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In a Hilbert setting, we introduce a new dynamical system and associated algorithms for
solving monotone inclusions by rapid methods. Given a maximal monotone operator A, the
evolution is governed by the time dependent operator I − (I + λ(t)A)−1, where the positive
control parameter λ(t) tends to infinity as t→ +∞. The tuning of λ(·) is done in a closed-loop

way, by resolution of the algebraic equation λ‖(I+λA)−1x−x‖ = θ, where θ is a positive given
constant. The existence and uniqueness of a strong global solution for the Cauchy problem
follows from Cauchy-Lipschitz theorem. We prove the weak convergence of the trajectories
to equilibria, and superlinear convergence under an error bound condition. When A = ∂f
is the subdifferential of a closed convex function f , we show a O(1/t2) convergence property
of f(x(t)) to the infimal value of the problem. Then, we introduce proximal-like algorithms
which can be obtained by time discretization of the continuous dynamic, and which share the
same fast convergence properties. As distinctive features, we allow a relative error tolerance
for the solution of the proximal subproblem similar to the ones proposed in [19, 20], and a
large step condition, as proposed in [12, 13]. For general convex minimization problems, the

complexity is O(1/n2). In the regular case, we show the global quadratic convergence of an
associated proximal-Newton method.
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Introduction

Let H be a real Hilbert space, and A : H ⇉ H be a maximal monotone operator.
The space H is endowed with the scalar product 〈., .〉, with ‖x‖2 = 〈x, x〉 for
any x ∈ H. Our goal is to develop new continuous and discrete dynamics, with
properties of fast convergence, designed to solve the equation

find x ∈ H such that 0 ∈ Ax. (1)

We start from the classical method, which consists in formulating (1) as a fixed
point problem:

find x ∈ H such that x− (I + λA)−1 x = 0, (2)

where λ > 0 is a positive parameter, and (I + λA)−1 is the resolvent of index
λ of A (recall that the resolvents are non expansive mappings from H into H).
Playing on the freedom of choice of the parameter λ > 0, we are led to consider
the evolution problem:

�x(t) + x(t)− (I + λ(t)A)−1x(t) = 0. (3)

When λ(·) is locally absolutely continuous, this differential equation falls within
Cauchy-Lipschitz theorem. Then, the strategy is to choose a control variable
t 7→ λ(t) which gives good properties of asymptotic convergence of (3). In
standard methods for solving monotone inclusions, the parameter λ(t) (λk in
the discrete algorithmic case) is prescribed to stay bounded away from zero and
infinity. By contrast, our strategy is to let λ(t) tend to +∞ as t → +∞. This
will be a crucial ingredient for obtaining fast convergence properties. But the
precise tuning of λ(·) in such an open-loop way is a difficult task, and the open-
loop approach raises numerical difficulties. Instead, we consider the following
system (4) with variables (x, λ), where the tuning is done in a closed-loop way
via the second equation of (4) (θ is a fixed positive parameter):

(LSP)

{
�x(t) + x(t)− (I + λ(t)A)−1x(t) = 0, λ(t) > 0,

λ(t)‖(I + λ(t)A)−1x(t)− x(t)‖ = θ.
(4)

Note that λ(·) is an unknown function, which is obtained by solving this system.
When the system is asymptotically stabilized, i.e., �x(t) → 0, then the second
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equation of (4) forces λ(t) = θ
‖ �x(t)‖

to tend to +∞ as t→ +∞. Our main results

can be summarized as follows:

In Theorem 2.4, we show that, for any given x0 ∈ H \ A−1(0), and θ > 0, there
exists a unique strong (locally Lipschitz in time) global solution t 7→ (x(t), λ(t))
of (4) which satisfies the Cauchy data x(0) = x0.

In Theorem 3.2, we study the asymptotic behaviour of the orbits of (4), as
t → +∞. Assuming A−1(0) 6= ∅, we show that for any orbit t 7→ (x(t), λ(t))
of (4), λ(t) tends increasingly to +∞, and w − limt→+∞ x(t) = x∞ exists, for
some x∞ ∈ A−1(0). We complete these results by showing in Theorem 3.5 the
strong convergence of the trajectories under certain additional properties, and
in Theorem 3.3 superlinear convergence under an error bound assumption.

In Theorem 4.2, we show that (4) has a natural link with the regularized Newton
dynamic, which was introduced in [5]. In fact, λ(t) tends to +∞ as t→ +∞ is
equivalent to the convergence to zero of the coefficient of the regularization term
(Levenberg-Marquardt type) in the regularized Newton dynamic. Thus (4) is
likely to share some of the nice convergence properties of the Newton method.

In Theorem 5.6, when A = ∂f is the subdifferential of a convex lower semicon-
tinuous proper function f : H → R ∪ {+∞}, we show the O(1/t2) convergence
property

f(x(t))− inf
H

f ≤ C1

(1 + C2t)2
.

In Appendix A.2 we consider some situations where an explicit computation of
the continuous orbits can be made, and so confirm the theoretical results.

Then, we present new algorithms which can be obtained by time discretization of
(4), and which share similar fast convergence properties. We study the iteration
complexity of a variant of the proximal point method for optimization. Its main
distinctive features are:

i) a relative error tolerance for the solution of the proximal subproblem similar
to the ones proposed in [19, 20], see also [3] in the context of semi-algebraic and
tame optimization;

ii) a large step condition, as proposed in [12, 13]. Let us notice that the usefulness
of letting the parameter λk tends to infinity in the case of the proximal algorithm,
was already noticed by Rockafellar in [18] (in the case of a strongly monotone
operator, he showed a superlinear convergence property).

Cubic-regularized Newton method was first proposed in [9] and, after that,
in [21]. As a main result, in Theorem 6.5 we show that the complexity of
our method is O(1/n2), the same as the one of the cubic-regularized Newton
method [14].

For smooth convex optimization we introduce a corresponding proximal-Newton
method, which has rapid global convergence properties (Theorem 7.6), and has
quadratic convergence in the regular case (Theorem 7.7).
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1. Study of the algebraic relationship linking λ and x

Let us fix θ > 0 a positive parameter. We start by analyzing the algebraic
relationship

λ‖(I + λA)−1x− x‖ = θ, (5)

that links variables λ ∈]0,+∞[ and x ∈ H in the second equation of (4). Define

ϕ : [0,∞[×H→ R
+,

ϕ(λ, x) = λ‖x− (I + λA)−1x‖ for λ > 0, ϕ(0, x) = 0.
(6)

We denote by JA
λ = (I + λA)−1 the resolvent of index λ > 0 of A, and by

Aλ = 1
λ

(
I − JA

λ

)
its Yosida approximation of index λ > 0. To analyze the

dependence of ϕ with respect to λ and x, we recall some classical facts concerning
resolvents of maximal monotone operators.

Proposition 1.1. For any λ > 0, µ > 0, and any x ∈ H, the following proper-
ties hold:

i) JA
λ : H → H is nonexpansive, and Aλ : H → H is 1

λ
-Lipschitz

continuous. (7)

ii) JA
λ x = JA

µ

(
µ
λ
x+

(
1− µ

λ

)
JA
λ x

)
; (8)

iii) ‖JA
λ x− JA

µ x‖ ≤ |λ− µ| ‖Aλx‖; (9)

iv) limλ→0 J
A
λ x = projD(A)x; (10)

v) limλ→+∞ JA
λ x = projA−1(0)x, if A

−1(0) 6= ∅. (11)

As a consequence, for any x ∈ H and any 0 < δ < Λ < +∞, the function
λ 7→ JA

λ x is Lipschitz continuous on [δ,Λ]. More precisely, for any λ, µ belonging
to [δ,Λ]

‖JA
λ x− JA

µ x‖ ≤ |λ− µ| ‖Aδx‖. (12)

Proof. i) is a classical result, see [7, Proposition 2.2, 2.6].

ii) Equality (8) is known as the resolvent equation, see [7]. Its proof is straight-
forward: By definition of ξ = JA

λ x, we have

ξ + λAξ ∋ x,

which, after multiplication by µ
λ
, gives

µ

λ
ξ + µAξ ∋ µ

λ
x.

By adding ξ to the two members of the above equality, we obtain

ξ + µAξ ∋ µ

λ
x− µ

λ
ξ + ξ,

which gives the desired equality

ξ = JA
µ

(µ
λ
x+

(
1− µ

λ

)
JA
λ x

)
.
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iii) For any λ > 0, µ > 0, and any x ∈ H, by using successively the resolvent
equation and the nonexpansive property of the resolvents, we have

‖JA
λ x− JA

µ x‖ =
∥∥∥JA

µ

(µ
λ
x+

(
1− µ

λ

)
JA
λ x

)
− JA

µ x
∥∥∥

≤
∥∥∥
(
1− µ

λ

) (
x− JA

λ x
)∥∥∥

≤ |λ− µ| ‖Aλx‖.

Using that λ 7→ ‖Aλx‖ is nonincreasing, (see [7, Proposition 2.6]), we obtain
(12).

iv) see [7, Theorem 2.2].

v) It is the viscosity selection property of the Tikhonov approximation, see
[2].

Let us first consider the mapping x 7→ ϕ(λ, x). Noticing that, for λ > 0,
ϕ(λ, x) = λ2‖Aλx‖, the following result is just the reformulation in terms of ϕ
of the 1

λ
-Lipschitz continuity of Aλ.

Proposition 1.2. For any x1, x2 ∈ H, and λ > 0,

|ϕ(λ, x1)− ϕ(λ, x2)| ≤ λ‖x2 − x1‖.

The next result was proved in [13, Lemma 4.3] for finite dimensional spaces.
Its proof for arbitrary Hilbert spaces is similar and is provided for the sake of
completeness.

Lemma 1.3. For any x ∈ H, and 0 < λ1 ≤ λ2,

λ2

λ1

ϕ(λ1, x) ≤ ϕ(λ2, x) ≤
(
λ2

λ1

)2

ϕ(λ1, x) (13)

and ϕ(λ1, x) = 0 if and only if 0 ∈ A(x).

Proof. Let yi = JA
λi
x and vi = Aλi

x for i = 1, 2. In view of the definitions,

vi ∈ A(yi), λivi + yi − x = 0, i = 1, 2.

Therefore,

λ1(v1 − v2) + y1 − y2 = (λ2 − λ1)v2,

v2 − v1 + λ2
−1(y2 − y1) = (λ1

−1 − λ2
−1)(y1 − x).

Since A is monotone, the inner products of both sides of the first equation by
v1− v2, and of the second equation by y2− y1, are non-negative. Since λ1 ≤ λ2,

〈v1 − v2, v2〉 ≥ 0, 〈y2 − y1, y1 − x〉 ≥ 0,

‖v1‖ ≥ ‖v2‖, ‖y2 − x‖ ≥ ‖y1 − x‖.
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The two inequalities in (13) follow from the two last inequalities in the above
equation and definition (6). The last part of the proposition follows trivially
from the maximal monotonicity of A and definition (6).

We can now analyze the properties of the mapping λ 7→ ϕ(λ, x). Without
ambiguity, we write shortly Jλ for the resolvent of index λ > 0 of A.

Proposition 1.4. For any x /∈ A−1(0), the function λ ∈ [0,∞[ 7→ ϕ(λ, x) ∈ R
+

is continuous, strictly increasing, ϕ(0, x) = 0, and limλ→+∞ ϕ(λ, x) = +∞.

Proof. It follows from (6) and the first inequality in (13) with λ2 = 1, λ = λ1 ≤
1 that

0 ≤ lim sup
λ→0+

ϕ(λ, x) ≤ lim
λ→0+

λϕ(1, x) = 0,

which proves the continuity of λ 7→ ϕ(λ, x) at λ = 0. Note that this also results
from Proposition 1.1 iv). Since 0 /∈ A(x), it follows from the last statement in
Lemma 1.3 and the first inequality in (13) that λ 7→ ϕ(λ, x) is strictly increasing,
and that limλ→∞ ϕ(λ, x) = +∞. Left-continuity and right-continuity of λ 7→
ϕ(λ, x) follows from the first and the second inequality in (13).

