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Abstract

In this paper, iterative regularizationmethods of Landweber–Kaczmarz type are

considered for solving systems of ill-posed equations modeled (finitely many)

by operators acting between Banach spaces. Using assumptions of uniform

convexity and smoothness on the parameter space, we are able to prove a

monotony result for the proposed method, as well as to establish convergence

(for exact data) and stability results (in the noisy data case).

1. Introduction

1.1. Systems of nonlinear ill-posed equations

In this paper, we propose a new method for obtaining regularized approximations of systems

of nonlinear ill-posed operator equations in Banach spaces.

The inverse problem we are interested in consists in determining an unknown physical

quantity x ∈ X from the set of data (y1, . . . , ym) ∈ Y m, where X and Y are Banach spaces,

with X being uniformly convex and smooth [6], and m > 1.

In practical situations, we do not know the data exactly. Instead, we have only approximate

measured data yδ
i ∈ Y satisfying

‖yδ
i − yi‖ 6 δi, i = 1, . . . , m, (1)

with δi > 0 (noise level). The finite set of data above is obtained by indirect measurements of

the parameter, this process being described by the model

Fi(x) = yi, i = 1, . . . , m, (2)

where Fi : Di ⊂ X → Y , and Di are the corresponding domains of definition.

Standard methods for the solution of system (2) are based on the use of iterative-type

regularization methods [1, 8, 17, 23, 18] or Tikhonov-type regularization methods [8, 20, 25,

22] after rewriting (2) as a single equation F(x) = y, where

F := (F1, . . . , Fm) :
⋂m

i=1
Di =: D → Y m (3)

0266-5611/12/104008+15$33.00 © 2012 IOP Publishing Ltd Printed in the UK & the USA 1



Inverse Problems 28 (2012) 104008 A Leitão and M M Alves

and y := (y1, . . . , ym). However, these methods become inefficient if m is large or the

evaluations of Fi(x) and F ′
i (x)∗ are expensive. In such a situation, Kaczmarz-type methods

[16, 19, 21] which cyclically consider each equation in (2) separately are much faster [21] and

are often the method of choice in practice (see section 1.3).

Example 1.1. A tutorial example of an inverse problem of the form (2) is the identification of

the space-dependent coefficient a(x) (bounded away from zero) in the elliptic model

−∇(a∇u)= f , in Ä, u = 0, at ∂Ä,

where Ä ⊂ R
2 is an open bounded domain with a regular (smooth) boundary ∂Ä. Available

data for the identification problem are u|Äi
, i.e. the restrictions of the solution u to the given

open sets Äi ⊂ Ä, i = 1, . . . , m.

In the standard Hilbert space setting [8, 2], we have Fi : H2(Ä) = X ⊃ Di ∋ a 7→

(1−1
a f )|Äi

∈ Yi = L2(Äi), where 1a : H2(Ä) ∩ H1
0 (Ä) ∋ u 7→ −∇(a∇u) ∈ L2(Ä) and

Di = D := {a ∈ X; a(x) > a > 0, a.e. in Ä}, i = 1, . . . , m.

A possible Banach space setting for this problem is analyzed in [18] (for the case

m = 1 and Ä1 = Ä), where the choice X = W 1,q(Ä), Yi = Lr(Äi) with q > 2 and

r ∈ (1,∞) is considered. In particular, it follows from [18, corollary 3] that the results of the

convergence analysis derived here can be applied to this parameter identification problem (see

assumption 3.1).

1.2. Regularization in Banach spaces

Ill-posed operator equations in Banach spaces are a fast-growing area of research. Over the

last seven years, several theoretical results have been derived in this field.

• The classical paper on regularization of ill-posed problems in Banach spaces by Resmerita

[22].

• Tikhonov’s regularization in Banach spaces is also investigated in [4], where two distinct

iterative methods for finding the minimizer of norm-based Tikhonov functionals are

proposed and analyzed (convergence is proven). Moreover, convergence rates results for

Tikhonov’s regularization in Banach spaces are considered in [15].

• In [23], a nonlinear extension of the Landweber method to linear operator equations in

Banach spaces is investigated using duality mappings. The same authors considered in [24]

the solution of convex split feasibility problems in Banach spaces by cyclic projections.

See also [14, 13] for the convergence analysis of modified Landweber iterations in Banach

spaces.

• In [18], the nonlinear Landweber method and the IRGN method are considered for a

single (nonlinear) operator equation in Banach spaces, and convergence results are derived.

Moreover, the applicability of the proposed methods to parameter identification problems

for elliptic PDEs is investigated.

• The Gauss–Newton method in Banach spaces is considered in [1] for a single operator

equation in the special case X = Y . A convergence result is obtained and convergence

rates (under strong source conditions) are provided.

The starting point of our approach is the Landweber method [23, 18] for solving ill-posed

problems in Banach spaces1. In the case of a single operator equation, i.e. m = 1 in (2), this

method is defined by

x∗
n = Jp(xn) − µnF ′(xn)

∗Jr

(

F(xn) − yδ
)

, xn+1 = Jq

(

x∗
n

)

, (4)

1 See also [1, 8, 17] for the analysis of the Landweber method in Hilbert spaces.
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where F ′(x) is the Fréchet derivative of F at point x, and Jp, Jr and Jq are the duality mappings

from X , Y and X∗ to their duals, respectively. Moreover, x0 ∈ D and p, q, r ∈ (1,∞) satisfy

p + q = pq.

The step size µn depends on the constant of the tangential cone condition, the constant of

the discrepancy principle, the residual at xn and a constant describing geometrical properties

of the Banach spaces (see [23, section 3]).

The convergence analysis for the linear case F ∈ L(X,Y ) can be found in [23], while

convergence for nonlinear operator equations is derived in [18], where X is assumed to be

uniformly smooth and uniformly convex (actually, X is assumed to be p-convex, which is

equivalent to the dual being q-smooth, i.e. there exists a constant Cq > 0 such that for all x∗,

y∗ ∈ X∗, ‖x∗ − y∗‖q 6 ‖x∗‖q − q〈Jq(x
∗), y∗〉 + Cq‖y∗‖q follows; see [18, section 2.2]). For

a detailed definition of smoothness, uniform smoothness and uniform convexity in Banach

spaces, we refer the reader to [6, 23].

