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Abstract

Using the concept of partial-inverse of monotone operators due to Spingarn, we present a new
and simple proof of a result – Theorem 2 in [4] – of Heinz H. Bauschke. Our proof is based
on the maximal monotonicity of the partial-inverse and on the (asymptotic) closedness principle
on the graph of maximal monotone operators in the weak × strong topology. We also present a
generalization of Bauschke’s theorem to the more general setting of ε–enlargements of monotone
maps.
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1 Introduction

In [4, Theorem 2], Heinz H. Bauschke first presented and proved the following result:

Theorem 1.1 (Bauschke). Let A : H ⇒ H be maximal monotone, and let C be a closed linear
subspace of H. Let (xn, un)n∈N be a sequence in graA such that (xn, un) ⇀ (x, u) ∈ H×H. Suppose
that xn − PCxn → 0 and PCun → 0, where PC denotes the projector onto C. Then (x, u) ∈
(graA) ∩ (C × C⊥) and 〈xn, un〉 → 〈x, u〉 = 0.

In addition to being interesting by its own right, as a simple and elegant asymptotic closedness
principle in monotone operator theory, Theorem 1.1 has been shown to be an important tool for
proving the weak convergence of many modern splitting algorithms for solving monotone inclusion
and convex optimization problems (see, e.g., [1, 2, 4, 5, 9, 10, 11]). The proof in [4, Theorem 2]
makes use of an asymptotic principle for firmly nonexpansive operators, while a different proof in [5,
Proposition 25.3] relies, in particular, on the use of Fitzpatrick (convex) functions. A generalization
of Theorem 1.1 (including compositions with linear operators) is also given in [2, Proposition 2.4].
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The proof of the latter result is obtained after a product space embedding and a characterization of
the projector onto the graph of linear operators (see [1, Lemma 3.1]), followed by a direct application
of Theorem 1.1.

On the other hand, it is well-known that the concepts of maximal monotonicity, nonexpansive-
ness and convexity are strongly connected through many important results in convex analysis and
monotone operator theory. In this sense, and with the above discussion in mind, it is natural to ask
whether or not there is a proof of Theorem 1.1 relying solely on the concept of maximal monotonicity.

In this short note, we give a positive answer to this question by employing the concept of Spin-
garn’s partial–inverse of a monotone operator with respect to a closed linear subspace (see Definition
2.1 below), originally introduced and studied by J. E. Spingarn in the seminal paper [14]. In addi-
tion to being new, the proof of Theorem 1.1 given here is structurally simple and emphasizes the
importance and the role played in monotone operator theory by the notion of the partial-inverse of
a monotone map . We also present a generalization of Theorem 1.1 (see Theorem 4.3 below) – which
we believe may be useful for future developments in modern inexact operator-splitting algorithms –
to the more general setting of ε–enlargements of maximal monotone operators.

The rest of the material is organized as follows. In Section 2, we review the concept of Spingarn’s
partial-inverse. In Section 3, we present our proof of Bauschke’s theorem and in Section 4 we present
a generalization of Theorem 1.1 to ε–enlargements of monotone operators.

Basic notation: Throughout this note, H denotes a real Hilbert space with inner product 〈·, ·〉 and
induced norm ‖·‖ =

√
〈·, ·〉. H × H denotes the Cartesian product (always endowed with product

topologies) of H by H. By → and ⇀ we also denote strong and weak convergence, respectively. The
projector onto a closed linear subspace C of H will be denoted by PC and the orthogonal complement
of C will be denoted by C⊥. By I we denote the identity map in H. The graph of a set-valued map
A : H ⇒ H is defined by graA := {(z, v) ∈ H × H | v ∈ A(z)}. A set-valued map A : H ⇒ H is
said to be a monotone operator in H whenever 〈z− z′, v− v′〉 ≥ 0 for all (z, v), (z′, v′) ∈ graA and a
maximal monotone operator if A is monotone and its graph is not properly contained in the graph
of any other monotone operator in H.

2 The partial-inverse of a monotone operator

Since its first appearance in [14], the partial-inverse operator has found numerous applications in the
design and analysis of different proximal and proximal operator-splitting algorithms for monotone
inclusion and convex optimization problems (see, e.g., [1, 3, 6, 12, 13, 15] and references therein).