In view of Proposition 1.4, if 0 /∈ A(x) there exists a unique λ > 0 such that
ϕ(λ, x) = θ. It remains to analyze how such a λ depends on x. Define, for θ > 0

Ω = H \ A−1(0),

Λθ : Ω→]0,∞[, Λθ(x) = (ϕ(·, x))−1 (θ).
(14)

Observe that Ω is open. More precisely,

{
z ∈ H

∣∣∣∣ ‖z − x‖ < θ

Λθ(x)

}
⊂ Ω, ∀x ∈ Ω. (15)

To prove this inclusion, suppose that ‖z − x‖ < θ/Λθ(x). By the triangle
inequality and Proposition 1.2 we have

ϕ(Λθ(x), z) ≥ ϕ(Λθ(x), x)− |ϕ(Λθ(x), z)− ϕ(Λθ(x), x)|
≥ θ − Λθ(x)‖z − x‖ > 0.

Hence, z /∈ A−1(0).

Function Λθ allows us to express (4) as an autonomous ODE:

{
�x(t) + x(t)− (I + Λθ(x(t))A)

−1 x(t) = 0;

x(0) = x0.
(16)

In order to study the properties of the function Λθ, it is convenient to define

Γθ(x) = min{α > 0 | ‖x− (I + α−1A)−1x‖ ≤ αθ}. (17)
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Lemma 1.5. The function Γθ : H → R
+ is Lipschitz continuous with constant

1/θ, and

Γθ(x) =

{
1/Λθ(x), if x ∈ Ω

0, otherwise.

Proof. The first inequality in (13) is equivalent to saying that λ 7→ ‖x − (I +
λA)−1x‖ is a non-decreasing function. Therefore, α 7→ ‖x − (I + α−1A)−1x‖ is
a (continuous) non-increasing function. As a consequence, the set

{α > 0 | ‖x− (I + α−1A)−1x‖ ≤ αθ}

is always a nonempty interval, and Γθ is a real-valued non-negative function.
The relationship between Γθ(x) and Λθ(x) is straightforward: by definition, if
x ∈ Ω

Γθ(x) = min

{
α > 0 | 1

α

∥∥∥∥∥x−
(
I +

1

α
A

)−1

x

∥∥∥∥∥ ≤ θ

}
,

=
1

sup{λ > 0 | λ‖x− (I + λA)−1x‖ ≤ θ} ,

= 1/Λθ(x).

Moreover, if x ∈ S = A−1(0), then for any α > 0, x − (I + α−1A)−1x = 0, and
Γθ(x) = 0.
Let us now show that Γθ is Lipschitz continuous. Take x, y ∈ H and α > 0.
Suppose that ‖x− (I+α−1A)−1x‖ ≤ αθ. We use that x 7→ ‖x− (I+λA)−1x‖ is
nonexpansive (a consequence of the equality ‖x− (I + λA)−1x‖ = ‖λAλx‖ and
Proposition 1.1, item i)). Hence

‖y − (I + α−1A)−1y‖ ≤ ‖x− (I + α−1A)−1x‖+ ‖y − x‖
≤ αθ + ‖y − x‖

=

(
α+
‖y − x‖

θ

)
θ.

Let β = α+‖y−x‖/θ. Since β ≥ α, by using again that λ 7→ ‖x−(I+λ−1A)−1x‖
is a non-increasing function,

‖y − (I + β−1A)−1y‖ ≤ ‖y − (I + α−1A)−1y‖ ≤ βθ.

By definition of Γθ, we deduce that Γθ(y) ≤ β = α+ ‖y−x‖/θ. This being true
for any α ≥ Γθ(x), it follows that Γθ(y) ≤ Γθ(x) + ‖y − x‖/θ. Since the same
inequality holds by interchanging x with y, we conclude that Γθ is 1/θ-Lipschitz
continuous.

Observe that in (4)

λ(t) = Λθ(x(t)), �x(t) = JΛθ(x(t))x(t)− x(t).
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We are led to study the vector field F governing this ODE,

F : Ω→ H, F (x) = JΛθ(x)x− x. (18)

Proposition 1.6. The vector field F is locally Lipschitz continuous.

Proof. Take x0 ∈ Ω and 0 < r < θ/Λθ(x0). Set λ0 = Λθ(x0). By (15) we have
B(x0, r) ⊂ Ω. In view of the choice of r and Lemma 1.5, for any x ∈ B(x0, r)

0 <
1

λ0

− r

θ
≤ 1

Λθ(x)
= Γθ(x) ≤

1

λ0

+
r

θ
. (19)

Take x, y ∈ B(x0, r) and let

λ = Λθ(x), µ = Λθ(y).

By using that x 7→ ‖x − Jλ(x)‖ is nonexpansive, and the resolvent equation
(Proposition 1.1, item iii)), we have

‖F (x)− F (y)‖ = ‖Jλx− x− (Jµy − y) ‖
≤ ‖Jλx− x− (Jλy − y) ‖+ ‖Jλy − Jµy‖

≤ ‖x− y‖+ |λ− µ|‖Jµy − y‖
µ

= ‖x− y‖+ |λ− µ|
µ2

θ

where the last equality follows from the definition of µ and (14). Using Lemma1.5
we have

|λ− µ|
µ2

=
λ

µ

∣∣∣∣
1

µ
− 1

λ

∣∣∣∣

=
Γθ(y)

Γθ(x)
|Γθ(y)− Γθ(x)| ≤

1

θ

Γθ(y)

Γθ(x)
‖y − x‖.

In view of (19),

Γθ(y)

Γθ(x)
≤ θ + λ0r

θ − λ0r
.

Combining the three above results, we conclude that

‖F (x)− F (y)‖ ≤
[
1 +

θ + λ0r

θ − λ0r

]
‖x− y‖ = 2θ

θ − λ0r
‖x− y‖,

which is the desired result.
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2. Existence and uniqueness of a global solution

Given x0 ∈ Ω = H \ A−1(0), we study the Cauchy problem






�x(t) + x(t)− (I + λ(t)A)−1x(t) = 0, λ(t) > 0,

λ(t)‖(I + λ(t)A)−1x(t)− x(t)‖ = θ,

x(0) = x0.

(20)

Note that the assumption x0 ∈ Ω = H \ A−1(0) is not restrictive, since when
x0 ∈ A−1(0), the problem is already solved. Following the results of the previ-
ous section, (20) can be equivalently formulated as an autonomous ODE, with
respect to the unknown function x.

{
�x(t) + x(t)− (I + Λθ(x(t))A)

−1 x(t) = 0;

x(0) = x0.
(21)

Let us first state a local existence result. We set briefly R++ =]0,+∞[.

Proposition 2.1. For any x0 ∈ Ω = H \ A−1(0), there exists some ε > 0 such
that (20) has a unique solution (x, λ) : [0, ε]→ H×R++. Equivalently, (21) has
a unique solution x : [0, ε]→ H. For this solution, x(·) is C 1, and λ(·) is locally
Lipschitz continuous.

Proof. We use the reformulation of (20) as an autonomous differential equation,
as described in (21). Equivalently

�x(t) = F (x(t)),

with F (x) as in (18). By Proposition 1.6, the vector field F is locally Lipschitz
continuous on the open set Ω ⊂ H. Hence, by Cauchy-Lipschitz theorem (local
version), for any x0 ∈ Ω, there exists a unique local solution x : [0, ε] → H of
(16), for some ε > 0. Equivalently, there exists a unique local solution (x, λ) of
(4). Clearly x is a classical C 1 orbit, and t 7→ λ(t) = Λθ(x(t)) =

1
Γθ(x(t))

is Lip-

schitz continuous (by taking ǫ sufficiently small), a consequence of Lemma 1.5,
and x(t) ∈ Ω.

In order to pass from a local to a global solution, we first establish some further
properties of the map t 7→ λ(t).

Lemma 2.2. If (x, λ) : [0, ε]→ H×R++ is a solution of (20), then | �λ(t)| ≤ λ(t)
for almost all t ∈ [0, ε].

Proof. Fix any t ∈ [0, ε] where λ(·) is differentiable, and take any t′ ∈ [0, ε],
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t′ 6= t. Then

|λ(t′)− λ(t)| = λ(t)λ(t′)

∣∣∣∣
1

λ(t)
− 1

λ(t′)

∣∣∣∣ (22)

= λ(t)λ(t′) |Γθ(x(t))− Γθ(x(t
′))| (23)

≤ λ(t)λ(t′)‖x(t)− x′(t)‖
θ

, (24)

where the last inequality follows from Lemma 1.5. Therefore

lim
t′→t

∣∣∣∣
λ(t′)− λ(t)

t′ − t

∣∣∣∣ ≤ lim
t′→t

λ(t)λ(t′)‖x(t′)− x(t)‖
θ|t′ − t| = λ(t)2‖ �x(t)‖/θ = λ(t). (25)

Lemma 2.3. If (x, λ) : [0, ε] → H × R++ is a solution of (20), then λ(·) is
non-decreasing.

Proof. Since λ is locally Lipschitz continuous, to prove that it is non-decreasing

it suffices to show that �λ(t) ≥ 0 for almost all t ∈ [0, ε]. Take t ∈ [0, ε[ and define

µ = λ(t), y = Jµx(t), v = µ−1(x(t)− y).

Observe that v ∈ A(y) and µv + y − x(t) = 0. Define

zh = x(t) + h �x(t), 0 < h < min{ε− t, 1}.

Since �x(t) = −µv, we have (1− h)µv + y − zh = 0, J(1−h)µzh = y and so

ϕ((1− h)µ, zh) = (1− h)µ‖y − zh‖ = (1− h)2µ‖y − x(t)‖ = (1− h)2θ.

Therefore, using triangle inequality, the second inequality in Lemma 1.3 and
Proposition 1.2, we obtain

ϕ(µ, x(t+ h)) ≤ ϕ(µ, zh) + |ϕ(µ, x(t+ h))− ϕ(µ, zh)|

≤ ϕ((1− h)µ, zh)

(1− h)2
+ µ‖x(t+ h)− zh‖

= θ + µ‖x(t+ h)− x(t)− h �x(t)‖.

To simplify the notation, define

ρh =
µ‖x(t+ h)− x(t)− h �x(t)‖

θ
.

Observe that ρh ≥ 0 (for 0 < h < min{ε − t, 1}), and limh→0+ ρh/h = 0. Now,
the above inequality can be written as

ϕ(µ, x(t+ h)) ≤ θ(1 + ρh).
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It follows from this inequality, the non-negativity of ρh and Lemma 1.3 that

ϕ

(
µ

1 + ρh
, x(t+ h)

)
≤ θ.

Since ϕ(·, x(t+ h)) is strictly increasing, and ϕ(λ(t+ h), x(t+ h)) = θ,

λ(t+ h) ≥ µ

1 + ρh
=

λ(t)

1 + ρh
.

Therefore

lim inf
h→0+

λ(t+ h)− λ(t)

h
≥ lim

h→0+

1

h

[
λ(t)

1 + ρh
− λ(t)

]
= − lim

h→0+
λ(t)

ρh/h

1 + ρh
= 0.

In view of Proposition 2.1, there exists a solution of (21) defined on a maximal
interval. Next we will prove that this maximal interval is [0,+∞[.

Theorem 2.4. For any x0 ∈ Ω = H \ A−1(0), there exists a unique global
solution (x, λ) : [0,+∞[→ H × R++ of the Cauchy problem (20). Equivalently,
(21) has a unique solution x : [0,+∞[→ H. For this solution, x(·) is C 1, and
λ(·) is locally Lipschitz continuous. Moreover,

i) λ(·) is non-decreasing;
ii) t 7→ ‖Jλ(t)x(t)− x(t)‖ is non-increasing;
iii) For any 0 ≤ t0 ≤ t1

λ(t0) ≤ λ(t1) ≤ e(t1−t0)λ(t0),

‖Jλ(t0)x(t0)− x(t0)‖e−(t1−t0) ≤ ‖Jλ(t1)x(t1)− x(t1)‖ ≤ ‖Jλ(t0)x(t0)− x(t0)‖.