1.3. Landweber–Kaczmarz method in Banach spaces

The Landweber–Kaczmarz method in Banach spaces (LKB) consists in incorporating the

(cyclic) Kaczmarz strategy to the Landweber method depicted in (4) for solving the system of

operator equations in (2).

This strategy is an analogue of the one proposed in [10, 9] regarding the Landweber–

Kaczmarz (LK) iteration in Hilbert spaces. See also [7] for the steepest-descent-Kaczmarz

(SDK) iteration, [11] for the expectation-maximization-Kaczmarz (EMK) iteration, [3] for

the Levenberg–Marquardt–Kaczmarz (LMK) iteration, and [2] for the iterated-Tikhonov–

Kaczmarz (ITK) iteration.

Motivated by the ideas in the above-mentioned papers (in particular by the approach in

[11], where X = L1(Ä) and convergence is measured with respect to the Kullback–Leibler

distance), we propose in this paper the LBK method, which is sketched as follows:

x∗
n = Jp(xn) − µnF ′

in
(xn)

∗Jr

(

Fin (xn) − yδ
in

)

, xn+1 = Jq(x
∗
n), (5)

for n = 0, 1, . . .. Moreover, in := (n mod m) + 1 ∈ {1, ..., m}, and x0 ∈ X\{0} is an initial

guess, possibly incorporating a priori knowledge about the exact solution (which may not be

unique).

Here, µn > 0 is chosen analogously as in (4) if ‖Fin (xn) − yδ
in
‖ > τδin (see section 3 for

the precise definition of µn and the discrepancy parameter τ > 0). Otherwise, we set µn = 0.

Consequently, xn+1 = Jq(x
∗
n) = Jq(Jp(xn)) = xn every time the residual of the iterate xn w.r.t.

the inth equation of system (2) drops below the discrepancy level given by τδin .

Due to the bang-bang strategy used to define the sequence of parameters (µn), the iteration

in (5) is alternatively called loping Landweber–Kaczmarz method in Banach spaces.

As usual in Kaczmarz-type algorithms, a group of m subsequent steps (beginning at some

integer multiple of m) is called a cycle. The iteration should be terminated when, for the first

time, all of the residuals ‖Fin (xn+1) − yδ
in
‖ drop below a specified threshold within a cycle.

That is, we stop the iteration at the step

n̂ := min{ℓm + (m − 1) : ℓ ∈ N, ‖Fi(xℓm+i−1) − yδ
i ‖ 6 τδi, for 1 6 i 6 m}. (6)

In other words, writing n̂ := ℓ̂m+ (m−1), (6) can be interpreted as ‖Fi(xℓ̂m+i−1
)− yδ

i ‖ 6 τδi,

i = 1, . . . , m. In the case of noise-free data (δi = 0 in (1)), the stop criteria in (6) may never

be reached, i.e. n̂ = ∞ for δi = 0.
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Outline of the manuscript

In section 2, we introduce the notation used in this paper and briefly recall some results on

the convex analysis and Bregman distances, which are necessary for the analysis presented

in the forthcoming sections. In section 3, the LK algorithm for solving systems of nonlinear

ill-posed equations in Banach spaces is formulated. Moreover, some preliminary results are

derived, namely boundedness and monotony of iteration error and residual. In section 4, the

main results of the manuscript are presented. A convergence analysis of the proposed method

is given, and stability results are proven. Section 5 is devoted to conclusions and discussion of

future work perspectives.

2. Overview of the convex analysis and Bregman distances

2.1. Convex analysis

Let X be a (nontrivial) real Banach space with the topological dual X∗. By ‖ · ‖ we denote the

norm on X and X∗. The duality product on X × X∗ is a bilinear symmetric mapping, denoted

by 〈·, ·〉, and defined as 〈x, x∗〉 = x∗(x), for all (x, x∗) ∈ X × X∗.

Let f : X → (−∞,∞] be convex, proper and lower semicontinuous. Recall that f is

convex lower semicontinuous when its epigraph epi( f ) := {(x, λ) ∈ X × R : f (x) 6 λ} is a

closed convex subset of X × R. Moreover, f is proper when its domain dom( f ) := {x ∈ X :

f (x) < ∞} is nonempty. The subdifferential of f is the (point-to-set) operator ∂ f : X → 2X∗

defined at x ∈ X by

∂ f (x) = {x∗ ∈ X∗ : f (y) > f (x) + 〈x∗, y − x〉 ∀y ∈ X}. (7)

Note that ∂ f (x) = ∅, whenever x /∈ dom( f ). The domain of ∂ f is the set dom(∂ f ) = {x ∈

X : ∂ f (x) 6= ∅}. Next, we present a very useful characterization of ∂ f using the concept of

Fenchel conjugation. The Fenchel conjugate of f is the lower semicontinuous convex function

f ∗ : X∗ → (−∞,∞] defined at x∗ ∈ X∗ by

f ∗(x∗) = sup
x∈X

〈x, x∗〉 − f (x). (8)

It is well known that f ∗ is also proper whenever f is proper. The Fenchel–Young inequality

follows directly from (8):

f (x) + f ∗(x∗) > 〈x, x∗〉 ∀(x, x∗) ∈ X × X∗. (9)

Proposition 2.1. Let f : X → (−∞,∞] be proper convex lower semicontinuous and

(x, x∗) ∈ X × X∗. Then, x∗ ∈ ∂ f (x) ⇐⇒ f (x) + f ∗(x∗) = 〈x, x∗〉.

Proof. The proof is quite straightforward and can be found in [6]. ¤

An important example considered in this paper is given by f (x) = p−1‖x‖p, where

p ∈ (1,∞). In this particular case, the following result can be found in [6].

Proposition 2.2. Let p ∈ (1,∞) and f : X ∋ x 7→ p−1‖x‖p ∈ R. Then,

f ∗ : X∗ → R, x∗ 7→ q−1‖x∗‖q, where p + q = pq.

