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1. Introduction

Let X be a real Banach space and X* its topological dual, both with norms denoted
by || - ||. The duality product in X x X* will be denoted by:

T X X X" >R, w(zr,z"):= (z,2%) = 2" (x). (1)
A point to set operator T : X == X™* is a relation on X x X*:
TCXxX”
and T'(x) = {a* € X* | (z,2*) € T}. An operator T': X =% X* is monotone if
(x—y,2" —y*) 20, V(x,2%),(y,y") €T

and it is maximal monotone if it is monotone and maximal (with respect to the inclu-
sion) in the family of monotone operators of X into X*. The domain of 7': X =% X*
is defined by D(T) := {x € X |T(x) # 0}.

Fitzpatrick proved constructively that maximal monotone operators are representable
by convex functions. Before discussing his findings, let us establish some notation. We

*Partially supported by Brazilian CNPq scholarship 140525/2005-0.
TPartially supported by CNPq grants 300755/2005-8, 475647 /2006-8 and by PRONEX-Optimization.

ISSN 0944-6532 / $ 2.50 (© Heldermann Verlag



554 M. Marques Alves, B. F. Svaiter / Mazimal Monotonicity, Conjugation and ...

denote the set of extended-real valued functions on X by R™. The epigraph of f € R*
is defined by

B(f) = A{(z,pn) € X xR| f(x) < p}.
We say that f € R™ is lower semicontinuous (Ls.c. from now on) if E(f) is closed in

the strong topology of X x R.
Let 7: X = X* be maximal monotone. The Fitzpatrick function of T is [4]

— XxX* * * * *
or R pp(x,at) = sup (x—y,y" — ) + (z,27) (2)
(y,y*)eT

and the Fitzpatrick family associated with T' is

ey h is convex and l.s.c.
Fri= {h e RN h(z,a%) > (2,2%), ¥(o,27) € X x X
(x,2*) € T = h(z,z*) = (z,z")

In the next theorem we summarize the Fitzpatrick’s results:
Theorem 1.1 ([4, Theorem 3.10]). Let X be a real Banach space and T : X = X*
be mazximal monotone. Then for any h € Fr

(x,2") €T <= h(z,x") = (x,z")

and pr 1s the smallest element of the family Fr.

Fitzpatrick’s results described above were rediscovered by Martinez-Legaz and Théra
9], and Burachik and Svaiter [2].

It seems interesting to study conditions under which a convex function h € R™ rep-
resents a maximal monotone operator, that is, h € Fp for some maximal monotone
operator T'. Our aim is to extend previous results on this direction. We will need some
auxiliary results and additional notation for this aim.

The Fenchel-Legendre conjugate of f € R is

fre @X*, fr(x*) == sup(z, ™) — f(x).

zeX

Whenever necessary, we will identify X with its image under the canonical injection
of X into X**. Burachik and Svaiter proved that the family Fr is invariant under the

mapping

TRV RXXX*, J h(z,z") ;== h* (", x). (3)
This means that if 7" : X =2 X* is maximal monotone, then [2]
j(fT) C Fr. (4)

In particular, for any h € Fr it holds that h > 7, Jh > m, that is,

h(z,z*) > (x,2"), h*(z",x) > (x,2%), VY(zr,z")e X x X"
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So, the above conditions are necessary for a convex function h on X x X™* to represent
a maximal monotone operator. Burachik and Svaiter proved that these conditions are
also sufficient, in a reflexive Banach space, for h to represent a maximal monotone
operator [3]:

Theorem 1.2 ([3, Theorem 3.1]). Let h € R e proper, conves, l.s.c. and
h(z,x*) > (x,x2%), h*(z",x) > (x,2%), V(r,2")e X x X" (5)
If X is reflexive, then
T:={(z,2") € X x X" | h(z,2") = (x,2")}

s mazximal monotone and h, Jh € Fr.