Proof. According to a standard argument, we argue by contradiction and as-
sume that the maximum solution x(·) of (21) is defined on an interval [0, Tmax[
with Tmax < +∞. By Lemmas 2.2 and 2.3, λ(·) is non-decreasing, and satisfies

0 ≤ �λ(t) ≤ λ(t) for almost all t ∈ [0, Tmax[. By integration of this inequation,
we obtain, for any t ∈ [0, Tmax[

0 < λ(0) ≤ λ(t) ≤ λ(0)et. (26)

Since t ≤ Tmax, we infer that limt→Tmax λ(t) := λm exists and is finite. Moreover,
by (20)

‖ �x(t)‖ = ‖(I + λ(t)A)−1x(t)− x(t)‖ = θ

λ(t)
. (27)

Combining (26) and (27), we obtain that ‖ �x(t)‖ stays bounded when t∈ [0, Tmax[.
By a classical argument, this implies that limt→Tmax x(t) := xm exists.

Moreover, by the second inequality in (26), ‖(I+λ(t)A)−1x(t)−x(t)‖ = θ
λ(t)

stays

bounded away from zero. Hence, at the limit, we have ‖(I+λmA)
−1xm−xm‖ 6= 0,
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which means that xm ∈ Ω = H \ A−1(0). Thus, we can apply again the local
existence result, Proposition 2.1, with Cauchy data xm, and so obtain a solution
defined on an interval strictly larger than [0, Tmax[. This is a clear contradiction.
Properties i), ii), iii) are direct consequences of Lemmas 2.2 and 2.3. More

precisely, by integration of 0 ≤ �λ(t) ≤ λ(t) between t0 and t1 ≥ t0, we obtain

λ(t0) ≤ λ(t1) ≤ e(t1−t0)λ(t0). As a consequence

‖Jλ(t1)x(t1)− x(t1)‖ =
θ

λ(t1)
≤ θ

λ(t0)
= ‖Jλ(t0)x(t0)− x(t0)‖,

and

‖Jλ(t1)x(t1)− x(t1)‖ =
θ

λ(t1)
=

θ

λ(t0)
× λ(t0)

λ(t1)
≥ ‖Jλ(t0)x(t0)− x(t0)‖e−(t1−t0).

Remark 2.5. Property iii) of Theorem 2.4, with t0 = 0, namely ‖Jλ(0)x0 −
x0‖e−t ≤ ‖Jλ(t)x(t)−x(t)‖, implies that for all t ≥ 0, we have Jλ(t)x(t)−x(t) 6= 0.

Equivalently x(t) /∈ A−1(0), i.e., the system cannot be stabilized in a finite time.
Stabilization can be achieved only asymptotically, which is the subject of the
next section.

3. Asymptotic behavior

3.1. Weak convergence

To prove the weak convergence of trajectories of system (4), we use the classical
Opial lemma [15], that we recall in its continuous form; see also [8], who initiated
the use of this argument to analyze the asymptotic convergence of nonlinear
contraction semigroups in Hilbert spaces.

Lemma 3.1. Let S be a non empty subset of H, and x : [0,+∞[→ H a map.
Assume that

(i) for every z ∈ S, limt→+∞ ‖x(t)− z‖ exists;
(ii) every weak sequential cluster point of the map x belongs to S.

Then
w − lim

t→+∞
x(t) = x∞ exists, for some element x∞ ∈ S.

Let us state our main convergence result.

Theorem 3.2. Suppose that A−1(0) 6= ∅. Given x0 /∈ A−1(0), let (x, λ) :
[0,+∞[→ H × R++ be the unique global solution of the Cauchy problem (20).
Set d0 = d(x0, A

−1(0)) the distance from x0 to A−1(0). Then, the following
properties hold:

i) ‖ �x(t)‖ = ‖x(t)− Jλ(t)x(t)‖ ≤ d0/
√
2t; hence limt→+∞ ‖ �x(t)‖ = 0;

ii) λ(t) ≥ θ
√
2t/d0; hence limt→+∞ λ(t) = +∞;

iii) w − limt→+∞ x(t) = x∞ exists, for some x∞ ∈ A−1(0).
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Moreover, for any z ∈ A−1(0), ‖x(t)− z‖ is decreasing.

Proof. Define

v(t) = λ(t)−1(x(t)− Jλ(t)x(t)). (28)

Observe that v(t) ∈ A(Jλ(t)x(t)) and λ(t)v(t) + Jλ(t)x(t) − x(t) = 0. For any

z ∈ A−1(0), and any t ≥ 0 set

hz(t) :=
1

2
‖x(t)− z‖2. (29)

After derivation of hz, and using the differential relation in (20) we obtain

�hz(t) = 〈x(t)− z, �x(t)〉 (30)

= −
〈
x(t)− z, x(t)− Jλ(t)x(t)

〉
(31)

= − ‖x(t)− Jλ(t)x(t)‖2 − 〈Jλ(t)x(t)− z, λ(t)v(t)〉. (32)

Since v(t) ∈ A(Jλ(t)x(t)), 0 ∈ A(z), and A is (maximal) monotone

�hz(t) ≤ −‖x(t)− Jλ(t)x(t)‖2. (33)

Hence, hz is non-increasing. Moreover, by integration of (33), for any t > 0

1

2
‖z − x(0)‖2 ≥ hz(0)− hz(t) = −

∫ t

0

�hz(u)du

≥
∫ t

0

‖Jλ(u)x(u)− x(u)‖2du ≥ t‖Jλ(t)x(t)− x(t)‖2

where the last inequality follows from t 7→ ‖Jλ(t)x(t)−x(t)‖ being non-increasing
(see Theorem 2.4, ii)). Item i) follows trivially from the above inequality. Item
ii) follows from item i) and the algebraic relation between x and λ in (20). To
prove item iii), we use Lemma 3.1 with S = A−1(0). Since z in (29) is a generic
element of A−1(0), it follows from (33) that item (i) of Lemma 3.1 holds. Let us
now prove that item (ii) of Lemma 3.1 also holds. Let x∞ be a weak sequential
cluster point of the orbit x(·). Since ‖x(t) − Jλ(t)x(t)‖ → 0 as t → ∞, we also
have that x∞ is a weak sequential cluster point of Jλ(·)x(·). Now observe that
in view of items i) and ii), for any t > 0

‖v(t)‖ ≤ d20
2θt

. (34)

Hence, v(t) converges strongly to zero as t tends to infinity. Since v(t) ∈
A(Jλ(t)x(t)), and the graph of A is demi-closed, we obtain 0 ∈ A(x∞), i.e.,
x∞ ∈ S.
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3.2. Superlinear convergence under an error bound assumption

In this section, we assume that the solution set S = A−1(0) is non-empty and
that, whenever v ∈ A(x) is “small�, its norm provides a bound for the distance
of x to S. Precisely,

A0) S = A−1(0) is non-empty, and there exists ε, κ > 0 such that

v ∈ A(x), ‖v‖ ≤ ε =⇒ d(x, S) ≤ κ‖v‖.

Let us notice that A0) can be equivalently formulated as an error bound condi-
tion

d(x,A−1(0)) ≤ κd
(
0, A(x) ∩ B̄(0, ǫ)

)
.

In this way, the previous condition of nonvacuity of A−1(0) is encompassed.

Theorem 3.3. Assuming A0), then x(t) converges strongly to some x∗∈A−1(0),
and for any α ∈ (0, 1) there exist positive reals c0, c1, c2, c3 such that

d(x(t), S) ≤ c0e
−αt, λ(t) ≥ c1e

αt,

‖v(t)‖ ≤ c2e
−2αt, ‖x(t)− x∗‖ ≤ c3e

−αt.

Proof. Let PS be the projection on the closed convex set S = A−1(0). Set
y(t) = Jλ(t)x(t). Define, for t ≥ 0,

x∗(t) = PS(x(t)), y∗(t) = PS(y(t)).

It follows from the assumption A−1(0) 6= ∅, and from (34) (inside the proof of
Theorem 3.2) that limt→∞ v(t) = 0. By A0), and v(t) = λ(t)−1(x(t) − y(t)) ∈
A(y(t)), we have that, for t large enough, say t ≥ t0

d(y(t), S) = ‖y(t)− y∗(t)‖ ≤ κ‖v(t)‖. (35)

Hence

‖x(t)− x∗(t)‖ ≤ ‖x(t)− y∗(t)‖ ≤ ‖x(t)− y(t)‖+ ‖y(t)− y∗(t)‖
≤ ‖x(t)− y(t)‖+ κ‖v(t)‖

= ‖x(t)− y(t)‖
(
1 +

κ

λ(t)

)
.

Take α ∈ (0, 1). Since λ(t)→∞ as t→∞, for t large enough

‖x(t)− x∗(t)‖ ≤ α−1‖x(t)− y(t)‖. (36)

Define

g(t) :=
1

2
d2(x(t), S) =

1

2
‖x(t)− x∗(t)‖2.
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Using successively the classical derivation chain rule, and (4), we obtain

g′(t) = 〈x(t)− x∗(t), �x(t)〉
= −〈x(t)− x∗(t), x(t)− y(t)〉
= −‖x(t)− y(t)‖2 − 〈y(t)− x∗(t), x(t)− y(t)〉 .

By the monotonicity of A, and λ(t)−1(x(t) − y(t)) ∈ A(y(t)), 0 ∈ A(x∗(t)), we
have

〈y(t)− x∗(t), x(t)− y(t)〉 ≥ 0.

Combining the two above inequalities, we obtain

g′(t) ≤ −‖x(t)− y(t)‖2. (37)

From (36), (37), and the definition of g, we infer

g′(t) ≤ −2α2g(t),

and it follows from Gronwall’s lemma that g(t) ≤ ce−2α2t, which proves the first
inequality.
To prove the second inequality, we use the inequality

‖x(t)− y(t)‖ ≤ d(x(t), S) (38)

which is a direct consequence of the 1
λ
-Lipschitz continuity of Aλ. For z ∈ S,

since Aλ(t)z = 0

‖Aλ(t)x(t)‖ = ‖Aλ(t)x(t)− Aλ(t)z‖ ≤
1

λ(t)
‖x(t)− z‖.

Equivalently, ‖x(t) − y(t)‖ ≤ ‖x(t) − z‖ for all z ∈ S, which gives (38). Then
use the first inequality, and the equality λ(t)‖x(t)−y(t)‖ = θ, and so obtain the
second inequality.
The third inequality follows from the second one, and the equality λ(t)2‖v(t)‖ =
θ.
To prove the last inequality, observe that for t1 < t2,

‖x(t2)− x(t1)‖ ≤
∫ t2

t1

‖ �x(t)‖dt =
∫ t2

t1

‖x(t)− y(t)‖dt ≤
∫ t2

t1

d(x(t), S)dt

where the last inequality comes from (38), and the strong convergence of x(t),
as well as the last inequality follows.

Remark 3.4. In the Appendix, in the case of an isotropic linear monotone
operator, we can perform an explicit computation of x, λ, and observe that
their rates of convergence are in accordance with the conclusions of Theorem
3.3.
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3.3. Weak versus strong convergence

A famous counterexample due to Baillon [6] shows that the trajectories of the
steepest descent dynamical system associated to a convex potential can converge
weakly but not strongly. The existence of such a counterexample for (4) is an
interesting open question, whose study goes beyond this work. In the following
theorem, we provide some practically important situations where the strong
convergence holds for system (4). We recall that a function f : H→ R∪+ {∞}
is said to be boundedly inf-compact, if for any R > 0 and l ∈ R,

{x ∈ H : f(x) ≤ l, and ‖x‖ ≤ R} is relatively compact in H.