For p ∈ (1,∞), the duality mapping Jp : X → 2X∗

is defined by

Jp := ∂ p−1‖ · ‖p.
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From the above proposition, we conclude that

x∗ ∈ Jp(x) ⇐⇒ p−1‖x‖p + q−1‖x∗‖q = 〈x, x∗〉, p + q = pq.

It follows from the above identity that Jp(0) = {0}. On the other hand, when x 6= 0, Jp(x)may

not be singleton.

Proposition 2.3. Let X and the duality mapping Jp be defined as above. The following identities

hold:

Jp(x) = {x∗ ∈ X∗ : ‖x∗‖ = ‖x‖p−1 and 〈x, x∗〉 = ‖x‖‖x∗‖}

= {x∗ ∈ X∗ : ‖x∗‖ = ‖x‖p−1 and 〈x, x∗〉 = ‖x‖p}

= {x∗ ∈ X∗ : ‖x∗‖ = ‖x‖p−1 and 〈x, x∗〉 = ‖x∗‖q}.

Moreover, Jp(x) 6= ∅ for all x ∈ X.

Proof. See [6] or [23, section 2]. ¤

Since f (x) = p−1‖x‖p is a continuous convex functions, Jp(x) is a singleton at x ∈ X iff

f is Gâteaux differentiable at x [5, corollary 4.2.5]. This motivates us to consider X a smooth

Banach space, i.e. a Banach space having a Gâteaux differentiable norm ‖ · ‖X on X\{0}. As

already observed, Jp(0) = {0} in any Banach space. In particular, in a smooth Banach space,

f (x) = p−1‖x‖p is Gâteaux differentiable everywhere.

The next theorem describes a coercivity result related to geometrical properties of

uniformly smooth Banach spaces. For details on the proof (as well as the precise definition of

the constant Gq) we refer the reader to [23, section 2.1] or [26].

Theorem 2.4. Let X be uniformly convex, q ∈ (1,∞) and ρX∗ (·) the smoothness modulus of

X∗ [6]. There exists a positive constant Gq such that the function

σ̃ (x∗, y∗) := qGq

∫ 1

0

(‖x∗ − ty∗‖ ∨ ‖x∗‖)qt−1ρX∗

(

t‖y∗‖/2(‖x∗ − ty∗‖ ∨ ‖x∗‖)
)

dt

satisfies2

‖x∗‖q − q〈Jq(x
∗), y∗〉 + σ̃q(x

∗, y∗) > ‖x∗ − y∗‖q ∀ x∗, y∗ ∈ X∗.

2.2. Bregman distances

Let f : X → (−∞,∞] be a proper, convex and lower semicontinuous function which is

Gâteaux differentiable on int(dom( f )). Moreover, denote by f ′ the Gâteaux derivative of f .

The Bregman distance induced by f is defined as D f : dom( f ) × int(dom( f )) → R

D f (y, x) = f (y) − ( f (x) + 〈 f ′(x), y − x〉).

The following proposition is a useful characterization of Bregman distances using Fenchel

conjugate functions.

Proposition 2.5. Let f : X → (−∞,∞] be a proper lower semicontinuous convex function

which is Gâteaux differentiable on int(dom( f )). Then,

D f (y, x) = f (y) + f ∗( f ′(x)) − 〈 f ′(x), y〉 ∀(y, x) ∈ dom( f ) × int(dom( f )).

2 We adopt the notation a ∨ b := max{a, b}, a ∧ b := min{a, b}, for a, b ∈ R.
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Based on this proposition, we derive the following two corollaries, which are used in a

forthcoming convergence analysis. The proofs of these corollaries follow as a particular case

f (x) = p−1‖x‖p (p ∈ (1,∞)). We use the notation Dp instead of D f .

Corollary 2.6. Let X be a smooth Banach space. Then, Jp : X → X∗ is a single-valued

mapping for which Dp : X × X → R satisfies

Dp(y, x) = p−1‖y‖p + q−1‖Jp(x)‖q − 〈y, Jp(x)〉 = p−1‖y‖p + q−1‖x‖p − 〈y, Jp(x)〉.

Corollary 2.7. Let X be a smooth Banach space. Then, Jp : X → X∗ is a single-valued

mapping for which Dp : X × X → R satisfies

Dp(y, x) = q−1 (‖x‖p − ‖y‖p) + 〈Jp(y) − Jp(x), y〉.

3. An LK algorithm in Banach spaces

In this section, we introduce an algorithm for solving the system of nonlinear ill-posed

equations (2) with data satisfying (1). In the rest of the paper, we assume the Banach space X

to be uniformly convex and smooth, e.g., Lp spaces for p ∈ (1,∞).3 These assumptions are

crucial for the analysis derived in this section as well as in the forthcoming one.

We denote by

B
1
p(x, r) = {y ∈ X : Dp(x, y) 6 r}, B

2
p(x, r) = {y ∈ X : Dp(y, x) 6 r},

the balls of radius r > 0 with respect to the Bregman distance Dp(·, ·).

A solution of (2) is any x̄ ∈ D satisfying simultaneously the operator equation in (2),

while a minimum-norm solution of (2) in S (S ⊂ X) is any solution x† ∈ S satisfying

‖x†‖ = min{‖x‖ : x ∈ S is a solution of(2)}.

Assumption 3.1. Let p, q, r ∈ (1,∞) be given with p + q = pq. The following assumptions

will be required in the forthcoming analysis.

(A0) Each operator Fi is of class C1 in D. Moreover, the system of operator equations (2)

has a solution x̄ ∈ X satisfying x0 ∈ B1p(x̄, ρ̄) ⊂ D, for some ρ̄ > 0. Furthermore, we

require Dp(x̄, x0) 6 p−1‖x̄‖p. The element x0 will be used as an initial guess of the LK

algorithm.

