. (55)

Since the left-hand side of the above inequality converges to zero and the right-hand side is
nonnegative, the right-hand side also converges to zero and in particular sk̄,`− rk̄,` → 0. Since
sk̄,` → x∗ and rk̄,` → r∗, we conclude that x∗ = r∗ and, hence, from (54), that a∗ = −b∗.

(c) If sk,` = rk,` =: z∗, then it follows from the inclusion in (40) and (42) that 0 =
γ−1(sk,` − rk,`) = ak,` + bk,` ∈ A(rk,`) +B(sk,`) = (A+B)(z∗).
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4 A partially inexact relative-error inertial-relaxed

ADMM

We now consider the convex optimization problem

min
z∈Rn
{f(x) + g(x)} (56)

where f, g : Rn → (−∞,∞] are proper, convex and lower semicontinuous functions for which
(∂f + ∂g)−1(0) 6= ∅.

The alternating direction method of multipliers (ADMM) [24] is a first-order algorithm for
solving (56) which has become popular over the last decade largely due to its wide range of
applications in data science (see, e.g., [12]). As applied to (56), one iteration of the ADMM
may be described as:

xk+1 ∈ argmin
x∈Rn

{
f(x) + 〈pk, x〉+

c

2
‖x− zk‖2

}
, (57)

zk+1 ∈ argmin
z∈Rn

{
g(z)− 〈pk, z〉+

c

2
‖xk+1 − z‖2

}
, (58)

pk+1 = pk + c(xk+1 − zk+1). (59)

In many applications, the function g is such that (58) has a closed-form or otherwise
straightforward solution (e.g., g(·) = ‖ · ‖1). We consider situations in which this is the case,
but solving (57) is more difficult and requires some form of iterative process. Eckstein and
Yao [21, Section 6] proposed and studied the asymptotic convergence of an inexact version of
the ADMM tailored to such situations: at each iteration, (57) may be approximately solved
within a relative-error tolerance. This method is a special version of their inexact relative-
error Douglas-Rachford (DR) algorithm mentioned in Section 3, as applied to the monotone
inclusion problem

0 ∈ ∂f(x) + ∂g(x) (60)

which is, in particular, a special case of (34) with A = ∂g and B = ∂f (or vice versa).
Problem (60) is, under standard qualification conditions, equivalent to (56). Recall that we
are assuming (∂f + ∂g)−1(0) 6= ∅, i.e., that (60) admits at least one solution.

In this section, we propose and study the asymptotic behaviour of a (partially) inex-
act relative-error inertial-relaxed ADMM algorithm for solving (56). The proposed method,
namely Algorithm 3, is a special version of Algorithm 2 when applied to solving (60) and may
be viewed as an alternative to the Eckstein-Yao approximate ADMM [21] that incorporates
inertial and relaxation effects to accelerate convergence.

To formalize the inexact solution process for the subproblems (57), we introduce the notion
of an F -procedure [21]. First, we note that any instance of (57) can be posed slightly more
abstractly as

min
x∈Rn

{
f(x) + 〈p, x〉+

c

2
‖x− z‖2

}
(61)
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where p, z ∈ Rn and c > 0.

Definition 4.1 (F -procedure for solving (61)). A F–procedure for (approximately) solving
any instance of (61) is a mapping F = (F1,F2) : Rn×Rn×R++×Rn×N∗ → Rn×Rn such
that if one lets (x`, y`) = F(p, z, c, x̄, `) for all ` ∈ N and any given p, z, x̄ ∈ Rn and c > 0,
then

lim
`→∞

y` = 0 and (∀` ∈ N) y` ∈ ∂x
[
f(x) + 〈p, x〉+

c

2
‖x− z‖2

]
x=x`

. (62)

Quoting [21, Assumption 2], “the idea behind this definition is that F(p, z, c, x̄, `) is the
`th iterate produced by the x-subproblem solution procedure with penalty parameter c, the
Lagrange multiplier estimate pk equal to p, and zk = z, starting from the solution estimate
x̄”. For the remainder of this section, we assume the following.

Assumption 2. There exists a F–procedure (according to Definition 4.1) for approximately
solving any instance of (61).