As we mentioned earlier, the partial-inverse will be an important ingredient in our new proof of
Bauschke’s theorem (see Section 3 below).

Definition 2.1 (Spingarn). The partial-inverse of a set-valued map A : H ⇒ H with respect to a
closed linear subspace C of H is (the set-valued map) AC : H⇒ H whose graph is

graAC := {(PCx + PC⊥u, PCu + PC⊥x) | (x, u) ∈ graA}.

Theorem 2.2 below is originally due to J. E. Spingarn [14, Proposition 2.1]. For the convenience
of the reader and sake of completeness, we present a detailed proof here.

Theorem 2.2 (Spingarn). If A : H⇒ H is maximal monotone, then AC is also maximal monotone.
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Proof. Suppose A is maximal monotone in H and let (z, v) := (PCx + PC⊥u, PCu + PC⊥x) and
(z′, v′) := (PCx

′ +PC⊥u′, PCu
′ +PC⊥x′) be elements in graAC . Using the latter definitions, the fact

that C ⊥ C⊥ and the identity PC + PC⊥ = I, we find

〈z − z′, v − v′〉 = 〈PC(x− x′) + PC⊥(u− u′), PC(u− u′) + PC⊥(x− x′)〉
= 〈PC(x− x′), PC(u− u′)〉+ 〈PC⊥(u− u′), PC⊥(x− x′)〉
= 〈PC(x− x′) + PC⊥(x− x′), PC(u− u′) + PC⊥(u− u′)〉
= 〈x− x′, u− u′〉
≥ 0, (1)

which, in turn, proves the monotonicity of AC , where in (1) we used the monotonicity of A combined
with the inclusions (x, u), (x′, u′) ∈ graA.

To prove the maximal monotonicity of AC , assume first that (z, v) ∈ H ×H satisfies

〈z − z′, v − v′〉 ≥ 0 ∀(z′, v′) ∈ graAC . (2)

Let (x′, u′) ∈ graA and let, by Definition 2.1, (z′, v′) := (PCx
′ + PC⊥u′, PCu

′ + PC⊥x′) ∈ graAC .
Using this, (again) the identity PC + PC⊥ = I and the fact that C ⊥ C⊥, we now find

〈z − z′, v − v′〉 = 〈z − (PCx
′ + PC⊥u′), v − (PCu

′ + PC⊥x′)〉
= 〈PC(z − x′) + PC⊥(z − u′), PC(v − u′) + PC⊥(v − x′)〉
= 〈PC(z − x′), PC(v − u′)〉+ 〈PC⊥(z − u′), PC⊥(v − x′)〉
= 〈PC(z − x′) + PC⊥(v − x′), PC(v − u′) + PC⊥(z − u′)〉
= 〈PCz + PC⊥v − x′, PCv + PC⊥z − u′〉. (3)

From (2) and (3) we obtain

〈PCz + PC⊥v − x′, PCv + PC⊥z − u′〉 ≥ 0 ∀(x′, u′) ∈ graA

which, in turn, in view of the maximality of A, gives (x, u) := (PCz + PC⊥v, PCv + PC⊥z) ∈ graA.
Simple computations show that (z, v) = (PCx+PC⊥u, PCu+PC⊥x), which, by Definition 2.1, gives
(z, v) ∈ graAC , proving the maximal monotonicity of AC .

3 A new proof of Theorem 1.1

Proof. Using the assumption (xn, un) ∈ graA and Definition 2.1, we obtain (zn, vn) ∈ graAC , where

zn := PCxn + PC⊥un, vn := PCun + PC⊥xn. (4)

From the assumptions xn − PCxn → 0 and PCun → 0, the identity xn = PCxn + PC⊥xn and the
definition of vn above, we also obtain vn → 0. Moreover, since PC and PC⊥ are weakly continuous
and by assumption (xn, un) ⇀ (x, u), we also have zn ⇀ PCx + PC⊥u. Altogether, we proved that

(zn, vn) ∈ graAC , vn → 0 and zn ⇀ PCx + PC⊥u,
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which, in turn, combined with Theorem 2.2 and the closedness property of the graph of maximal
monotone operators in the weak × strong topology of H ×H (see, e.g., Proposition 20.38(ii) in [5])
gives the inclusion