(A1) The family {Fi}16i6m satisfies the tangential cone condition in B
1
p(x̄, ρ̄), i.e. there exists

η ∈ (0, 1), such that

‖Fi(y) − Fi(x) − F ′
i (x)(y − x)‖ 6 η‖Fi(y) − Fi(x)‖,

for all x, y ∈ B1p(x̄, ρ̄), i = 1, . . . , m.

(A2) The family {Fi}16i6m satisfies the tangential cone condition in B
2
p(x0, ρ0) ⊂ D for some

ρ0 > 0, i.e. there exists η ∈ (0, 1), such that

‖Fi(y) − Fi(x) − F ′
i (x)(y − x)‖ 6 η‖Fi(y) − Fi(x)‖,

for all x, y ∈ B2p(x0, ρ0), i = 1, . . . , m.

(A3) For every x ∈ B1p(x̄, ρ̄), we have ‖F ′
i (x)‖ 6 1, i = 1, 2, . . . , m.

In what follows, we formulate our LK algorithm for approximating a solution of (2), with data

given as in (1).

Algorithm 3.1. Under assumptions (A0) and (A1), choose c ∈ (0, 1) and τ ∈ (0,∞), such

that β := η + τ−1(1+ η) < 1.

3 Note that L1 and L∞ are not uniformly convex [23, example 2.2].
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• Step 0. Set n = 0 and take x0 6= 0 satisfying (A0).

• Step 1. Set in = n(modm) + 1 and evaluate the residual Rn = Fin (xn) − yδ
in
;

• Step 2. IF (‖Rn‖ 6 τδin ) THEN

µn := 0;

ELSE

Find τn ∈ (0, 1] solving the equation

ρX∗ (τn) τ−1
n =

(

c(1− β) ‖Rn‖
[

2q Gq(1 ∨ ‖F ′
in
(xn)‖) ‖xn‖

]−1
)

∧ ρX∗ (1);

(10)

µn := τn‖xn‖
p−1 /

[

(1 ∨ ‖F ′
in
(xn)‖) ‖Rn‖

r−1
]

;

ENDIF

x∗
n := Jp(xn) − µnF ′

in
(xn)

∗Jr(Fin (xn) − yδ
in
);

xn+1 = Jq(x
∗
n); (11)

• Step 3. IF (in = m) AND (xn+1 = xn = · · · = xn−(m−1)) THEN STOP;

• Step 4. SET n = n + 1; GO TO Step 1.

The next remark guarantees that the above algorithm is well defined.

Remark 3.1. It is worth noting that a solution τn ∈ (0, 1] of equation (10) can always be

found. Indeed, since X∗ is uniformly smooth, the function (0,∞) ∋ τ 7→ ρX∗ (τ )/τ ∈ (0, 1]

is continuous and satisfies limτ→0 ρX∗ (τ )/τ = 0 (see, e.g., [23, definition 2.1] or [6]). For

each n ∈ N, define

λn :=
(

c(1− β) ‖Rn‖ [2
q Gq(1 ∨ ‖F ′

in
(xn)‖) ‖xn‖]

−1
)

∧ ρX∗ (1). (12)

It follows from [23, section 2.1] that ρX∗ (1) 6 1. Therefore, λn ∈ (0, 1], n ∈ N, and we

can find σn ∈ (0, 1] satisfying ρX∗ (σn)/σn < λn 6 ρX∗ (1). Finally, the mean value theorem

guarantees the existence of corresponding τn ∈ (0, 1], such that λn = ρx∗ (τn)/τn, n ∈ N.

Algorithm 3.1 should be stopped at the smallest iteration index n̂ ∈ N of the form

n̂ = ℓ̂m + (m − 1), ℓ̂ ∈ N, which satisfies

‖Fin (xn) − yδ
in
‖ 6 τδin , n = ℓ̂m, . . . , ℓ̂m + (m − 1) (13)

(note that in̂ = m). In this case, xn̂ = xn̂−1 = · · · = xn̂−(m−1) within the ℓ̂th cycle. The next

result guarantees monotonicity of the iteration error (w.r.t. the Bregman distance Dp) until the

discrepancy principle in (13) is reached.

Lemma 3.2 (Monotonicity). Let assumptions (A0) and (A1) be satisfied and (xn) be a sequence

generated by algorithm 3.1. Then,

Dp(x̄, xn+1) 6 Dp(x̄, xn), n = 0, 1, . . . , n̂,

where n̂ = ℓ̂m + (m − 1) is defined by (13). From the above inequality, it follows that

xn ∈ B1p(x̄, ρ̄) ⊂ D, n = 0, 1, . . . , n̂.

Proof. Let 0 6 n 6 n̂ and assume that xn is a nonzero vector satisfying xn ∈ B1p(x̄, ρ̄). From

assumption (A0), xn ∈ D follows.

If ‖Rn‖ 6 τδin , then xn+1 = xn and the lemma follows trivially. Otherwise, it follows from

corollary 2.6 that

Dp(x̄, xn+1)= p−1‖x̄‖p + q−1‖Jp(xn+1)‖
q − 〈x̄, Jp(xn+1)〉. (14)

7
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Since Rn = Fin (xn) − yδ
in
, we conclude from (11) and Jq = (Jp)

−1 [6] that

Jp(xn+1)= Jp(xn)− µnF ′
in
(xn)

∗Jr(Rn).

Thus, it follows from theorem 2.4 that

‖Jp(xn+1)‖
q = ‖Jp(xn) − µnF ′

in
(xn)

∗Jr(Rn)‖
q

6 ‖Jp(xn)‖
q − qµn〈Jq(Jp(xn)), F ′

in
(xn)

∗Jr(Rn)〉 + σ̃q

(

Jp(xn), µnF ′
in
(xn)

∗Jr(Rn)
)

= ‖Jp(xn)‖
q − qµn〈xn, F ′

in
(xn)

∗Jr(Rn)〉 + σ̃q(Jp(xn), µnF ′
in
(xn)

∗Jr(Rn)). (15)

In order to estimate the last term on the right-hand side of (15), note that for all t ∈ [0, 1] the

inequality

‖Jp(xn) − tµnF ′
in
(xn)

∗Jr(Rn)‖ ∨ ‖Jp(xn)‖ 6 ‖xn‖
p−1 + µn(1 ∨ ‖F ′

in
(xn)‖)‖Rn‖

r−1

6 (1+ τn)‖xn‖
p−1

6 2‖xn‖
p−1

holds true (to obtain the first inequality we used proposition 2.3).