The next lemma shows that the F -procedure is essentially a form of B–procedure (see Defini-
tion 3.1). Although the proof essentially duplicates analysis in [20, 21], it is not presented as a
separate result there. Therefore we include the proof in the interest of rigor and completeness.

Lemma 4.2. Let F(·) = (F1(·),F2(·)) be a F–procedure for solving (61), where Fi : Rn×Rn×
R++×Rn×N∗ → Rn, for i = 1, 2, and define B : Rn×Rn×R++×Rn×Rn×N∗ → Rn×Rn

by

B(r, b, γ, s̄, b̄, `) = F(−b, r, γ−1, s̄, `) +
(
0, b− γ−1(F1(−b, r, γ−1, s̄, `)− r)

)
. (63)

Then, B is a B–procedure (see Definition 3.1) for approximately solving (38) in which s := x,
B := ∂f , γ = c−1, r := z and b := −p.

Proof. Assume that (s`, b`) = B(r, b, γ, s̄, b̄, `) for some r, b, s̄, b̄ ∈ Rn, γ > 0 and all ` ∈ N∗. In
view of (63) and the fact that F = (F1,F2) we have

(s`, b`) =
(
F1(−b, r, γ−1, s̄, `),F2(−b, r, γ−1, s̄, `)

)
+
(
0, b− γ−1(F1(−b, r, γ−1, s̄, `)− r)

)
and so, for all ` ∈ N∗,

(s`, b` − b+ γ−1(s` − r)) =
(
F1(−b, r, γ−1, s̄, `),F2(−b, r, γ−1, s̄, `)

)
= F(−b, r, γ−1, s̄, `).

Using the latter identity and the fact that F(·) is a F–procedure (see Definition 4.1) we obtain

lim
`→∞

(b` − b+ γ−1(s` − r)︸ ︷︷ ︸
=:y`

) = 0 and (∀` ∈ N) y` ∈ ∂x
[
f(x)− 〈b, x〉+

1

2γ
‖x− r‖2

]
x=s`

which, in particular, after some computations, yields (s`, b`) ∈ G(∂f), i.e., b` ∈ ∂f(s`) for all
` ∈ N∗. Using this fact and the definition of y` we find s` = (γ∂f + I)−1(r+ γ(y` + b)), which
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in turn combined with the fact that lim`→∞ y` = 0 and the continuity of Jγ∂f := (γ∂f + I)−1

implies that s` → Jγ∂f (r + γb). On the other hand, using the definition of y` (again) we
also obtain γb` + s` = γ(y` + b) + r, which gives that {b`} is convergent and γb` + s` →
r + γb. Altogether, we proved that (s`, b`) ∈ ∂f , for all ` ∈ N∗, that the sequence {(s`, b`)} is
convergent and s` + γb` → r + γb, which finishes the proof.

Our inertial-relaxed inexact ADMM for solving (56) is presented as Algorithm 3. Before
establishing its convergence, we make the following remarks regarding this algorithm:

(i) Similarly to Algorithm 2, Algorithm 3 benefits from inertial and relaxation effects —
see (64) and (72) — as well as from the relative error criterion (69) allowing inexact
solution of the f -subproblem (65).

(ii) Algorithm 3 can be viewed as an inertial-relaxed version of Algorithm 4 in [21], but
we emphasize that even without inertia or relaxation (that is, when α = 0 and ρk ≡
1) it differs from the latter algorithm since Algorithm 4 is based on an approximate
proximal point algorithm using an extragradient “corrector” step, while Algorithm 3 is
instead based indirectly on Algorithm 1, an approximate proximal point method using
projective corrector steps. In developing Algorithm 3, we also experimented with using
extragradient correction, but obtained better numerical performance from projective
correction.

(iii) The derivation of Algorithm 3 mirrors that in [21], except that the underlying conver-
gence “engine” from [33] is replaced by Algorithm 1. It should be noted that [20] provides
a different way of deriving approximate ADMM algorithms. This approach results in
different approximate forms of the ADMM, allowing for both relative and absolute error
criteria, both of a practically verifiable form. It is also possible that the work in [35]
could lead to still more approximate forms of the ADMM.