Theorem 3.5. Assuming S =A−1(0) is non-empty, then x(t) converges strongly
to some x∗ ∈ A−1(0), in the following situations:

i) A is strongly monotone;

ii) A = ∂f , where f : H → R ∪ + {∞} is a proper closed convex function,
which is boundedly inf-compact;

iii) S = A−1(0) has a nonempty interior.

Proof. i) If A−1 is Lipschitz continuous at 0, then assumption A0) holds, and,
by Theorem 3.3, each trajectory x(t) of (4) converges strongly to some x∗ ∈
A−1(0). In particular, if A is strongly monotone, i.e., there exists a positive
constant α such that for any yi ∈ Axi, i = 1, 2

〈y2 − y1, x2 − x1〉 ≥ α‖x2 − x1‖2,

then A−1 is Lipschitz continuous. In that case, A−1(0) is reduced to a single
element z, and each trajectory x(t) of (4) converges strongly to z, with the rate
of convergence given by Theorem 3.3.

ii) A = ∂f , where f : H → R ∪ + {∞} is a proper closed convex function,
which is supposed to be boundedly inf-compact. By Corollary 5.3, t 7→ f(x(t))
is non-increasing, and x(·) is contained in a sublevel set of f . Thus, the orbit
x(·) is relatively compact, and converges weakly. Hence, it converges strongly.

iii) Suppose now that S = A−1(0) has a nonempty interior. Then there exists
r > 0 and p ∈ A−1(0) such that the ball B(p, r) of radius r centered at p is

contained in S. For any given λ > 0, we have A−1(0) = A−1
λ (0). Hence, for any

λ > 0, we have B(p, r) ⊂ A−1
λ (0). By the monotonicity property of Aλ, for any

ξ ∈ H, λ > 0, and h ∈ H with ‖h‖ ≤ 1,

〈Aλ(ξ), ξ − (p+ rh)〉 ≥ 0.

Hence

r‖Aλ(ξ)‖ = r sup
‖h‖≤1

〈Aλ(ξ), h〉 ≤ 〈Aλ(ξ), ξ − p〉 . (39)



H. Attouch, M. Marques Alves, B. F. Svaiter / A Dynamic Approach ... 155

The ODE (4) can be written as �x(t) + λ(t)Aλ(t)x(t) = 0. Taking λ = λ(t), and
ξ = x(t) in (39), we obtain

‖ �x(t)‖ = λ(t)‖Aλ(t)(x(t))‖ ≤
λ(t)

r

〈
Aλ(t)(x(t)), x(t)− p

〉
.

Using again (4) we obtain

‖ �x(t)‖ ≤ −1

r
〈 �x(t), x(t)− p)〉 . (40)

The end of the proof follows standard arguments, see for example [16, Proposi-
tion 60]. Inequality (40) implies, for any 0 ≤ s ≤ t

‖x(t)− x(s)‖ ≤
∫ t

s

‖ �x(τ)‖dτ

≤ −1

r

∫ t

s

〈 �x(τ), x(τ)− p〉 dτ

≤ 1

2r
(‖x(s)− p‖2 − ‖x(t)− p‖2).

By Theorem 3.2 iii), ‖x(t) − p‖ is convergent. As a consequence, the trajec-
tory x(·) has the Cauchy property in the Hilbert space H, and hence converges
strongly.

4. A link with the regularized Newton system

In this section, we show how the dynamical system (4) is linked with the regular-
ized Newton system proposed and analyzed in [1], [4], [5]. Given x0 /∈ A−1(0),
let (x, λ) : [0,+∞[→ H × R++ be the unique global solution of the Cauchy
problem (20). For any t ≥ 0 define

y(t) = (I + λ(t)A)−1x(t), v(t) =
1

λ(t)
(x(t)− y(t)). (41)

We are going to show that y(·) is solution of a regularized Newton system. For
proving this result, we first establish some further properties satisfied by y(·).
Proposition 4.1. For y(·) and v(·) as defined in (41) it holds that

i) v(t) ∈ Ay(t), λ(t)v(t) + y(t) − x(t) = 0, and �x(t) = y(t) − x(t) for all
t ≥ 0;

ii) v(·) and y(·) are locally Lipschitz continuous;

iii) �y(t) + λ(t) �v(t) + (λ(t) + �λ(t))v(t) = 0 for almost all t ≥ 0;

iv) 〈 �y(t), �v(t)〉 ≥ 0 and 〈 �y(t), v(t)〉 ≤ 0 for almost all t ≥ 0;

v) ‖v(·)‖ is non-increasing.
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Proof. Item i) follows trivially from (41) and (4). Item ii) follows from the local
Lipschitz continuity of λ, and the properties of the resolvent, see Proposition
1.1. Hence x, y, λ, v are differentiable almost everywhere. By differentiating
λv + y − x = 0, and using �x = y − x, we obtain item iii). To prove item iv),
assume that y and v are differentiable at t ≥ 0. It follows from the monotonicity
of A and the first relation in item iv) that if t′ 6= t and t′ ≥ 0

〈y(t′)− y(t), v(t′)− v(t)〉
(t′ − t)2

≥ 0.

Passing to the limit as t′ → t in the above inequality, we conclude that the first
inequality in item iv) holds. To prove the last inequality, assume that λ(·) is
also differentiable at t. Using item iii), after scalar multiplication by �y(t), we
obtain

‖ �y(t)‖2 + λ(t)〈 �y(t), �v(t)〉+ (λ(t) + �λ(t))〈 �y(t), v(t)〉 = 0.

To end the proof of item iv), note that �λ(t) ≥ 0 (by Theorem 2.4, ii), λ(·) is
non-decreasing), and use the first inequality of item iv). In view of (41) and (4),
λ2(t)‖v(t)‖ = θ for all t ≥ 0. This result, together with Lemma 2.3 proves item
v).

Hence (almost everywhere) y(·) and v(·), as defined in (41), satisfy the differen-
tial inclusion {

v(t) ∈ Ay(t);

�y(t) + λ(t) �v(t) + (λ(t) + �λ(t))v(t) = 0.
(42)

Recall that λ(·) is locally absolutely continuous, and satisfies almost everywhere

0 ≤ �λ(t) ≤ λ(t).

Let us consider the time rescaling defined by

τ(t) =

∫ t

0

λ(u) + �λ(u)

λ(u)
du = t+ ln(λ(t)/λ(0)). (43)

Since 1 ≤ λ(u)+ �λ(u)
λ(u)

≤ 2, we have t ≤ τ(t) ≤ 2t. Hence t 7→ τ(t) is a monotone

function which increases from 0 to +∞ as t grows from 0 to +∞. The link with
the regularized Newton system is made precise in the following statement.

Theorem 4.2. For y(·) and v(·) as defined in (41), let us set y(t) = ỹ(τ(t)),

v(t) = ṽ(τ(t)), where the time rescaling is given by τ(t) =
∫ t

0
λ(u)+ �λ(u)

λ(u)
du. Then,

(ỹ, ṽ) is solution of the regularized Newton system






ṽ ∈ Aỹ;

1
λ◦τ−1

d

dτ
ỹ +

d

dτ
ṽ + ṽ = 0.

(44)
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That’s the regularized Newton system which has been studied in [5]. The
(Levenberg-Marquardt) regularization parameter is equal to 1

λ◦τ−1 . Since λ(t)
tends to infinity, the regularization parameter converges to zero as τ tends to
infinity. This makes our system asymptotically close to the Newton method.
We may expect fast convergence properties. That’s precisely the subject of the
next section. Let us complete this section with the following relation allowing
to recover x from y.

Lemma 4.3. For any t2 > t1 ≥ 0,

x(t2) =

∫ ∆t

0

[
(1− e−∆t)y(t1 + u) + e−∆tx(t1)

] eu

e∆t − 1
du.

where ∆t = t2 − t1.

Proof. It suffices to prove the equality for t1 = 0 and t2 = t = ∆t. Since
�x = y − x, trivially �x+ x = y. So

etx(t)− x0 =

∫ t

0

euy(u) du.

Whence

x(t) = e−tx0 + e−t

∫ t

0

euy(u) du

= e−t

∫ t

0

eu
[
(et − 1)y(u) + x0

] 1

et − 1
du

=

∫ t

0

[
(1− e−t)y(u) + e−tx0

] eu

et − 1
du

which is the desired equality.

5. The subdifferential case

From now on, in this section, we assume that A = ∂f , where f : H→ R∪+ {∞}
is a proper closed convex function. Let us recall the generalized derivation chain
rule from Brézis [7] that will be useful:

Lemma 5.1 ([7, Lemme 4, p. 73]). Let Φ : H → R ∪ {+∞} be a closed
convex proper function. Let u ∈ L2(0, T ;H) be such that �u ∈ L2(0, T ;H),
and u(t) ∈ dom(∂Φ) for a.e. t. Assume that there exists ξ ∈ L2(0, T ;H) such
that ξ(t) ∈ ∂Φ(u(t)) for a.e. t. Then the function t 7→ Φ(u(t)) is absolutely
continuous, and for every t such that u and Φ(u) are differentiable at t, and
u(t) ∈ dom(∂Φ), we have

∀h ∈ ∂Φ(u(t)),
d

dt
Φ(u(t)) = 〈 �u(t), h〉.
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5.1. Minimizing property

We keep notations in (41). Since v(t) ∈ ∂f(y(t)), λ(t)v(t) = x(t) − y(t), and
λ(t)2‖v(t)‖ = θ, by the convex subdifferential inequality

f(x(t)) ≥ f(y(t)) + 〈x(t)− y(t), v(t)〉 ≥ f(y(t)) + λ(t)‖v(t)‖2

= f(y(t)) +
√
θ‖v(t)‖3/2. (45)

Lemma 5.2. The function t 7→ f(y(t)) is locally Lipschitz continuous, non-
increasing and for any t2 > t1 ≥ 0,

f(x(t2)) ≤
∫ ∆t

0

[
(1− e−∆t)f(y(t1 + u)) + e−∆tf(x(t1))

] eu

e∆t − 1
du (46)

≤ (1− e−∆t)f(y(t1)) + e−∆tf(x(t1)) (47)

where ∆t = t2 − t1.

Proof. Suppose that t2, t1 ≥ 0, t1 6= t2 and let

y1 = y(t1), v1 = v(t1), y2 = y(t2), v2 = v(t2).

Since vi ∈ ∂f(yi) for i = 1, 2

f(y2) ≥ f(y1) + 〈y2 − y1, v1〉, f(y1) ≥ f(y2) + 〈y1 − y2, v2〉.

Therefore
〈y2 − y1, v1〉 ≤ f(y2)− f(y1) ≤ 〈y2 − y1, v2〉

and
|f(y1)− f(y2)| ≤ ‖y1 − y2‖max{‖v1‖, ‖v2‖} ≤ ‖y1 − y2‖‖v(0)‖

where in the last inequality, we use that ‖v(·)‖ is non-increasing, (see Proposition
4.1, item v)). Since t 7→ y(t) is locally Lipschitz continuous, we deduce that
t 7→ f(y(t)) is also locally Lipschitz continuous on [0,∞[. Moreover, t 7→ f(y(t))
is differentiable almost everywhere. Since y is locally Lipschitz continuous, and
v(·) is bounded, by Lemma 5.1, the derivation chain rule holds true (indeed, it
provides another proof of the absolute continuity of t 7→ f(y(t))). Hence

d

dt
f(y(t)) = 〈 �y(t), v(t)〉 ≤ 0,

where in the last inequality, we use Proposition 4.1, item iv). Hence t 7→ f(y(t))
is locally Lipschitz continuous, and non-increasing. Let us now prove inequality
(46). Without any restriction we can take t1 = 0 and t2 = t = ∆t. By Lemma
4.3

x(t) =

∫ t

0

[
(1− e−t)y(u) + e−tx0

] eu

et − 1
du. (48)

The conclusion follows from the convexity of f , Jensen’s inequality, and t 7→
f(y(t)) non-increasing.
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Corollary 5.3. If f(x(0)) < +∞, then for any t ≥ 0, we have

i) f(x(t)) < +∞, (49)

ii) t 7→ f(x(t)) is non-increasing, (50)

iii) lim suph→0+
f(x(t+h))−f(x(t))

h
≤ f(y(t))− f(x(t)) ≤ −

√
θ‖v(t)‖3/2. (51)

Proof. Take t ≥ 0 and h > 0. Direct use of Lemma 5.2 with t1 = t and
t2 = t+ h yields

f(x(t+ h))− f(x(t))

h
≤ 1− e−h

h
(f(y(t))− f(x(t))),

and the conclusion follows by taking the lim sup as h→ 0+ on both sides of this
inequality, and by using (45).