(PCx + PC⊥u, 0) ∈ graAC , i.e., 0 ∈ AC(PCx + PC⊥u). (5)

In view of (5) and Definition 2.1, we have that there exists (x′, u′) ∈ graA such that

PCx + PC⊥u = PCx
′ + PC⊥u′, 0 = PCu

′ + PC⊥x′,

which in turn (using the fact that C ∩ C⊥ = {0}) yields PCx = PCx
′, PC⊥u = PC⊥u′ and PCu

′ =
PC⊥x′ = 0. As a consequence of the three latter identities and the facts that x′ = PCx

′ +PC⊥x′ and
u′ = PCu

′ + PC⊥u′ we obtain x′ = PCx and u′ = PC⊥u and so, since (x′, u′) ∈ graA, the inclusion
(PCx, PC⊥u) ∈ graA.

Consequently, to prove the desired inclusion in Theorem 1.1, it suffices to show that x = PCx and
u = PC⊥u. To this end, and to finish the proof of the theorem, we now follow the same arguments
as in [4, Theorem 2]. Since PC is weakly continuous, we have

x ↼ xn = PCxn + PC⊥xn ⇀ PCx + 0 = PCx

and so x = PCx ∈ C. A similar reasoning also yields u = PC⊥u ∈ C⊥. To finish the proof, note that

〈xn, un〉 = 〈PCxn, PCun〉+ 〈PC⊥xn, PC⊥un〉 → 〈PCx, 0〉+ 〈0, PC⊥u〉 = 0 = 〈PCx, PC⊥u〉 = 〈x, u〉.

4 A generalization of Bauschke’s theorem

In this last section, we propose and prove a generalization of Theorem 1.1 to the more general setting
of ε–enlargements of maximal monotone operators. The main result is Theorem 4.3 below, which
reduces to Bauschke’s theorem whenever εn ≡ 0. Theorem 4.3 is potentially useful for future inves-
tigations concerning the weak convergence of inexact variants of projective-splitting type algorithms
(see, e.g., [9, 10, 11]).

Next is the definition of ε–enlargements (see, e.g., [7]).

Definition 4.1 (Burachik–Iusem–Svaiter). The ε–enlargement of a set-valued map A : H ⇒ H is
(the set-valued map) A[ε] : H⇒ H whose graph is defined as

graA[ε] := {(z, v) ∈ H ×H | 〈z − z′, v − v′〉 ≥ −ε ∀(z′, v′) ∈ graA}.

We shall also need the following result from [8].

Proposition 4.2 (Burachik–Sagastizábal–Scheimberg). Let A : H ⇒ H be maximal monotone and
let C be a closed linear subspace of H. Then, for all ε ≥ 0,

(A[ε])C = (AC)[ε]. (6)

Next is the main result of this section, namely a generalization of Bauschke’s theorem to the
more general setting of ε–enlargements.
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Theorem 4.3. Let A : H ⇒ H be maximal monotone and let C be a closed linear subspace of
H. Let (xn, un)n∈N be a sequence in graA[εn] such that (xn, un) ⇀ (x, u) ∈ H × H and εn → 0.
Suppose that xn − PCxn → 0 and PCun → 0, where PC denotes the projector onto C. Then (x, u) ∈
(graA) ∩ (C × C⊥) and 〈xn, un〉 → 〈x, u〉 = 0.

Proof. The proof follows the same outline of the proof of Theorem 1.1 in Section 3. Using the
assumption (xn, un) ∈ graA[εn], Definition 2.1 for A[εn] and Proposition 4.2, we obtain

(zn, vn) ∈ gra (AC)[εn], i.e., vn ∈ gra (AC)[εn](zn),

where zn and vn are as in (4). Using the same reasoning as in the proof of Section 3 we also conclude
that vn → 0 and zn ⇀ PCx + PC⊥u. Altogether, and from the assumption εn → 0, we then obtain

(zn, vn) ∈ gra (AC)[εn], vn → 0, εn → 0 and zn ⇀ PCx + PC⊥u,

which combined with Theorem 2.2 and the closedness property of the graph of ε–enlargement of
maximal monotone operators in the weak× strong topology of H×H (see, e.g., Proposition 4.3(b)
in [16], for the maximal monotone operator AC) gives the inclusion in (5). The rest of the proof is
analogous to the corresponding one in Section 3.
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