(iv) As in [21], the derivation of our algorithm is based on a primal reformulation (60) of
the optimization problem (56) as a monotone inclusion. Using a primal formulation is
necessary here, as in [21], because Algorithm 2 requires pairs (sk,`, bk,`) that are in the
graph of B. Working with the dual inclusion 0 ∈ ∂f ∗(−p) + g∗(p) would in general
require exact optimization of linear or quadratic perturbations of f and g, and would
thus not lead to a method in which (57) is solved approximately in a practical manner.
In the case of problem (56), applying exact Douglas-Rachford splitting to either the
primal inclusion (60) or the dual inclusion 0 ∈ ∂f ∗(−p) + g∗(p) is known to yield the
same ADMM algorithm (57)-(59); see for example [18, Proposition 3.43]. Here, we select
the primal approach since it leads to a tractable form of approximation for (57).

The drawback of the primal approach is that does not readily adapt to more general
problem formulations such as minx∈Rn{f(x) + g(Mx)} (where M is an m × n matrix
and g is now defined over Rm instead of Rn) or the linearly constrained formulation
used in [12]. Such formulations require different techniques, such as those employing
primal-dual inclusion formulations as in [20].
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Algorithm 3. Partially inexact relative-error inertial-relaxed ADMM for (56)

Choose c > 0, 0 ≤ α, σ < 1 and 0 < ρ < ρ < 2.
Initialize (x0, z0, p0) = (x−1, z−1, p−1) ∈ (Rn)3.

for k = 0, 1, 2, . . . do

Choose αk ∈ [0, α] and define

(x̂k, ẑk, p̂k) = (xk, zk, pk) + αk[(x
k, zk, pk)− (xk−1, zk−1, pk−1)] (64)

repeat {for ` = 1, 2, . . . }

Improve the solution

xk+1 ≈ argmin
x∈Rn

{
f(x) + 〈p̂k, x〉+

c

2
‖x− ẑk‖2

}
(65)

by setting

(xk,`, yk,`) = F(p̂k, ẑk, c, x̂k, `) (66)

(thus incrementally executing a step of the F–procedure)

Define

pk,` = p̂k + c(xk,` − ẑk)− yk,` (67)

Exactly find

zk,` = argmin
z∈Rn

{
g(z)− 〈pk,`, z〉+

c

2
‖xk,` − z‖2

}
(68)

until

‖yk,`‖2 ≤ σ2
(
‖pk,` − p̂k − c(zk,` − ẑk)‖2 + c2‖xk,` − zk,`‖2

)
(69)

if xk,` = zk,` then stop
otherwise, choose ρk ∈ [ ρ, ρ ] and set

xk+1 = xk,`, zk+1 = zk,` (70)

θk+1 =
〈c(ẑk − zk,`)− (p̂k − pk,`), xk,` − zk,`〉

c‖xk,` − zk,`‖2
(71)

pk+1 = p̂k + c
[
(1− ρk θk+1)zk+1 + ρk θk+1x

k+1 − ẑk
]

(72)

end for
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Proposition 4.3. For any given execution of Algorithm 3, define

(sk, bk, rk) := (xk,−pk, zk) (ŝk, b̂k, r̂k) := (x̂k,−p̂k, ẑk) (73)

(sk,`, bk,`, rk,`) := (xk,`,−pk,`, zk,`) ak,` := c(sk,` − rk,`)− bk,` (74)

for all applicable k and l. Then these sequences conform to the recursions (39)-(46) in Al-
gorithm 2 with γ = 1/c, the B-procedure (63), and the maximal monotone operators A = ∂g
and B = ∂f .

Proof. In view of (73) and (64) we have

(ŝk, b̂k, r̂k) = (x̂k,−p̂k, ẑk) =
(
xk + αk(x

k − xk−1),−pk − αk(pk − pk−1), zk + αk(z
k − zk−1)

)
= (sk, bk, rk) + αk

[
(sk, bk, rk)− (sk−1, bk−1, rk−1)

]
,

which is identical to (39) in Algorithm 2. Fix γ = 1/c. Then (66), Definition 4.1, (73) lead to

xk,` = F1(p̂k, ẑk, c, x̂k, `) = F1(−b̂k, r̂k, γ−1, ŝk, `). (75)