5.2. Rate of convergence

In this subsection, we assume that f has minimizers. Let

z̄ ∈ argmin f, d0 = inf{‖x0 − z‖ : z minimizes f} = ‖x0 − z̄‖.

Since v(t) ∈ ∂f(y(t)), for any t ≥ 0

f(y(t))− f(z̄) ≤ 〈y(t)− z̄, v(t)〉 ≤ ‖y(t)− z̄‖‖v(t)‖
≤ ‖x(t)− z̄‖ ‖v(t)‖ ≤ d0‖v(t)‖

where we have used y(t) = JA
λ(t)(x(t)), z̄ = JA

λ(t)(z̄), J
A
λ(t) nonexpansive, and

t 7→ ‖x(t)− z̄‖ non-increasing (see (33)). Combining the above inequality with
(45), we conclude that for any t ≥ 0

f(x(t)) ≥ f(y(t)) + (f(y(t)− f(z̄))3/2
√
θ/d30. (49)

Now we will use the following auxiliary result, a direct consequence of the con-
vexity property of r 7→ r3/2.

Lemma 5.4. If a, b, c ≥ 0 and a ≥ b+ cb3/2 then

b ≤ a− ca3/2

1 + (3c/2)a1/2

Proof. The non-trivial case is a, c > 0, which will be analyzed. Define

ϕ : [0,∞)→ R, ϕ(t) = t+ ct3/2.

Observe that ϕ is convex, and a ≥ ϕ(b). Let us write the convex differential
inequality at a

a ≥ ϕ(b) ≥ ϕ(a) + ϕ′(a)(b− a).

After simplification, we obtain the desired result.
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Proposition 5.5. For any t ≥ 0,

f(y) ≤ f(x)− κ(f(x)− f(z̄))3/2

1 + (3κ/2)(f(x)− f(z̄))1/2
, (50)

where x = x(t), y = y(t) and κ =
√
θ/d30.

Proof. Subtracting f(z̄) on both sides of (49) we conclude that

f(x(t))− f(z̄) ≥ f(y(t))− f(z̄) + (f(y(t)− f(z̄))3/2
√
θ/d30.

To end the proof, use Lemma 5.4 with a = f(x(t)) − f(z̄), b = f(y(t)) − f(z̄)

and c =
√
θ/d30.

Theorem 5.6. Let us assume that f(x(0)) < +∞. Set κ =
√
θ/d30. Then, for

any t ≥ 0

f(x(t))− f(z̄) ≤ f(x0)− f(z̄)
[
1 +

tκ
√
f(x0)− f(z̄)

2 + 3κ
√
f(x0)− f(z̄)

]2 .

Proof. Set β(t) := f(x(t))− f(z̄). Consider first the case where β(·) is locally
Lipschitz continuous. Combining Proposition 5.5 with Corollary 5.3, and taking
into account that f(x(·)) is non-increasing, we conclude that, almost everywhere

d

dt
β ≤ − κβ3/2

1 + (3κ/2)β1/2
≤ − κβ3/2

1 + (3κ/2)β
1/2
0

where β0 = β(0) = f(x0)− f(z̄). Defining

u = 1/
√

β, κ̃ =
κ

1 + (3κ/2)β
1/2
0

and substituting β = 1/u2 in the above inequality, we conclude that

−2u−3 d

dt
u ≤ − κu−3

1 + (3κ/2)β
1/2
0

.

Therefore, for any t ≥ 0,

u(t) ≥ tκ

2 + 3κβ
1/2
0

+ 1/β
1/2
0 .

To end the proof, substitute u = 1/
√
β in the above inequality. In the general

case, without assuming β locally Lipschitz, we can write the differential equation
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in terms of differential measures (β is non-increasing, hence it has a bounded
variation, and its distributional derivative is a Radon measure):

dβ +
κ

1 + (3κ/2)β
1/2
0

β3/2 ≤ 0.

Let us regularize this equation by convolution, with the help of a smooth kernel
ρǫ (note that we use convolution in R, whatever the dimension of H, possibly

infinite). By convexity of r 7→ r3/2, and Jensen inequality, we obtain that β ∗ ρǫ
is a smooth function that still satisfies the differential inequality. Thus we are
reduced to the preceding situation, with bounds which are independent of ǫ,
whence the result by passing to the limit as ǫ→ 0.

Let us complete the convergence analysis by the following integral estimate.

Proposition 5.7. Suppose S = argmin f 6= ∅. Then

∫ +∞

0

λ(t)(f(y(t))− inf f)dt ≤ 1

2
dist2(x0, S).

Proof. Let us return to the proof of Theorem 3.2, with A = ∂f . Setting
hz(t) :=

1
2
‖x(t)− z‖2, with z ∈ argmin f , by (30) we have

�hz(t) + 〈y(t)− z, λ(t)v(t)〉 ≤ 0. (51)

By the convex subdifferential inequality, and v(t) ∈ ∂f(y(t)), we have

f(z) ≥ f(y(t)) + 〈z − y(t), v(t)〉.

Combining the two above inequalities, we obtain

�hz(t) + λ(t)(f(y(t))− inf f) ≤ 0. (52)

By integrating this inequality, we obtain the announced result.

6. A large-step proximal point method for convex optimization with
relative error tolerance

In this section, we study the iteration complexity of a variant of the proximal
point (PP) method for convex optimization (CO). It can be viewed as a discrete
version of the continuous dynamical system studied in the previous sections.
The main distinctive features of this variant are: a relative error tolerance for
the solution of the proximal subproblems similar to the ones proposed in [19, 20];
a large-step condition, as proposed in [12, 13].

The PP method [11, 18, 17] is a classical method for finding zeroes of maxi-
mal monotone operators and, in particular, for solving CO problems. It has
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been used as a framework for the analysis and design of many practical algo-
rithms (e.g., the augmented Lagrangian, the proximal-gradient, or the alternat-
ing proximal minimization algorithms). The fact that its classical convergence
analysis [18] requires the errors to be summable, motivates the introduction
in [19, 20] of the Hybrid Proximal Extragradient (HPE) method, an inexact PP
type method which allows relative error tolerance in the solution of the prox-
imal subproblems. The relative error tolerance of the HPE was also used for
minimization of semi-algebraic, or tame functions in [3].

Consider the convex optimization problem:

minimize f(x) s.t. x ∈ H, (53)

where f : H → R ∪ {+∞} is a (convex) proper and closed function. An exact
proximal point iteration at x ∈ H with stepsize λ > 0 consists in computing

y = (I + λ∂f)−1(x).

Equivalently, for a given pair (λ, x) ∈ R++×H, we have to compute y ∈ H such
that

0 ∈ λ∂f(y) + y − x.

Decoupling the latter inclusion, we are led to the following proximal inclusion-
equation system:

v ∈ ∂f(y), λv + y − x = 0. (54)

We next show how errors in both the inclusion and the equation in (54) can be
handled with an appropriate error criterion (∂εf stands for the classical notion
of Legendre-Fenchel ǫ-subdifferential).

Proposition 6.1. Let x ∈ H, λ > 0 and σ ∈ [0, 1[. If y, v ∈ H and ε ≥ 0
satisfy the conditions

v ∈ ∂εf(y), ‖λv + y − x‖2 + 2λε ≤ σ2‖y − x‖2, (55)

then, the following statements hold:

(a) f(x′) ≥ f(y) + 〈v, x′ − y〉 − ε ∀x′ ∈ H;

(b) f(x) ≥ f(y) + λ
2
‖v‖2 + 1−σ2

2λ
‖y − x‖2 ≥ f(y);

(c) (1 + σ)‖y − x‖ ≥ ‖λv‖ ≥ (1− σ)‖y − x‖;
(d) ε ≤ σ2

2(1−σ)
‖v‖ ‖y − x‖; and

λ

2
‖v‖2 + 1− σ2

2λ
‖y − x‖2

≥ max

{
‖v‖3/2

√
λ‖y − x‖(1− σ),

1− σ

λ
‖y − x‖2

}
.

(56)

Proof. (a) This statement follows trivially from the inclusion in (55), and the
definition of ε-subdifferentials.
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(b) First note that the inequality in (55) is equivalent to

‖λv‖2 + ‖y − x‖2 − 2λ [〈v, x− y〉 − ε] ≤ σ2‖y − x‖2.

Dividing both sides of the latter inequality by 2λ, and using some trivial alge-
braic manipulations, we obtain

〈v, x− y〉 − ε ≥λ

2
‖v‖2 + 1− σ2

2λ
‖y − x‖2,

which, in turn, combined with (a) evaluated at x′ = x, yields the first inequality
in (b). To complete the proof of (b), note that the second inequality follows
trivially from the assumptions that λ > 0 and 0 ≤ σ < 1.

(c) Direct use of the triangle inequality yields

‖y − x‖+ ‖λv + y − x‖ ≥ ‖λv‖ ≥ ‖y − x‖ − ‖λv + y − x‖.

Since σ ≥ 0, λ > 0, and ε ≥ 0, it follows from (55) that ‖λv+y−x‖ ≤ σ‖y−x‖,
which in turn combined with the latter displayed equation proves (c).

(d) In view of the inequality in (55), the second inequality in (c), and the as-
sumption that σ < 1, we have

2λε ≤ σ2‖y − x‖2 ≤ σ2

1− σ
‖λv‖ ‖y − x‖,

which trivially gives the statement in (d).

To complete the proof of the proposition, it remains to prove (56). To this end,
first note that, due to (c), we have y − x = 0 if and only if v = 0, in which
case (56) holds trivially. Assume now that y − x and v are nonzero vectors.
Defining the positive scalars θ = λ‖y − x‖, µ = λ‖v‖/‖y − x‖ and using (c) we
conclude that

1− σ ≤ µ ≤ 1 + σ. (57)

Moreover, it follows directly from the definitions of θ and µ that

λ

2
‖v‖2 + 1− σ2

2λ
‖y − x‖2 = λ

2
‖v‖2

(
1 +

1− σ2

µ2

)

= ‖v‖3/2
√
θµ

2

(
1 +

1− σ2

µ2

)
.

Since t+ 1/t ≥ 2 for every t > 0, it follows that

√
µ

(
1 +

1− σ2

µ2

)
=

√
1− σ2

µ

(
µ√

1− σ2
+

√
1− σ2

µ

)

≥ 2

√
1− σ2

µ
≥ 2
√
1− σ,
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where the second inequality follows from the upper bound for µ in (57). Com-
bining the last two displayed equations, and using the definition of θ, we obtain

λ

2
‖v‖2 + 1− σ2

2λ
‖y − x‖2 ≥ ‖v‖3/2

√
λ‖y − x‖(1− σ).

Likewise, using the second inequality (c) we obtain

λ

2
‖v‖2 + 1− σ2

2λ
‖y − x‖2 ≥ (1− σ)2

2λ
‖y − x‖2 + 1− σ2

2λ
‖y − x‖2

=
1− σ

λ
‖y − x‖2.