Moreover, ‖Jp(xn)− tµnF ′
in
(xn)

∗Jr(Rn)‖∨‖Jp(xn)‖ > ‖Jp(xn)‖ = ‖xn‖
p−1. From the last

two inequalities together with the monotonicity of ρX∗ (t)/t, it follows that (see theorem 2.4)

σ̃q(Jp(xn), µnF ′
in
(xn)

∗Jr(Rn)) 6 qGq

∫ 1

0

(2‖xn‖
p−1)q

t
ρX∗

(

tµn(1 ∨ ‖F ′
in
(xn)‖)‖Rn‖

r−1

‖xn‖p−1

)

dt.

Consequently,

σ̃q(Jp(xn), µnF ′
in
(xn)

∗Jr(Rn))6 2q q Gq ‖xn‖
p

∫ 1

0

ρX∗ (tτn)/t dt

= 2q q Gq ‖xn‖
p

∫ τn

0

ρX∗ (t)/t dt

6 2q q Gq ρX∗ (τn)/τn‖xn‖
p

∫ τn

0

dt

= 2q q Gq ρX∗ (τn)‖xn‖
p. (16)

Now, substituting (16) into (15), we obtain the estimate

‖Jp(xn+1)‖
q

6 ‖Jp(xn)‖
q − qµn〈xn, F ′

in
(xn)

∗Jr(Rn)〉+ q2qGqρX∗ (τn)‖xn‖
p.

From this last inequality, corollary 2.6 and (14), we obtain

Dp(x̄, xn+1) 6 Dp(x̄, xn) − µn 〈xn − x̄, F ′
in
(xn)

∗Jr(Rn)〉 + 2q Gq ρX∗ (τn)‖xn‖
p. (17)

Next, we estimate the term 〈xn − x̄, F ′
in
(xn)

∗Jr(Rn)〉 in (17). Since x̄, xn ∈ B1p(x̄, ρ̄), it follows

from (A1) and simple algebraic manipulations (including proposition 2.3) that

〈x̄ − xn, F ′
in
(xn)

∗Jr(Rn)〉 = 〈yin − Fin (xn) − F ′
in
(xn)(x̄ − xn),−Jr(Rn)〉 − 〈R̃n, Jr(Rn)〉

6 η‖R̃n‖‖Jr(Rn)‖ − 〈Rn, Jr(Rn)〉 + 〈yin − yδ
in
, Jr(Rn)〉

6 η
(

‖Rn‖ + δin

)

‖Rn‖
r−1 − ‖Rn‖

r + δin‖Rn‖
r−1

=
(

η(‖Rn‖ + δin

)

+ δin )‖Rn‖
r−1 − ‖Rn‖

r

6 [(η + τ−1(1+ η)]‖Rn‖)‖Rn‖
r−1 − ‖Rn‖

r

= − (1− β)‖Rn‖
r,

where R̃n := Fin (xn) − yin and β > 0 is defined as in algorithm 3.1. Substituting this last

inequality into (17) yields

Dp(x̄, xn+1) 6 Dp(x̄, xn)− (1− β)µn‖Rn‖
r + 2q Gq ρX∗ (τn) ‖xn‖

p. (18)

8
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Moreover, from the explicit formula for µn and τn (see algorithm 3.1), we can estimate the

last two terms on the right-hand side of (18) by

− (1− β)µn‖Rn‖
r + 2q Gq ρX∗ (τn)‖xn‖

p = − (1− β)
τn‖xn‖

p−1‖Rn‖

1 ∨ ‖F ′
in
(xn)‖

+ 2q Gq ρX∗ (τn)‖xn‖
p

= −(1− β)
τn‖xn‖

p−1‖Rn‖

1 ∨ ‖F ′
in
(xn)‖

(

1−
2q Gq(1 ∨ ‖F ′

in
(xn)‖)‖xn‖

(1− β)‖Rn‖

ρX∗ (τn)

τn

)

6 −(1− β)(1− c)
τn‖xn‖

p−1‖Rn‖

1 ∨ ‖F ′
in
(xn)‖

. (19)

Finally, substituting (19) into (18), we obtain

Dp(x̄, xn+1) 6 Dp(x̄, xn) − (1− β)(1− c)τn‖xn‖
p−1‖Rn‖ [1 ∨ ‖F ′

in
(xn)‖]

−1, (20)

concluding the proof. ¤

Remark 3.3. In the proof of lemma 3.2, we used the fact that the elements xn ∈ X generated

by algorithm 3.1 are nonzero vectors. This can be verified by an inductive argument. Indeed,

x0 6= 0 is chosen in algorithm 3.1. Assume xk 6= 0, k = 0, . . . , n. If ‖Rn‖ 6 τδin , then

xn+1 = xn is also a nonzero vector. Otherwise, ‖Rn‖ > τδin > 0 and it follows from

(20) that Dp(x̄, xn+1) < Dp(x̄, xn) 6 · · · 6 Dp(x̄, x0) 6 p−1‖x̄‖p (the last inequality

follows from the choice of x0 in (A0)). If xn+1 were the null vector, we would have

p−1‖x̄‖p = Dp(x̄, 0) < Dp(x̄, xn) 6 p−1‖x̄‖p (the identity follows from corollary 2.6), which

is clearly a contradiction. Therefore, xn is a nonzero vector, for n = 0, 1, . . . , n̂.

In the case of exact data (δi = 0), we have xn 6= 0, n ∈ N.

The next lemma guarantees that, in the case of noisy data, algorithm 3.1 is stopped after

a finite number of cycles, i.e. n̂ < ∞, in (13).