Combining (74), (67), (66), (75), (73), and (63), we deduce that

(sk,`, bk,`) = (xk,`,−pk,`)
= (xk,`, yk,`) + (0,−p̂k − γ−1(xk,` − ẑk))
= F(−b̂k, r̂k, γ−1, ŝk, `) + (0, b̂k − γ−1(F1(−b̂k, r̂k, γ−1, ŝk, `)− r̂k))
= B(r̂k, b̂k, γ, ŝk, b̂k, `),

which yields (40) and (41). Note now that (68) is equivalent to the condition 0 ∈ ∂g(zk,`) −
pk,` + c(zk,`−xk,`), which, in view of (74), is clearly equivalent to (42) with A = ∂g. To prove
(43), note that from (73), (74), (67) and (69) we obtain

‖sk,` + γbk,` − (r̂k + γb̂k)‖2 = ‖γ yk,`‖2

≤ γ2σ2
(
‖pk,` − p̂k − c(zk,` − ẑk)‖2 + c2‖xk,` − zk,`‖2

)
which in view of (73) and (74) is equivalent to (43). Finally, similar reasoning establishes that
(44)-(46) are equivalent to (70)-(72).

Theorem 4.4 (Convergence of Algorithm 3). Consider any execution of Algorithm 3 for
which α ∈ [0, 1), ρ ∈ (0, 2), and {αk} satisfy conditions (20) and (21) of Theorem 2.5. Then:

(a) If for each k ≥ 0 the outer loop (over k) executes an infinite number of times, with
each inner loop (over `) terminating in a finite number of iterations ` = `(k), then {xk}
and {zk} both converge to some x∗ ∈ Rn solution of (60), and {pk} converges to some
p∗ ∈ ∂g(x∗) such that −p∗ ∈ ∂f(x∗).

(b) If the outer loop executes only a finite number of times, ending with k = k̄, with the
last invocation of the inner loop executing an infinite number of times, then {xk̄,`}` and
{zk̄,`}` both converge to some x∗ ∈ Rn solution of (60), and {pk̄,`}` converges to some
p∗ ∈ ∂g(x∗) such that −p∗ ∈ ∂f(x∗).
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(c) If Algorithm 3 stops with either pk,`−p̂k = c(zk,`−ẑk) or xk,` = zk,` then x∗ := xk,` = zk,`

is a solution of (60).

Proof. The result follows from immediately by combining Proposition 4.3, Theorem 3.3, and
the definitions of Algorithms 2 and 3.

5 Numerical experiments

This section describes numerical experiments on the LASSO and logistic regression problems,
which are both instances of the minimization problem (56). We tested the following algo-
rithms: the inexact relative-error ADMM admm primDR from [21]; the relative-error method
relerr from [20]; Algorithm 3 from this paper, which we denote as admm primDR relx in; the
absolute-error aproximate ADMM absgeom discussed in [20, 21], and (for logistic regression
problems only) a backtracking variant of FISTA [10] (also discussed in [21]). We implemented
all algorithms in MATLAB, and, analogously to [21], we used the following condition to ter-
minate the outer loop:

dist∞ (0, ∂x[f(x) + g(x)]x=xk) ≤ ε, (76)

where dist∞(t, S) := inf{‖t− s‖∞ | s ∈ S}, and ε > 0 is a tolerance parameter set to 10−6.
Moreover, in our implementation of Algorithm 3 from this paper, we replaced the error

condition (69) with the stronger condition

‖yk,`‖ ≤ σmax
{
‖pk,` − p̂k − c(zk,` − ẑk)‖, c‖xk,` − zk,`‖

}
, (77)

which we empirically found to yield better numerical performance.

5.1 Numerical experiments on the LASSO problem

In this subsection, we report numerical experiments on the LASSO problem [36]

min
x∈Rn

1

2
‖Ax− b‖2 + ν‖x‖1, (78)

where A ∈ Rm×n, b ∈ Rm and ν > 0, which is an instance of (56) with f(x) := (1/2)‖Ax− b‖2

and g(x) := ν‖x‖1. For the data A and b, we used the same (non-artificial) datasets as in [21].
We tested three algorithms for solving (78):

• The inexact relative-error ADMM admm primDR from [21]. For this algorithm, we used
the same parameter values as in [21], namely σ = 0.99 and c = 1 (except for the PEMS
problem instance, for which c = 20).