To end the proof, combine the two above inequalities.

Note that (55) allows errors in both the inclusion and the equation in (54).
Indeed, since ∂f(y) ⊂ ∂εf(y) it is easy to see that every triple (λ, y, v) satisfy-
ing (54) also satisfies (55) with ε = 0. Moreover, if σ = 0 in (55) then we have
that (λ, y, v) satisfies (54).

Motivated by the above results, we will now state our method which uses ap-
proximate solutions of (53), in the sense of Proposition 6.1.

Algorithm 6.2 (A Large-step PP method for convex optimization).

(0) Let x0 ∈ dom(f), σ ∈ [0, 1[, θ > 0 be given, and set k = 1;

(1) choose λk > 0, and find xk, vk ∈ H, εk ≥ 0 such that

vk ∈ ∂εkf(xk), (58)

‖λkvk + xk − xk−1‖2 + 2λkεk ≤ σ2‖xk − xk−1‖2, (59)

λk‖xk − xk−1‖ ≥ θ or vk = 0; (60)

(2) if vk = 0 then STOP and output xk; otherwise let k ← k + 1 and go to
step 1.

end

We now make some comments about Algorithm 6.2. First, the error tolerance
(58)–(59) is a particular case of the relative error tolerance for the HPE/Projec-
tion method introduced in [19, 20], but here we are not performing an extragra-
dient step, while the inequality in (60) was used/introduced by Monteiro and
Svaiter in [12, 13]. Second, as in the recent literature on the HPE method, we as-
sume that the vectors and scalars in step (1) are given by a black-box. Concrete
instances of such a black-box would depend on the particular implementation
of the method. We refer the reader to the next section, where it is shown that
(in the smooth case) a single Newton step for the proximal subproblem provides
scalars and vectors satisfying all the conditions of step (1).

From now on in this section, {xk}, {vk}, {εk} and {λk} are sequences generated
by Algorithm 6.2. These sequences may be finite or infinite. The provision for
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vk = 0 is in (60) because, in this case, xk−1 is already a minimizer of f , as proved
in the sequel.

Proposition 6.3. For x0 ∈ H, assume that iteration k ≥ 1 of Algorithm 6.2 is
reached (so that λk, xk, vk and εk are generated). Then, the following statements
hold:

(a) f(x′) ≥ f(xk) + 〈vk, x′ − xk〉 − εk ∀x′ ∈ H;

(b) f(xk−1) ≥ f(xk) +
λk

2
‖vk‖2 + 1−σ2

2λk
‖xk − xk−1‖2 ≥ f(xk);

(c) (1 + σ)‖xk − xk−1‖ ≥ ‖λkvk‖ ≥ (1− σ)‖xk − xk−1‖;
(d) εk ≤ σ2

2(1−σ)
‖vk‖ ‖xk − xk−1‖; and

λk

2
‖vk‖2 +

1− σ2

2λk

‖xk − xk−1‖2

≥ max

{
‖vk‖3/2

√
θ(1− σ),

1− σ

λk

‖xk − xk−1‖2
}
.

(61)

(e) Suppose inf f > −∞. Then
∑

1
λk

3 < +∞; as a consequence, if the se-

quences {λk}, {xk} etc. are infinite, then λk → +∞ as k →∞.

Proof. Items (a), (b), (c), and (d) follow directly from Proposition 6.1 and
Algorithm 6.2’s definition. To prove (e), first notice that (b) implies, for any
j ≥ 1

f(xj−1) ≥ f(xj) +
1− σ2

2λj

‖xj − xj−1‖2.

Summing this inequality from j = 1 to k, we obtain

f(x0) ≥ f(xk) +
1− σ2

2

k∑

j=1

‖xj − xj−1‖2
λj

.

Note that, in order Algorithm 6.2 to be defined, we need to take x0 ∈ dom f ,
i.e., f(x0) < +∞. Since, by assumption, inf f > −∞, and σ < 1, we deduce
that

∑

k

‖xk − xk−1‖2
λk

< +∞. (62)

On the other hand, by definition of Algorithm 6.2, (60), we have λk‖xk−xk−1‖ ≥
θ. Equivalently, ‖xk − xk−1‖2 ≥ θ2

λk
2 . Combining this inequality with (62), and

θ > 0, we obtain
∑

k

1

λk
3 < +∞. (63)

Suppose now that Algorithm 6.2 generates infinite sequences. Any convergence
result valid under this assumption is valid in the general case, with the provision



166 H. Attouch, M. Marques Alves, B. F. Svaiter / A Dynamic Approach ...

“or a solution is reached in a finite number of iterations�. We are ready to ana-
lyze the (global) rate of convergence and the iteration complexity of Algorithm
6.2. To this end, let D0 be the diameter of the level set [f ≤ f(x0)], that is,

D0 = sup{‖x− y‖ | max{f(x), f(y)} ≤ f(x0)}. (64)

Theorem 6.4. Assume that D0 <∞, let x̄ be a solution of (53) and define

D̂ = D0

[
1 +

σ2

2(1− σ)

]
, κ =

√
θ(1− σ)

D̂3
. (65)

Then, the following statements hold for every k ≥ 1:

(a) ‖vk‖D̂ ≥ f(xk)− f(x̄);

(b) f(xk) ≤ f(xk−1)− 2κ(f(xk−1)−f(x̄))3/2

2+3κ(f(xk−1)−f(x̄))1/2
;

(c) f(xk)− f(x̄) ≤ f(x0)−f(x̄)

1+k
κ
√

f(x0)−f(x̄)

2+3κ
√

f(x0)−f(x̄)




2 = O(1/k2).

Moreover, for each k ≥ 2 even, there exists j ∈ {k/2 + 1, . . . , k} such that

‖vj‖ ≤
4

3
√

θ(1− σ)





f(x0)− f(x̄)

k

[
2 + k

κ
√
f(x0)− f(x̄)

2 + 3κ
√

f(x0)− f(x̄)

]2





2/3

= O(1/k2) (66)

and

εj ≤
4σ2

(1− σ)

f(x0)− f(x̄)

k

[
2 + k

κ
√
f(x0)− f(x̄)

2 + 3κ
√

f(x0)− f(x̄)

]2 = O(1/k3). (67)

Proof. (a) In view of Proposition 6.3(b) and the fact that x̄ is a solution of (53)
we have max{f(xk), f(x̄)} ≤ f(x0) for all k ≥ 0. As a consequence of the latter
inequality and (64) we find

max{‖x̄− xk−1‖, ‖xk − xk−1‖} ≤ D0 ∀k ≥ 1. (68)

Using Proposition 6.3(a) with x′ = x̄, Proposition 6.3(d) and the Cauchy-
Schwarz inequality we conclude that

f(xk)− f(x̄) ≤ 〈vk, xk − x̄〉+ εk

≤ ‖vk‖‖xk − x̄‖+ σ2

2(1− σ)
‖vk‖ ‖xk − xk−1‖ ∀k ≥ 1,

which in turn combined with (68) and the definition of D̂ in (65) proves (a).
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(b) By Proposition 6.3(b), (61), the above item (a), and the definition of κ in (65)
we have for all k ≥ 1:

f(xk−1)− f(x̄) ≥ f(xk)− f(x̄) + ‖vk‖3/2
√
θ(1− σ)

≥ f(xk)− f(x̄) + κ(f(xk)− f(x̄))3/2. (69)

Using the latter inequality and Lemma 5.4 (for each k ≥ 1) with b = f(xk)−f(x̄),
a = f(xk−1)− f(x̄) and c = κ we obtain

f(xk)− f(x̄) ≤ f(xk−1)− f(x̄)− κ(f(xk−1)− f(x̄))3/2

1 + (3κ/2)(f(xk−1)− f(x̄))1/2
∀k ≥ 1, (70)

which in turn proves (b).

(c) Defining ak := f(xk) − f(x̄), τ := 2κ/(2 + 3κ
√
a0), and using the second

inequality in Proposition 6.3(b) and (70), we conclude that

ak ≤ ak−1 − τa
3/2
k−1 ∀k ≥ 1,

which leads to (c), by direct application of Lemma A.1 (see Appendix).

To prove the last statement of the theorem, assume that k ≥ 2 is even. Using
the first inequality in Proposition 6.3(b), we obtain

f(xk/2)− f(xk) =
k∑

i=k/2+1

f(xi−1)− f(xi)

≥
k∑

i=k/2+1

λi

2
‖vi‖2 +

1− σ2

2λi

‖xi − xi−1‖2.
(71)

Taking j ∈ {k/2+1, . . . , k} which minimizes the general term in the second sum
of the latter inequality, and using the fact that x̄ is a solution of (53), we have

f(xk/2)− f(x̄) ≥ k

2

[
λj

2
‖vj‖2 +

1− σ2

2λj

‖xj − xj−1‖2
]
,

which, in turn, combined with (61) and (59) gives

f(xk/2)− f(x̄)

k/2
≥ max

{
‖vj‖3/2

√
θ(1− σ),

1− σ

λj

‖xj − xj−1‖2
}

≥ max

{
‖vj‖3/2

√
θ(1− σ),

2(1− σ)

σ2
εj

}
.

Combining the latter inequality with (c), and using some trivial algebraic manip-
ulations, we obtain (66) and (67), which finishes the proof of the theorem.

We now prove that if εk = 0 in Algorithm 6.2, then better complexity bounds
can be obtained.
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Theorem 6.5. Assume that D0 < ∞, and εk = 0 for all k ≥ 1. Let x̄ be a
solution of (53) and define

κ0 =

√
θ(1− σ)

D3
0

.

Then, the following statements hold for all k ≥ 1:

(a) ‖vk‖D0 ≥ f(xk)− f(x̄);

(b) f(xk) ≤ f(xk−1)− 2κ0(f(xk−1)−f(x̄))3/2

2+3κ0(f(xk−1)−f(x̄))1/2
;

(c) f(xk)− f(x̄) ≤ f(x0)−f(x̄)

1+k
κ0

√
f(x0)−f(x̄)

2+3κ0

√
f(x0)−f(x̄)




2 = O(1/k2).

Moreover, for each k ≥ 2 even, there exists j ∈ {k/2 + 1, . . . , k} such that

‖vj‖ ≤
4

3
√

θ(1− σ)





f(x0)− f(x̄)

k

[
2 + k

κ0

√
f(x0)− f(x̄)

2 + 3κ0

√
f(x0)− f(x̄)

]2





2/3

= O(1/k2). (72)

Proof. By the same reasoning as in the proof of Theorem 6.4(a) we obtain (68)
and

f(xk)− f(x̄) ≤ ‖vk‖‖xk − x̄‖ ≤ ‖vk‖D0 ∀k ≥ 1,

which in turn proves (a). Using (a), the definition of κ0, and the same reasoning
as in the proof of Theorem 6.4(b) we deduce that (69) holds with κ0 in the place
of κ. The rest of the proof is analogous to that of Theorem 6.4.

In the next corollary, we prove that Algorithm 6.2 is able to find approximate
solutions of the problem (53) in at most O(1/

√
ε) iterations.

Corollary 6.6. Assume that all the assumptions of Theorem 6.5 hold, and let
ε > 0 be a given tolerance. Define

K =
2 + 3κ0

√
f(x0)− f(x̄)

κ0

√
ε

,

J =
2

(θ(1− σ))1/6
(2 + 3κ0

√
f(x0)− f(x̄))2/3

κ
1/3
0

√
ε

.

(73)

Then, the following statements hold:

(a) for any k ≥ K, f(xk)− f(x̄) ≤ ε;

(b) there exists j ≤ 2 ⌈J⌉ such that ‖vj‖ ≤ ε.