Lemma 3.4. Let assumptions (A0), (A1) and (A3) be satisfied and (xn) be a sequence generated

by algorithm 3.1. Then,
∑

n∈6̂

τn‖xn‖
p−1‖Rn‖ 6 (1− β)−1(1− c)−1Dp(x̄, x0), (21)

where 6̂ := {n ∈ {0, 1, . . . , n̂ − 1} : ‖Rn‖ > τδin}. Additionally, we have the following.

(i) In the noisy data case, min {δi}16i6m > 0, algorithm 3.1 is stopped after finitely many

steps.

(ii) In the noise-free case, we have limn→∞ ‖Rn‖ = 0.

Proof. Given n ∈ 6̂, it follows from (20) and (A3) that

(1− β)(1− c)τn‖xn‖
p−1‖Rn‖ 6 Dp(x̄, xn) − Dp(x̄, xn+1). (22)

Moreover, if n 6∈ 6̂ and n < n̂, we have 0 6 Dp(x̄, xn) − Dp(x̄, xn+1). Inequality (21) follows

now from a telescopic sum argument using the above inequalities.

Add. (i). Assume by contradiction that algorithm 3.1 is never stopped by the discrepancy

principle. Therefore, n̂ defined in (13) is not finite. Consequently, 6̂ is an infinite set (at least

one step is performed in each iteration cycle).

Since (Dp(x̄, xn))n∈6̂
is bounded, it follows that (‖xn‖)

n∈6̂
is bounded [23, theorem

2.12(b)]. Therefore, the sequence (λn)n∈6̂
in (12), is bounded away from zero (see (10) and

9
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remark 3.1) and from what follows that (τn)n∈6̂
is bounded away from zero as well. From this

fact and (21) we obtain
∑

n∈6̂

‖xn‖
p−1 < ∞.

Consequently, (xn)n∈6̂
converges to zero in X and, arguing with the continuity of Dp(x̄, ·) [23,

theorem 2.12(c)] or [6]), we conclude

p−1‖x̄‖p = Dp(x̄, 0)= lim
n∈6̂

Dp(x̄, xn) 6 Dp(x̄, xn′+1)< Dp(x̄, xn′ ) 6 p−1‖x̄‖p,

where n′ ∈ N is an arbitrary element of 6̂ (note that (20) holds with strict inequality for all

n′ ∈ 6̂). This is clearly a contradiction. Thus, n̂ must be finite.

Add (ii). Note that in the noise-free case we have δi = 0, i = 1, 2, . . . , m. In this particular

case, (22) holds for all n ∈ N. Consequently,
∑

n∈N

τn‖xn‖
p−1‖Rn‖ 6 (1− β)−1(1− c)−1Dp(x̄, x0).

Assume the existence of ε > 0 such that the inequality ‖Rnk
‖ > ε holds true for some

subsequence and define 6̂ := {nk; k ∈ N}. Using the same reasoning as in the proof of the

second assertion, we arrive at a contradiction, concluding the proof. ¤

4. Convergence analysis

In this section, the main results of the manuscript are presented. A convergence analysis of the

proposed method is given, and stability results are derived.We start the presentation discussing

a result related to the existence of minimum-norm solutions.

Lemma 4.1. Assume the continuous Fréchet differentiability of the operators Fi in D. Moreover,

assume that (A2) is satisfied and also that problem (2) is solvable in B2p(x0, ρ0), where x0 ∈ X

and ρ0 > 0 is chosen as in (A2).

(1) There exists a unique minimum-norm solution x† of (2) in B2p(x0, ρ0).

(2) If x† ∈ int
(

B2p(x0, ρ0)
)

, it can be characterized as the solution of (2) in B2p(x0, ρ0)

satisfying the condition

Jp(x
†) ∈ N (F ′

i (x
†))⊥, i = 1, 2, . . . , m. (23)

(Here, A⊥ ⊂ X∗ denotes the annihilator of A ⊂ X, while N (·) represents the null-space

of a linear operator.)

Proof. As an immediate consequence of (A2), we obtain [12, proposition 2.1]

Fi(z)= Fi(x) ⇐⇒ z − x ∈ N
(

F ′
i (x)

)

, i = 1, 2, . . . m, (24)

for x, z ∈ B2p(x0, ρ0). Next, we define for each x ∈ B2p(x0, ρ0) the set Mx := {z ∈ B2p(x0, ρ0) :

Fi(z) = Fi(x), i = 1, 2, . . . , m}. Note thatMx 6= ∅, for all x ∈ B2p(x0, ρ0). Moreover, it follows

from (24) that

Mx =

m
⋂

i=1

(

x + N (F
′

i (x))
)

∩ B
2
p(x0, ρ0). (25)

Since Dp(·, x0) is continuous (see corollary 2.6) and B
2
p(x0, ρ0) is convex (by definition), it

follows from (25) that Mx is nonempty, closed and convex, for all x ∈ B2p(x0, ρ0). Therefore,

10
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there exists a unique x† ∈ X corresponding to the projection of 0 on Mx̄, where x̄ is a solution

of (2) in B2p(x0, ρ0) [6]. This proves the first assertion.

Add (ii). From the definition of x† and Mx̄ = Mx† , we conclude that [23, theorem 2.5 (h)]

〈Jp(x
†), x†〉 6 〈Jp(x

†), y〉 ∀y ∈ Mx† . (26)

From the assumption x† ∈ int
(

B2p(x0, ρ0)
)

, it follows that given h ∈ ∩m
i=1N (F ′

i (x
†)), there

exists ε0 > 0 such that

x† + εh, x† − εh ∈ Mx† ∀ε ∈ [0, ε0). (27)

Thus, (23) follows from (26), (27) in a straightforward way. In order to prove uniqueness, let

x̃ be any solution of (2) in B2p(x0, ρ0) satisfying

Jp(x̃) ∈ N
(

F
′

i (x̃)
)⊥

, i = 1, 2, . . . , m. (28)

Let i ∈ {1, 2, . . . , m}. We claim that

N
(

F
′

i (x
†)

)

⊂ N
(

F
′

i (x̃)
)

. (29)

Indeed, let h ∈ N (F
′

i (x
†)) and set xθ = (1−θ )x†+θ x̃, with θ ∈ R. Since x† ∈ int

(

B2p(x0, ρ0)
)

,

we obtain a θ0 > 0 such that xθ ∈ int
(

B2p(x0, ρ0)
)

, for all θ ∈ [0, θ0). Take θ ∈ (0, θ0) and

define xθ,µ = xθ + µh, for µ ∈ R. Using the same reasoning, we obtain µ0 > 0 such that

xθ,µ ∈ B2p(x0, ρ0) ∀µ ∈ [0, µ0).