• The relative-error algorithm relerr from [20]. We also used σ = 0.99, c = 1 (for all prob-
lem instances except PEMS, which we used c = 20). For this set of LASSO problems,
the experiments in [20, 21] already show admm primDR to outperform the algorithms
of [20], as well as FISTA [10].
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Table 1: LASSO outer iterations; α = 0.18966, β = 0.18976 and ρ̄ = 1.4882

Problem relerr admm primDR admm primDR relx in iteration3
iteration1

iteration3
iteration2

(iteration1) (iteration2) (iteration3)

Ball64 singlepixcam 280 278 123 0.439 0.442
Logo64 singlepixcam 283 282 139 0.491 0.493
Mug32 singlepixcam 153 153 136 0.888 0.888
Mug128 singlepixcam 920 914 435 0.473 0.476
finance1000 974 1709 1079 1.107 0.631
PEMS 3354 3648 1088 0.324 0.298
Brain 1855 2295 1219 0.657 0.531
Colon 450 482 256 0.568 0.531
Leukemia 675 774 424 0.628 0.547
Lymphoma 908 925 482 0.531 0.521
Prostate 1520 1739 998 0.656 0.574
srbct 426 401 221 0.519 0.551
Geometric mean 692.06 761.02 399.85 0.577 0.525

• Algorithm 3 from this paper which we denote as admm primDR relx in. We used the
parameter settings αk ≡ α = 0.18966, β = 0.18976 and ρk ≡ ρ = ρ = 1.4882 — see
conditions (20) and (21) and Figure 2. We also set σ = 0.99 and c = 1 (except for the
PEMS problem instance, for which c = 20).

We implemented all of the algorithms in MATLAB, using a conjugate gradient procedure
to approximately solve the subproblems corresponding to f(x) = (1/2)‖Ax− b‖2, exactly
as in [21]. Table 1 shows number of outer iterations, Table 2 shows the total number of
inner (conjugate gradient) iterations, and Table 3 shows runtimes in seconds. Figure 3 shows
the same results graphically. In each table, the smallest value in each row appears in bold.
In terms of runtime, the new algorithm outperforms that of [21] for all problem except the
finance1000 instance.
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Table 2: LASSO total inner iterations; α = 0.18966, β = 0.18976 and ρ̄ = 1.4882

Problem relerr admm primDR admm primDR relx in iteration3
iteration1

iteration3
iteration2

(iteration1) (iteration2) (iteration3)

Ball64 singlepixcam 603 382 191 0.316 0.500
Logo64 singlepixcam 621 369 212 0.341 0.574
Mug32 singlepixcam 998 307 302 0.303 0.984
Mug128 singlepixcam 1214 1046 488 0.402 0.466
finance1000 18944 7852 9737 0.514 1.240
PEMS 85858 9318 9235 0.107 0.991
Brain 24612 7116 7655 0.311 1.075
Colon 5847 1401 1461 0.249 1.042
Leukemia 7888 2321 2543 0.322 1.095
Lymphoma 15266 3179 3083 0.202 0.969
Prostate 20615 5193 6629 0.321 1.276
srbct 6213 1505 1334 0.215 0.886
Geometric mean 5859.43 1876.32 1652.97 0.282 0.880

Table 3: LASSO runtimes in seconds; α = 0.18966, β = 0.18976 and ρ̄ = 1.4882

Problem relerr admm primDR admm primDR relx in time3
time1

time3
time2

(time1) (time2) (time3)

Ball64 singlepixcam 11.02 7.86 3.75 0.341 0.477
Logo64 singlepixcam 11.37 7.62 4.04 0.355 0.531
Mug32 singlepixcam 1.07 0.51 0.43 0.374 0.862
Mug128 singlepixcam 248.38 218.08 101.17 0.407 0.464
finance1000 805.17 327.56 347.97 0.432 1.062
PEMS 7546.11 1092.16 988.12 0.131 0.905
Brain 13.59 5.94 5.53 0.407 0.929
Colon 1.56 0.45 0.28 0.179 0.620
Leukemia 4.24 2.23 1.59 0.375 0.717
Lymphoma 7.18 2.63 2.03 0.283 0.773
Prostate 33.21 13.15 11.88 0.357 0.904
srbct 1.83 0.42 0.35 0.192 0.847
Geometric mean 21.13 8.75 6.41 0.303 0.733
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Figure 3: Comparison of performance in LASSO problems