Proof. The proof of (a) and (b) follows trivially from Theorem 6.5(c) and (72),
respectively, and from (73).
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7. An O(1/
√
ε) proximal-Newton method for smooth convex opti-

mization

In this section, we consider a proximal-Newton method for solving the convex
optimization problem

minimize f(x) s.t. x ∈ H, (74)

where f : H→ R, and the following assumptions are made:

AS1) f is convex and twice continuously differentiable;

AS2) the Hessian of f is L-Lipschitz continuous, that is, there exists L > 0
such that

‖∇2f(x)−∇2f(y)‖ ≤ L‖x− y‖ ∀x, y ∈ H

where, at the left hand-side, the operator norm is induced by the Hilbert
norm of H;

AS3) there exists a solution of (74).

Remark. It follows from Assumptions AS1 and AS2 that ∇2f(x) exists and is
positive semidefinite (psd) for all x ∈ H, while it follows from Assumption AS2
that

‖∇f(y)−∇f(x)−∇2f(x)(y − x)‖ ≤ L

2
‖y − x‖2 ∀x, y ∈ H. (75)

Using assumption AS1, we have that an exact proximal point iteration at x ∈ H,
with stepsize λ > 0, consists in finding y ∈ H such that

λ∇f(y) + y − x = 0 (cf. (54)). (76)

The basic idea of our method is to perform a single Newton iteration for the
above equation from the current iterate x, i.e., in computing the (unique) solu-
tion y of the linear system

λ(∇f(x) +∇2f(x)(y − x)) + y − x = 0,

and defining the new iterate as such y. We will show that, due to (75), it
is possible to choose λ so that: a) condition (55) is satisfied with ε = 0 and
v = ∇f(y); b) a large-step type condition (see (60)) is satisfied for λ, x and y.
First we show that Newton step is well defined and find bounds for its norm.

Lemma 7.1. For any x ∈ H, if λ > 0 then λ∇2f(x) + I is nonsingular and

λ‖∇f(x)‖
λ‖∇2f(x)‖+ 1

≤ ‖(λ∇2f(x) + I)−1λ∇f(x)‖ ≤ λ‖∇f(x)‖. (77)

Proof. Non-singularity of λ∇2f(x) + I, as well as the inequalities in (77), are
due to the facts that λ > 0, ∇2f(x) is psd (see the remark after the Assumption
AS3), and the definition of operator’s norm.
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The next result provides a priori bounds for the (relative) residual in (76) after
a Newton iteration from x for this equation.

Lemma 7.2. For any x ∈ H, if λ > 0, σ > 0, and

y = x− (λ∇2f(x) + I)−1λ∇f(x),

λ‖(λ∇2f(x) + I)−1λ∇f(x)‖ ≤ 2σ

L
,

(78)

then ‖λ∇f(y) + y − x‖ ≤ σ‖y − x‖.

Proof. It follows from (78) that

λ∇f(y) + y − x = λ∇f(y)− λ[∇f(x) +∇2f(x)(y − x)], λ‖y − x‖ ≤ 2σ

L
.

Therefore

‖λ∇f(y) + y − x‖ = λ‖∇f(y)−∇f(x)−∇2f(x)(y − x)‖

≤ λL

2
‖y − x‖2 ≤ σ‖y − x‖,

where the first inequality follows from (75).

Lemma 7.3. For any x ∈ H, and 0 < σℓ < σu < +∞, if ∇f(x) 6= 0 then the
set of all scalars λ ∈]0,+∞[ satisfying

2σℓ

L
≤ λ‖(λ∇2f(x) + I)−1λ∇f(x)‖ ≤ 2σu

L
(79)

is a (nonempty) closed interval [λℓ, λu] ⊂]0,+∞[,

√
2σℓ/L

‖∇f(x)‖ ≤ λℓ,

λu ≤

‖∇2f(x)‖σu

L
+

√(‖∇2f(x)‖σu

L

)2

+
‖∇f(x)‖2σu

L

‖∇f(x)‖

(80)

and λu/λℓ ≥
√
σu/σℓ.

Proof. Assume that ∇f(x) is nonzero. Define the operator A : H → H by
A(y) = ∇f(x)+∇2f(x)(y−x). Since ∇2f(x) is positive semidefinite, it follows
that the affine linear operator A is maximal monotone. It can be easily checked
that, in this setting,

JA
λ (x) = x− (λ∇2f(x) + I)−1λ∇f(x),

ϕ(λ, x) = λ‖(λ∇2f(x) + I)−1λ∇f(x)‖,
(81)
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(see (6) and the paragraph below (6) to recall the notation). Hence, using
Proposition 1.4 we conclude that there exists 0 < λℓ < λu <∞ such that

ϕ(λℓ, x) =
2σℓ

L
, ϕ(λu, x) =

2σu

L
, (82)

and the set of all scalars satisfying (79) is the closed interval [λℓ, λu] ⊂]0,+∞[.
It follows from the second inequality in (13) and the above (implicit) definitions
of λℓ and λu that

2σu

L
= ϕ(λu, x) ≤

(
λu

λℓ

)2

ϕ(λℓ, x) =

(
λu

λℓ

)2
2σℓ

L

which trivially implies that λu/λℓ ≥
√
σu/σℓ. To prove the two inequali-

ties in (80), first observe that, in view of the expression (81) for ϕ(λ, x), and
Lemma 7.1, we have

λ2‖∇f(x)‖
λ‖∇2f(x)‖+ 1

≤ ϕ(λ, x) ≤ λ2‖∇f(x)‖.

Then, evaluate these inequalities for λ = λℓ, λ = λu, and use the above implicit
expression (82) for λℓ and λu.

Motivated by the above results, we propose the following algorithm for solv-
ing (74). This algorithm is the main object of study in this section. We will
prove that, for a given tolerance ε > 0, it is able to find approximate solutions
of (74) in at most O(1/

√
ε) iterations, i.e., it has the same complexity as the

cubic regularization of the Newton method proposed and studied in [14].

Algorithm 7.4 (A proximal-Newtonmethod for convex optimization).

(0) Let x0 ∈ H, 0 < σℓ < σu < 1 be given, and set k = 1;

(1) if ∇f(xk−1) = 0 then stop. Otherwise, compute λk > 0 such that

2σℓ

L
≤ λk‖(I + λk∇2f(xk−1))

−1λk∇f(xk−1)‖ ≤
2σu

L
; (83)

(2) set xk = xk−1 − (I + λk∇2f(xk−1))
−1λk∇f(xk−1);

(3) set k ← k + 1 and go to step 1.

end

Remark. We note that, for a given λk > 0, iterate xk, defined in step (2) of
Algorithm 7.4, is the solution of the quadratic problem

min
x∈H

f(xk−1) + 〈∇f(xk−1), x− xk−1〉

+
1

2
〈x− xk−1,∇2f(xk−1)(x− xk−1)〉+

1

2λk

‖x− xk−1‖2.
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Hence, our method is based on classical quadratic regularizations of quadratic
local models for f , combined with a large-step type condition.

At iteration k, we must find λk ∈ [λℓ, λu], where

λℓ = Λ2σℓ/L(xk−1), λu = Λ2σu/L(xk−1).

Lemma 7.3 provides a lower and an upper bound for λℓ and λu respectively,
and guarantees that the length of the interval [logλℓ, logλu] is no smaller than
log(σu/σℓ)/2. A binary search in logλ may be used for finding λk. The com-
plexity of such a procedure was analysed in [12, 13], in the context of the HPE
method. The possible improvement of this procedure is a subject of future
research.

Proposition 7.5. For x0 ∈ H and 0 < σℓ < σu < 1, consider the sequences
{λk} and {xk} generated by Algorithm 7.4 and define

σ = σu, θ = 2σℓ/L, vk = ∇f(xk), εk = 0 ∀k ≥ 1. (84)

Then, the following statements hold for every k ≥ 1:

(a) vk ∈ ∂εkf(xk), ‖λkvk + xk − xk−1‖ ≤ σ‖xk − xk−1‖;
(b) λk‖xk − xk−1‖ ≥ θ;

(c) λk ≥
√
σℓ/(1 + σu)σuλk−1;

(d) vk is nonzero whenever v0 is nonzero.

As a consequence, Algorithm 7.4 is a special instance of Algorithm 6.2, with σ,
θ and the sequences {vk} and {εk} given by (84).

Proof. (a) First note that the inclusion in (a) follows trivially from the defini-
tion of vk and εk in (84). Moreover, using the definitions of σ and vk in (84),
the second inequality in (83), the definition of xk in step 2 of Algorithm 7.4, and
Lemma 7.2 with λ = λk, y = xk and x = xk−1 we obtain

‖λkvk + xk − xk−1‖ = ‖λk∇f(xk) + xk − xk−1‖ ≤ σ‖xk − xk−1‖,

which concludes the proof of (a).

(b) The statement in (b) follows easily from the definition of xk and θ in step 2
of Algorithm 7.4 and (84), respectively, and the first inequality in (83).

(c) Using Algorithm 7.4’s definition, item (a), and Lemma 7.1 with λ = λk,
x = xk−1 we have, for all k ≥ 1

λk‖∇f(xk)‖ ≤ (1 + σu)‖(λk∇2f(xk−1) + I)−1λk∇f(xk−1)‖
≤ (1 + σu)λk‖∇f(xk−1)‖.

(85)

Set sk = −(λk∇2f(xk−1) + I)−1λk∇f(xk−1). Note now that (83) and the defi-
nition of sk imply that 2σℓ/L ≤ ‖λjsj‖ ≤ 2σu/L for all j = 1, · · · , k. Direct use
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of the latter inequalities for j = k − 1 and j = k, and the multiplication of the
second inequality in the latter displayed equation by λ2

k−1λk yield

λ2
k−1(2σℓ)/L ≤ λ2

k−1λ
2
k‖∇f(xk−1)‖ = λ2

kλk−1‖λk−1∇f(xk−1)‖
≤ (1 + σu)λ

2
k‖λk−1sk−1‖

≤ (1 + σu)λ
2
k(2σu)/L,

and, hence, the inequality in (c).

(d) To prove this statement observe that if ∇f(xk−1) 6= 0 then xk 6= xk−1, and
use item (a), the second inequality in item (c) of Proposition 6.1, and induction
in k.

Now we make an additional assumption in order to derive complexity estimates
for the sequence generated by Algorithm 7.4.

AS4) The level set {x ∈ H | f(x) ≤ f(x0)} is bounded, and D0 is its diameter,
that is,

D0 = sup{‖y − x‖ | max{f(x), f(y)} ≤ f(x0)} <∞.

Theorem 7.6. Assume that assumptions AS1, AS2, AS3, AS4 hold, and con-
sider the sequence {xk} generated by Algorithm 7.4. Let x̄ be a solution of (74)
and, for any given tolerance ε > 0 define

κ0 =

√
2σℓ(1− σu)

LD3
0

, K =
2 + 3κ0

√
f(x0)− f(x̄)

κ0

√
ε

,

J =
2L1/6

(
2 + 3κ0

√
f(x0)− f(x̄)

)2/3

[2σℓ(1− σu)]
1/6 κ

1/3
0

√
ε

Then, the following statements hold for every k ≥ 1:

(a) for any k ≥ K, f(xk)− f(x̄) ≤ ε;

(b) there exists j ≤ 2 ⌈J⌉ such that ‖∇f(xj)‖ ≤ ε.

Proof. The proof follows from the last statement of Proposition 7.5 and Corol-
lary 6.6.

In practical implementations of Algorithm 7.4, as in other Newton methods, the
main iteration is divided into two steps: the computation of a Newton step sk,

sk = −(λk∇2f(xk−1) + I)−1λk∇f(xk−1),

and the update xk = xk−1 + sk. As in other Newton methods, step sk is not to
be computed using the inverse of λk∇2f(xk−1) + I. Instead, the linear system

(∇2f(xk−1) + µkI)sk = −∇f(xk−1), µk = 1/λk
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is solved via a Hessenberg factorization (followed by a Cholesky factorization),
a Cholesky factorization, or a conjugate gradient method. Some reasons for
choosing a Hessenberg factorization are discussed in [12]. For large and dense
linear systems, conjugate gradient is the method of choice, and it is used as an
iterative procedure. In these cases, the linear system is not solved (exactly).
Even for Hessenberg and Cholesky factorization, ill-conditioned linear systems
are inexactly solved with a non-negligible error.