For a fixed µ ∈ (0, µ0), note that xθ,µ − x† = θ (x̃ − x†) + µh. Using (24), we obtain

x̃ − x† ∈ N (F
′

i (x
†)), and consequently, xθ,µ − x† ∈ N (F

′

i (x
†)). From (24), it follows that

F(xθ,µ) = F(x†), and consequently, F(xθ,µ) = F(x̃). Applying the same reasoning as above

(based on (24)), we conclude that xθ,µ − x̃ ∈ N (F
′

i (x̃)).

Since xθ,µ − x̃ = (1− θ )(x† − x̃) + µh and x† − x̃ ∈ N (F
′

i (x̃)), it follows h ∈ N (F
′

i (x̃)),

completing the proof of our claim.

Combining (28) and (29), we obtain Jp(x̃) ∈ N (F
′

i (x
†))⊥. Consequently, Jp(x

†)−Jp(x̃) ∈

N (F
′

i (x
†))⊥. Since x† − x̃ ∈ N (F

′

i (x
†)), we conclude that 〈Jp(x

†) − Jp(x̃), x† − x̃〉 = 0.

Moreover, since Jp is strictly monotone [23, theorem 2.5(e)], we obtain x† = x̃. ¤

Theorem 4.2 (Convergence for exact data). Assume that δi = 0, i = 1, 2, . . . , m. Let the

assumptions (A0), (A1), (A2) and (A3) be satisfied (for simplicity we assume ρ̄ = ρ0). Then,

any iteration (xn) generated by algorithm 3.1 converges strongly to a solution of (2).

Additionally, if x† ∈ int
(

B2p(x0, ρ0)
)

, Jp(x0) ∈ N (F ′
i (x

†))⊥ and N (F ′
i (x

†)) ⊂ N (F ′
i (x)),

x ∈ B1p(x̄, ρ̄), i = 1, 2, . . . , m, then (xn) converges strongly to x†.

Proof. From lemma 3.2, it follows that Dp(x̄, xn) is bounded and so (‖xn‖) is bounded.

In particular, (Jp(xn)) is also bounded. Define εn = q−1‖xn‖
p − 〈x̄, Jp(xn)〉, n ∈ N. From

lemma 3.2 and corollary 2.6, it follows that (εn) is bounded and monotone non-increasing.

Thus, there exists ε ∈ R, such that εn → ε, as n → ∞.

Let m, n ∈ N, such that m > n. It follows from corollary 2.7 that

Dp(xn, xm) = q−1 (‖xm‖p − ‖xn‖
p) + 〈Jp(xn) − Jp(xm), xn〉 = (εm − εn)

+〈Jp(xn) − Jp(xm), xn − x̄〉.

The first term of the above identity converges to zero, as m, n → ∞. Note that

11
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|〈Jp(xn) − Jp(xm), xn − x̄〉| =

∣

∣

∣

∣

∣

〈

m−1
∑

k=n

(Jp(xk+1) − Jp(xk)), xk − x̄

〉
∣

∣

∣

∣

∣

(11)
=

∣

∣

∣

∣

∣

〈

m−1
∑

k=n

µkF ′
ik
(xk)

∗Jr(Rk), xk − x̄

〉
∣

∣

∣

∣

∣

6

m−1
∑

k=n

µk‖Jr(Rk)‖‖F ′
ik
(xk)(xk − x̄)‖.

Moreover, from (A1), we have

‖F ′
ik
(xk)(xk − x̄)‖ 6 ‖Fik (xk) − Fik (x̄) − F ′

ik
(xk)(xk − x̄)‖ + ‖Fik (xk) − Fik (x̄)‖

6 (1+ η)‖Rk‖.

Therefore, using (A3) and the definition of µk in algorithm 3.1, we can estimate

|〈Jp(xn) − Jp(xm), xn − x̄〉| 6 (1+ η)

m−1
∑

k=n

µk‖Rk‖
r−1‖Rk‖

= (1+ η)

m−1
∑

k=n

τk‖xk‖
p−1‖Rk‖

r

(1 ∨ ‖F ′
ik
(xk)‖)‖Rk‖r−1

6 (1+ η)

m−1
∑

k=n

τk‖xk‖
p−1‖Rk‖.

(Note that the last two sums are carried out only for the terms with µk 6= 0.) Consequently,

〈Jp(xn) − Jp(xm), xn − x̄〉 converges to zero, from what follows Dp(xn, xm) → 0, as m,

n → ∞. Therefore, we conclude that (xn) is a Cauchy sequence, converging to some element

x̃ ∈ X [23, theorem 2.12(b)]. Since xn ∈ B1p(x̄, ρ̄) ⊂ D, for n ∈ N, it follows that x̃ ∈ D.

Moreover, from the continuity of Dp(·, x̃), we have Dp(xn, x̃) → Dp(x̃, x̃) = 0, proving that

‖xn − x̃‖ → 0.

Let i ∈ {1, 2, . . . , m} and ε > 0. Since Fi is continuous, we have Fi(xn) → Fi(x̃), n → ∞.

This fact, together with Rn → 0, allows us to find n0 ∈ N, such that

‖Fi(xn) − Fi(x̃)‖ < ε/2, ‖Fin (xn) − yin‖ < ε/2 ∀n > n0.

Let ñ > n0 be such that iñ = i. Then, ‖Fi(x̃) − yi‖ 6 ‖Fi(xñ) − Fi(x̃)‖ + ‖Fiñ (xñ) − yiñ‖ < ε.