(a) LASSO outer iterations
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(b) LASSO total inner iterations
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(c) LASSO total inner iterations
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(d) LASSO runtimes in seconds
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(e) LASSO runtimes in seconds
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5.2 Numerical experiments on logistic regression problems

This section describes numerical experiments on the `1–regularized logistic regression problem
[23, 29]

min
(w,v)∈Rn−1×R

q∑
i=1

log
(
1 + exp(−bi(aTi w + v))

)
+ ν‖w‖1, (79)

using a training dataset consisting of q pairs (ai, bi), where ai ∈ Rn−1 is a feature vector,
bi ∈ {−1,+1} is the corresponding label, w ∈ Rn−1 represents a weighting of the feature
and v ∈ R reresents a kind of bias. Problem (79) is clearly a special instance of (56) with
x = (v, w) and

f(v, w) :=

q∑
i=1

log
(
1 + exp(−bi(aTi w + v))

)
and g(v, w) := ν‖w‖1. (80)

We considered four standard cancer DNA microarray non-artificial datasets from [16] (also
used in [21, Subsection 7.2]) and tested five algorithms: absgeom, relerr, admm primDR,
FISTA and admm primDR relx in. For relerr and admm primDR algorithms we used the
same parameter values as in Subsection 5.1; for admm primDR relx in we used the parameter
settings αk ≡ α = 0.1, β = 0.1001 and ρk ≡ ρ = ρ = 1.7606 — see conditions (20) and (21)
and Figure 2. We also set σ = 0.99 and c = 1.

Analogously to [21], we used an L-BFGS procedure to approximately solve the subproblems
corresponding to f(·) from (80). Tables 4, 5 and 6 show outer iterations, total inner iterations
and runtimes, respectively. These results are also graphically summarized in Figure 4. The
new algorithm has the best aggregate performance by all measures, and the best run time for
all the datesets.

A Auxiliary results

Lemma A.1 (See for example Proposition 20.33 of [9]). If T is maximal monotone on Rn,
{(z̃j, vj)} is such that vj ∈ T (z̃j) for all j ≥ 0, limj→∞ z̃j = z∞, and limj→∞ vj = v∞, then
v∞ ∈ T (z∞).

Lemma A.2. The inverse function of the scalar map

(0, 2) 3 ρ 7→ φ(ρ) :=
2(2− ρ)

4− ρ+
√

16ρ− 7ρ2
∈ (0, 1)

is

(0, 1) 3 β 7→ ψ(β) :=
2(β − 1)2

2(β − 1)2 + 3β − 1
∈ (0, 2).
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Table 4: Outer iterations for logistic regression problems.

Problem absgeom relerr admm primDR admm primDR relx in
(iteration1) (iteration2) (iteration3) (iteration4)

Colon 2666 2145 1979 1578
Leukemia 1662 1116 922 788
Prostate 1936 1583 1677 1198
Arcene 419 276 359 290
Geometric mean 1376.91 1011.28 1023.76 810.72

Problem iteration4
iteration1

iteration4
iteration2

iteration4
iteration3

iteration2
iteration3

Colon 0.5919 0.7356 0.7974 1.0839
Leukemia 0.4741 0.7061 0.8546 1.2104
Prostate 0.6188 0.7568 0.7144 0.9439
Arcene 0.6921 1.0507 0.8078 0.7688
Geometric mean 0.5887 0.8016 0.7924 0.9849

Table 5: Total inner iterations for logistic regression problems.

Problem absgeom relerr admm primDR FISTA admm primDR relx in
(iteration1) (iteration2) (iteration3) (iteration4) (iteration5)

Colon 20612 23919 21697 26247 8283
Leukemia 7715 12086 11625 6536 4448
Prostate 18901 27505 24548 13730 10997
Arcene 780 3236 3589 4648 1450
Geometric mean 6958.73 12665.18 12209.43 10228.97 4923.21

Problem iteration5
iteration1

iteration5
iteration2

iteration5
iteration3

iteration5
iteration4

iteration4
iteration1

Colon 0.4018 0.3463 0.3817 0.3156 0.9499
Leukemia 0.5765 0.3681 0.3826 0.6805 0.6636
Prostate 0.5818 0.3998 0.4479 0.8009 0.7699
Arcene 1.8589 0.4481 0.4041 0.3119 0.2173
Geometric mean 0.7074 0.4032 0.4032 0.4813 0.5699
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Figure 4: Comparison of performance in logistic regression problems

(a) Outer iterations
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(b) Total inner iterations
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(c) Runtimes in seconds
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Table 6: Logistic regression runtimes in seconds.