Since λk →∞, µk → 0 and, in spite of the regularizing term µkI, ill-conditioned
systems may occur. For these reasons, it may be interesting to consider a vari-
ant of Algorithm 7.4 where an “inexact� Newton step is used, see [13] for the
development of this method in the context of the HPE method.

7.1. Quadratic convergence in the regular case

In this section, we will analyze Algorithm 7.4 under the assumption:

AS3r) there exists a unique x∗ solution of (74), and ∇2f(x∗) is non-singular.

Theorem 7.7. Let us make assumptions AS1, AS2, and AS3r. Then, the se-
quence {xk} generated by Algorithm 7.4 converges quadratically to x∗, the unique
solution of (74).

Proof. Let M := ‖∇2f(x∗)−1‖. For any M ′ > M there exists r0 > 0 such that

x ∈ B(x∗, r0) =⇒ ∇2f(x) is non-singular, ‖∇2f(x)−1‖ ≤M ′.

Since {f(xk)} converges to f(x∗), it follows from assumptions AS1 and AS3r
that xk → x∗ as k →∞; therefore, there exists k0 such that

‖x∗ − xk‖ < r0 for k ≥ k0.

Define, for k > k0, sk, s
N
k , and s∗k as

sk = −(I + λk∇2f(xk−1))
−1λk∇f(xk−1),

sNk = −∇2f(xk−1)
−1∇f(xk−1), s∗k = x∗ − xk−1.

Observe that sk is the step of Algorithm 7.4 at xk−1, and sNk is Newton’s step
for (74) at xk−1. Define also

wk = ∇2f(xk−1)(s
∗
k) +∇f(xk−1) = ∇2f(xk−1)(x

∗ − xk−1) +∇f(xk−1).

Since∇f(x∗) = 0, it follows from assumption AS2 that ‖wk‖ ≤ L‖s∗k‖2/2. Hence

‖s∗k − sNk ‖ =
∥∥∇2f(xk−1)

−1wk

∥∥ ≤ M ′L

2
‖s∗k‖2. (86)

Let us now observe that
‖sk‖ ≤ ‖sNk ‖.
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This is a direct consequence of the definition of sk, s
N
k , and the monotonicity

property of ∇2f(xk−1). By the two above relations, and the triangle inequality
we deduce that

‖sk‖ ≤ ‖s∗k‖+ ‖sNk − s∗k‖ ≤ ‖s∗k‖
(
1 +

M ′L

2
‖s∗k‖

)
.

The first inequality in (83) is, in the above notation, 2σℓ/L ≤ λk‖sk‖. Therefore,

λ−1
k ≤

L

2σℓ

‖sk‖. (87)

It follows from the above definitions that

∇2f(xk−1)sk + λ−1
k sk +∇f(xk−1) = 0, ∇2f(xk−1)s

N
k +∇f(xk−1) = 0.

Hence ∇2f(xk−1)(s
N
k − sk) = λ−1

k sk, which gives, by (87)

‖sNk − sk‖ ≤M ′λ−1
k ‖sk‖ ≤

M ′L

2σℓ

‖sk‖2. (88)

Combining (86) with (88), we finally obtain

‖x∗ − xk‖ = ‖s∗k − sk‖ ≤ ‖s∗k − sNk ‖+ ‖sNk − sk‖

≤ M ′L

2

[
‖s∗k‖2 +

1

σℓ

‖sk‖2
]

=
M ′L

2

[
1 +

1

σℓ

(
1 +

M ′L

2
‖s∗k‖

)2
]
‖x∗ − xk−1‖2.

8. Concluding remarks

The proximal point method is a basic block of several algorithms and splitting
methods in optimization, such as proximal-gradient methods, Gauss-Seidel alter-
nating proximal minimization, augmented Lagrangian methods. Among others,
it has been successfully applied to sparse optimization in signal/image, machine
learning, inverse problems in physics, domain decomposition for PDE’S... In
these situations, we are faced with problems of high dimension, and this is a
crucial issue to develop fast methods. In this paper, we have laid the theoretical
foundations for a new fast proximal method. It is based on a large step con-
dition. For convex minimization problems, its complexity is O( 1

n2 ), and global
quadratic convergence holds in the regular case for the associated proximal-
Newton method. It can be considered as a discrete version of a regularized
Newton continuous dynamical system. Many interesting theoretical points still
remain to be investigated, such as obtaining fast convergence results for maxi-
mal monotone operators which are not subdifferentials, the combination of the
method with classical proximal based algorithms, and duality methods, as men-
tioned above. The implementation of the method on concrete examples is a
subject for further research.



176 H. Attouch, M. Marques Alves, B. F. Svaiter / A Dynamic Approach ...

A. Appendix

A.1. A discrete differential inequality

Lemma A.1. Let {ak} be a sequence of non-negative real numbers and let τ ≥ 0

be such that τ
√
a0 ≤ 1. If ak ≤ ak−1 − τa

3/2
k−1 for all k ≥ 1, then

ak ≤
a0[

1 + kτ
√
a0/2

]2 .

Proof. Since {ak} is non-increasing, it follows that ak = 0 implies ak+1 =
ak+2 = · · · = 0 and, consequently, the desired inequality holds for all k′ ≥ k.
Assume now that ak > 0 for some k ≥ 1. Using the assumptions on {ak} we
find the following inequality:

1

aj
≥ 1

aj−1 − τa
3/2
j−1

> 0 ∀j ≤ k.

Taking the square root on both sides of latter inequality and using the convexity

of the scalar function t 7→ 1/
√
t we conclude that

1
√
aj
≥ 1√

aj−1 − τa
3/2
j−1

≥ 1
√
aj−1

+
1

2a
3/2
j−1

τa
3/2
j−1 =

1
√
aj−1

+
τ

2
∀j ≤ k.

Adding the above inequality for j = 1, 2, . . . , k we obtain

1√
ak
≥ 1√

a0
+ kτ/2,

which in turn gives the desired result.

A.2. Some examples

Consider some simple examples where we can explicitly compute the solution
(x, λ) of the algebraic-differential system (4), and verify that this is effectively
a well-posed system.

Isotropic linear monotone operator. Let us start with the following simple
situation. Given α > 0 a positive constant, take A = αI, i.e., for every x ∈ H

Ax = αx. One obtains

(λA+ I)−1x =
1

1 + λα
x (89)

x− (λA+ I)−1x =
λα

1 + λα
x. (90)
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Given x0 6= 0, the algebraic-differential system (4) can be written as follows

�x(t) +
αλ(t)

1 + αλ(t)
x(t) = 0, λ(t) > 0, (91)

αλ(t)2

1 + αλ(t)
‖x(t)‖ = θ, (92)

x(0) = x0. (93)

Let us integrate the linear differential equation (91). Set

∆(t) :=

∫ t

0

αλ(τ)

1 + αλ(τ)
dτ. (94)

We have
x(t) = e−∆(t)x0. (95)

Equation (92) becomes

αλ(t)2

1 + αλ(t)
e−∆(t) =

θ

‖x0‖
. (96)

First, check this equation at time t = 0. Equivalently

αλ(0)2

1 + αλ(0)
=

θ

‖x0‖
. (97)

This equation defines uniquely λ(0) > 0, because the function ξ 7→ αξ2

1+αξ
is

strictly increasing from [0,+∞[ onto [0,+∞[. Thus, the only thing we have to
prove is the existence of a positive function t 7→ λ(t) such that

h(t) :=
αλ(t)2

1 + αλ(t)
e−∆(t) is constant on [0,+∞[. (98)

Writing that the derivative h′ is identically zero on [0,+∞[, we obtain that λ(·)
must satisfy

λ′(t)(αλ(t) + 2)− αλ(t)2 = 0. (99)

After integration of this first-order differential equation, with Cauchy data λ(0),
we obtain

α lnλ(t)− 2

λ(t)
= αt+ α lnλ(0)− 2

λ(0)
. (100)

Let us introduce the function g : ]0,+∞[→ R

g(ξ) = α ln ξ − 2

ξ
. (101)

One can easily verify that, as t increases from 0 to +∞, g(t) is strictly increasing
from −∞ to +∞ . Thus, for each t > 0, (100) has a unique solution λ(t) > 0.
Moreover, the mapping t → λ(t) is increasing, continuously differentiable, and
limt→∞ λ(t) = +∞. Returning to (100), we obtain that λ(t) ≈ et as t→ +∞.
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Antisymmetric linear monotone operator. Take H = R
2 and A equal

to the rotation centered at the origin and angle π
2
. The operator A satisfies

A∗ = −A (anti self-adjoint). This is a model example of a linear maximal
monotone operator which is not self-adjoint. Set x = (ξ, η) ∈ R

2. We have

A(ξ, η) = (−η, ξ).

(λA+ I)−1x =
1

1 + λ2
(ξ + λη, η − λξ) (102)

x− (λA+ I)−1x =
λ

1 + λ2
(λξ − η, λη + ξ) . (103)

The condition λ‖(λA+ I)−1x− x‖ = θ can be reexpressed as

λ2

1 + λ2
‖ (λξ − η, λη + ξ) ‖ = θ.

Equivalently
λ2

√
1 + λ2

√
ξ2 + η2 = θ.

Given x0 6= 0, the algebraic-differential system (4) can be written as follows

�ξ(t) +
λ(t)

1 + λ(t)2
(λ(t)ξ(t)− η(t)) = 0, λ(t) > 0, (104)

�η(t) +
λ(t)

1 + λ(t)2
(λ(t)η(t) + ξ(t)) = 0, λ(t) > 0, (105)

λ(t)2√
1 + λ(t)2

√
ξ(t)2 + η(t)2 = θ, (106)

x(0) = x0. (107)

Set u(t) = ξ(t)2 + η(t)2. After multiplying (104) by ξ(t), and multiplying (105)
by η(t), then adding the results, we obtain

u′(t) +
2λ(t)2

1 + λ(t)2
u(t) = 0.

Set

∆(t) :=

∫ t

0

2λ(τ)2

1 + λ(τ)2
dτ. (108)

We have
u(t) = e−∆(t)u(0). (109)

Equation (106) becomes

λ(t)2√
1 + λ(t)2

e−
∆(t)
2 =

θ

‖x0‖
. (110)
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First, check this equation at time t = 0. Equivalently

λ(0)2√
1 + λ(0)2

=
θ

‖x0‖
. (111)

This equation defines uniquely λ(0) > 0, because the function ρ 7→ ρ2√
1+ρ2

is

strictly increasing from [0,+∞[ onto [0,+∞[. Thus, the only thing we have to
prove is the existence of a positive function t 7→ λ(t) such that

h(t) :=
λ(t)2√
1 + λ(t)2

e−
∆(t)
2 is constant on [0,+∞[. (112)

Writing that the derivative h′ is identically zero on [0,+∞[, we obtain that λ(·)
must satisfy

λ′(t)(2λ(t) + λ(t)3)− λ(t)3 = 0. (113)

After integration of this first-order differential equation, with Cauchy data λ(0),
we obtain

λ(t)− 2

λ(t)
= t+ λ(0)− 2

λ(0)
. (114)

Let us introduce the function g : ]0,+∞[→ R

g(ρ) = ρ− 2

ρ
. (115)

As t increases from 0 to +∞, g(t) is strictly increasing from −∞ to +∞ . Thus,
for each t > 0, (114) has a unique solution λ(t) > 0. Moreover, the mapping
t → λ(t) is increasing, continuously differentiable, and limt→∞ λ(t) = +∞.
Returning to (114), we obtain that λ(t) ≈ t as t→ +∞.
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