Thus, Fi(x̃) = yi, proving that x̃ is a solution of (2).

For each n ∈ N, it follows from (11) and the theorem assumption that

Jp(xn) − Jp(x0) ∈

n−1
⋂

k=0

N
(

F ′
ik
(xk)

)⊥
⊂

n−1
⋂

k=0

N
(

F ′
ik
(x†)

)⊥
.

Moreover, due to Jp(x0) ∈ N (F ′
i (x

†))⊥, i = 1, 2, . . . , m, we have Jp(xn) ∈
⋂m

j=1 N (F ′
j (x

†))⊥, n > m. Then, Jp(xn) ∈ N (F ′
i (x

†))⊥, for n > m. Since Jp is continuous

and xn → x̃, we conclude that Jp(x̃) ∈ N (F ′
i (x

†))⊥. However, due toN (F
′

i (x̃)) = N (F
′

i (x
†))

(which follows from Fi(x̃) = Fi(x
†)) we conclude that Jp(x̃) ∈ N (F ′

i (x̃))⊥, proving that

x̃ = x†. ¤

In what follows, we prove a convergence result in the noisy data case. For simplicity of

the presentation, we assume for the rest of this section that δ1 = δ2 = · · · = δm = δ > 0.

Moreover, we denote by (xn) and (xδ
n) the iterations generated by algorithm 3.1 with exact

data and noisy data, respectively.

12
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Theorem 4.3 (Semi-convergence). Let Y be a uniformly smooth Banach space and

assumptions (A0), (A1), (A2) and (A3) be satisfied (for simplicity we assume ρ̄ = ρ0). Moreover,

let (δk > 0)k∈N be a sequence satisfying δk → 0 and yk
i ∈ Y be corresponding noisy data

satisfying ‖yk
i − yi‖ 6 δk, i = 1, . . . , m, and k ∈ N.

If (for each k ∈ N) the iterations (xδk
n ) are stopped according to the discrepancy principle

(13) at n̂k = n̂(δk), then (x
δk

n̂k
) converges (strongly) to a solution x̃ ∈ B1p(x̄, ρ̄) of (2) as k → ∞.

Additionally, if x† ∈ int
(

B2p(x0, ρ0)
)

, Jp(x0) ∈ N (F ′
i (x

†))⊥ and N (F ′
i (x

†)) ⊂ N (F ′
i (x)),

x ∈ B1p(x̄, ρ̄), i = 1, 2, . . . , m, then (x
δk

n̂k
) converges (strongly) to x† as k → ∞.

Proof. For each k ∈ N, we can write n̂k in (13) in the form ℓ̂km + (m − 1). Thus,

x
δk

n̂k
= x

δk

n̂k−1
= · · · = x

δk

n̂k−(m−1)
and

∥

∥Fin

(

xδk

n

)

− yk
in

∥

∥ 6 τδk, n = ℓ̂km, . . . , ℓ̂km + (m − 1).

Since in = 1, 2, . . . , m as n = ℓ̂km, . . . , ℓ̂km + (m − 1), it follows that
∥

∥Fi

(

x
δk

n̂k

)

− yk
i

∥

∥ 6 τ δk, i = 1, 2, . . . , m. (30)

At this point, we must consider two cases separately.

Case.1. The sequence (n̂k) ∈ N is bounded.

If this is the case, we can assume the existence of n̂ ∈ N such that n̂k = n̂, for all k ∈ N.

Note that, for each k ∈ N, the sequence element xδk

n̂
depends continuously on the corresponding

data
(

yk
i

)m

i=1
(this is the point where the uniform smoothness of Y is required). Therefore, it

follows that

x
δk

n̂
→ xn̂, Fi

(

x
δk

n̂

)

→ Fi(xn̂), k → ∞, (31)

for each i = 1, 2, . . . , m. Since each operator Fi is continuous, taking limit as k → ∞ in (30)

gives Fi(xn̂) = yi, i = 1, 2, . . . , m, which proves that x̃ := xn̂ is a solution of (2).

Case 2. The sequence (n̂k) ∈ N is unbounded.

We can assume that n̂k → ∞, monotonically. Due to theorem 4.2, (xn̂k
) converges to

some solution x̃ ∈ B1p(x̄, ρ̄) of (2). Therefore, Dp(x̃, xn̂k
) → 0. Thus, given ε > 0, there exists

N ∈ N, such that

Dp(x̃, xn̂k
) < ε/2 ∀n̂k > N.

Since x
δk

N → xN as k → ∞, and Dp(x̃, ·) is continuous, there exists k̃ ∈ N, such that
∣

∣Dp

(

x̃, x
δk

N

)

− Dp(x̃, xN )
∣

∣ <ε/2 ∀k > k̃.

Consequently,

Dp(x̃, x
δk

N )= Dp(x̃, xN )+ Dp

(

x̃, x
δk

N

)

− Dp(x̃, xN ) < ε ∀k > k̃.

SinceDp(x̃, x
δk

n̂k
) 6 Dp(x̃, xN ), for all n̂k > N, it follows thatDp(x̃, x

δk

n̂k
) < ε for k large enough.

Therefore, due to [23, theorem 2.12(d)] or [6], we conclude that (xδk

n̂k
) converges to x̃.

To prove the last assertion, it is enough to observe that, due to the extra assumption, x̃ = x†

must hold. ¤

5. Conclusions and future work

In this manuscript, we proposed an LK-type iteration for regularizing systems of nonlinear ill-

posed operator equations in Banach spaces. We extended the results in [23], which considered

the case of a single linear operator equation and obtained convergence and stability results

13
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for the Landweber iteration. Our results also extend the one obtained in [18], where nonlinear

operator equations are considered in Banach spaces, but under the stronger assumption that X

is p-convex.

One future perspective is to perform numerical experiments for the LKB method applied

to parameter identification problems related to elliptic equations as the ones described in the

last section of [18]. Another possible research direction is to extend the convergence analysis

in this paper (in the framework of Banach spaces) to the SDK iteration [7], the LMK iteration

[3] and ITK iteration [2]
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