Problem absgeom relerr admm primDR FISTA admm primDR relx in
(time1) (time2) (time3) (time4) (time5)

Colon 182.3601 36.5207 91.5726 73.2987 12.8243
Leukemia 112.7412 105.4221 241.1378 60.9476 23.0547
Prostate 342.1609 719.6731 850.8159 206.3883 128.6972
Arcene 122.7208 312.1101 370.9415 184.3489 46.1276
Geometric mean 171.41 224.11 288.93 114.18 36.39

Problem time5
time1

time5
time2

time5
time3

time5
time4

time4
time3

Colon 0.0703 0.1203 0.1401 0.1749 0.8003
Leukemia 0.2045 0.2186 0.0956 1.0215 0.2527
Prostate 0.3761 0.1788 0.1513 0.6236 0.2426
Arcene 0.3759 0.1478 0.1244 0.2502 0.4969
Geometric mean 0.2123 0.1623 0.1259 0.3187 0.3951

Proof. We first claim that ψ(β) ∈ [0, 2] for all β ∈ [0, 1] and ψ(β) ∈ (0, 2) for all β ∈ (0, 1).
To establish this claim, we first note that by elementary calculus and some simplifications, we
have

d
dβ
ψ(β) =

6β2 − 4β − 2(
2(β − 1)2 + 3β − 1

)2 =
6β2 − 4β − 2(
2β2 − β + 1

)2 . (81)

The discriminant of 2β2−β+1 is negative, so it has no real roots and the denominator of (81) is
always positive. The expression in the numerator is convex and applying the quadratic formula
yields that that its roots are −1/3 and 1, so therefore it is nonpositive on [0, 1] and negative
on (0, 1). Therefore, d

dβ
ψ(β) exists for all β ∈ [0, 1] and is negative for all β ∈ (0, 1), implying

that ψ is a decreasing function on (0, 1). By direct calculation, ψ(0) = 2 and ψ(1) = 0, so
therefore

{
ψ(β) | β ∈ [0, 1]

}
= [0, 2] and

{
ψ(β) | β ∈ (0, 1)]

}
= (0, 2), establishing the initial

claim. To continue the proof, we next establish that

φ(ψ(β)) = β ∀β ∈ (0, 1). (82)

To this end, fix any β ∈ (0, 1) and define

(0, 2) 3 ρ := ψ(β) =
2(β − 1)2

2(β − 1)2 + 3β − 1
=

2β2 − 4β + 2

2β2 − β + 1
,

which implies the quadratic equation

2(1− ρ)β2 − (4− ρ)β + (2− ρ) = 0. (83)
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We now consider three cases in (83): ρ = 1, ρ < 1, and ρ > 1.

ρ = 1: in this case, simplification of (83) and the definition of φ yield that β = 1/3 = φ(1).

ρ < 1: the unique minimizer of the quadratic function in (83) is β∗ := (4 − ρ)/
(
4(1 − ρ)

)
,

which must be greater than 1 because ρ > 0. Thus, we have β∗ > 1 > β > 0, so β
is the smaller root of the quadratic equation in (83). Using the quadratic formula and
rationalizing the denominator,

β =
4− ρ−

√
(ρ− 4)2 − 4 · 2(1− ρ)(2− ρ)

2 · 2(1− ρ)
=

4− ρ−
√

16ρ− 7ρ2

4(1− ρ)
(84)

=
4− ρ−

√
16ρ− 7ρ2

4(1− ρ)
· 4− ρ+

√
16ρ− 7ρ2

4− ρ+
√

16ρ− 7ρ2

=
16− 24ρ+ 8ρ2

4(1− ρ)
(
4− ρ+

√
16ρ− 7ρ2

) =
8(1− ρ)(2− ρ)

4(1− ρ)
(
4− ρ+

√
16ρ− 7ρ2

)
=

2(2− ρ)

4− ρ+
√

16ρ− 7ρ2
= φ(ρ). (85)

ρ > 1: in this case, β∗ as defined in the previous case is the unique maximizer of the quadratic
function in (83) and β∗ < 0. So β∗ < 0 < β < 1 and β is the larger root of the quadratic
in (83). Since the coefficient of the quadratic term is negative in this case, this root also
takes the form (84), and consequently (85) still holds.

The proof of (82) is now complete. Finally, we now prove that

ψ(φ(ρ)) = ρ ∀ρ ∈ (0, 2). (86)

To this end, let 0 < ρ < 2 and define

(0, 1) 3 β := φ(ρ) =
2(2− ρ)

4− ρ+
√

16ρ− 7ρ2
.

Using the above definition and the quadratic formula, we conclude that β also satisfies the
quadratic equation (83), which after some simple algebra gives

ρ =
2(β − 1)2

2(β − 1)2 + 3β − 1
,

that is, ρ = ψ(β), which in turn is equivalent to (86).

Lemma A.3. Let R 3 ν 7→ q(ν) := aν2 − bν + c be a real function and assume that b, c > 0
and b2 − 4ac > 0. Define

β :=
2c

b+
√
b2 − 4ac

> 0. (87)
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Figure 5: Possible cases for the quadratic function q(·) in Lemma A.3.

(i) If a = 0, then q(·) is a decreasing affine function and β > 0 as in (87) is its unique root
(see Figure 5(a)).

(ii) If a > 0 (resp. a < 0), then q(·) is a convex (resp. concave) quadratic function and
β > 0 as in (87) is its smallest (resp. largest) root (see Figure 5(b) and Figure 5(c),
resp.).

In both cases (i) and (ii), β > 0 as in (87) is a root of q(·), and q(·) is decreasing in the
interval [0, β] (see Figure 5).

Proof. The proof of (i) is straightforward. To prove (ii), note that rationalizing the denomi-
nator of (87) results in β =

(
b−
√
b2 − 4ac

)
/2a, which in turn implies that (ii) follows from

the quadratic formula and the assumption that b, c > 0. The last statement of the lemma is
a direct consequence of (i), (ii) and the assumption that b, c > 0.

Lemma A.4 (Opial [30]). Let ∅ 6= Ω ⊂ Rn and {zk} be a sequence in Rn such that every
cluster point of {zk} belongs to Ω and limk→∞ ‖zk − z∗‖ exists for every z∗ ∈ Ω. Then {zk}
converges to a point in Ω.

The following lemma was essentially proved by Alvarez and Attouch in [2, Theorem 2.1].

Lemma A.5. Let the sequences {ϕk}, {sk}, {αk} and {δk} in [0,+∞) and α ∈ R be such
that ϕ0 = ϕ−1, 0 ≤ αk ≤ α < 1 and

ϕk+1 − ϕk + sk+1 ≤ αk(ϕk − ϕk−1) + δk ∀k ≥ 0. (88)

The following hold:

(a) For all k ≥ 1,

ϕk +
k∑
j=1

sj ≤ ϕ0 +
1

1− α

k−1∑
j=0

δj. (89)
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(b) If
∑∞

k=0 δk < +∞, then limk→∞ ϕk exists, i.e., the sequence {ϕk} converges to some
element in [0,+∞).

Proof. It was proved in [2, Theorem 2.1] that M := (1− α)−1
∑k

j=0 δj ≥
∑k+1

j=1 [ϕj − ϕj−1]+,
where [·]+ = max{·, 0}. Using this, the assumptions ϕ0 = ϕ−1, 0 ≤ αk ≤ α < 1 and (88), and
some algebraic manipulations we find, for all k ≥ 0,

ϕk+1 +
k+1∑
j=1

sj ≤ ϕ0 + α

k+1∑
j=1

[ϕj − ϕj−1]+ +
k∑
j=0

δj

≤ ϕ0 + αM+ (1− α)M = ϕ0 +M,

which proves (a). To finish the proof, we note that (b) was established within the proof of [2,
Theorem 2.1].
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