Marques Alves and Svaiter generalized Theorem 1.2 to non-reflexive Banach spaces as
follows:

Theorem 1.3 ([5, Corollary 4.4 ]). If h € RY s conver and

h(z,z*) > (x,x*), Y(z,2*)e X x X*,
h*(:c*,x**) Z <I'*,.§C**>, V(LTZ'*,QZ**) E X* X X**

then
T o= {(z,2") € X x X* | h*(a",2) = (x,27)}

15 maximal monotone and Jh € Fr. Moreover, if h is l.s.c. then h € Fr.

Condition (6) of Theorem 1.3 enforces the operator T to be of type (NI) [6] and is
not necessary for maximal monotonicity of T in a non-reflexive Banach space. Note
that the weaker condition (5) of Theorem 1.2 is still necessary in non-reflexive Banach
spaces for the inclusion h € Fr, where T is a maximal monotone operator. The main
result of this paper is another generalization of Theorem 1.2 to non-reflexive Banach
spaces which uses condition (5) instead of (6). To obtain this generalization, we add a
regularity assumption on the domain of A.

If T: X = X* is maximal monotone, it is easy to prove that 7 is minimal in the
family of all convex functions in X x X* which majorizes the duality product. So, it
is natural to ask whether the converse also holds, that is:

Is any minimal element of this family (convex functions which majorizes the
duality product) a Fitzpatrick function of some maximal monotone operator?

To give a partial answer to this question, Martinez-Legaz and Svaiter proved the fol-
lowing results, which we will use latter on:

Theorem 1.4 ([8, Theorem 5]). Let H be the family of convex functions in X x X*
which majorizes the duality product:

H = {h e RN | b is proper, convex and h > 7r} : (7)

The following statements hold true:
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1. The family H is (downward) inductively ordered;
2. For any h € 'H there exists a minimal hg € H such that h > hg;
3. Any minimal element g of H is l.s.c. and satisfies Jg > g.

Note that item 2. is a direct consequence of item 1.. Combining item 3. with Theorem
1.2, Martinez-Legaz and Svaiter concluded that in a reflexive Banach space, any min-
imal element of H is the Fitzpatrick function of some maximal monotone operator [8,
Theorem 5]. We will also present a partial extension of this result for non-reflexive
Banach spaces.

2. Basic results and notation

The weak-star topology of X* will be denoted by w* and by s we denote the strong

topology of X. A function h € R is lower semicontinuous in the strong X weak-
star topology if E(h) is a closed subset of X x X* x R in the s x w* x| - | topology.

The indicator function of V- C X is dy, dy(z) :== 0, € V and oy (z) := oo, otherwise.
The closed convex closure of f € R is defined by

cleconvf € R™, cleonvf(z) := inf{u € R|(x, u) € clconvE(f)}

where for U C X, clconvU is the closed convex hull (in the s topology) of U. The

. . . =X .
effective domain of a function f € R~ is

D(f) :=={z € X| f(z) < o0},

and f is proper if D(f) # 0 and f(x) > —oc for all x € X. If f is proper, convex and

l.s.c., then f* is proper. For h € @XXX*, we also define

Prx D(h):={x € X |3z* € X*|(x,2") € D(h)}.

Let T : X = X* be maximal monotone. In [2] Burachik and Svaiter defined and
studied the biggest element of F7, namely, the S-function, Sy € Fr defined by

Sr e EXXX*, Sr = sup {h},
hE.’FT

or, equivalently
Sr = cleconv(m + o7).

Recall that J(Fr) C Fp. Additionally [2]
J Sr=er (8)

and, in a reflexive Banach space, Jpr = Sr.

In what follows we present the Attouch-Brezis’s version of the Fenchel-Rockafellar
duality theorem:
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Theorem 2.1 ([1, Theorem 1.1]). Let Z be a Banach space and ¢, € R be
proper, convexr and l.s.c. functions. If

UAD () =D @), (9)

A>0

1s a closed subspace of Z, then

inf (2) + (=) = max —p* (%) — v (=2"). (10)

z€Z zxezZ*

Given X, Y Banach spaces, L(Y, X) denotes the set of continuous linear operators
of Y into X. The range of A € L(Y,X) is denoted by R(A) and the adjoint by
A* e L(X*,Y™):

(Ay,x*) = (y, A"x") Yy eY, " e X7,

where X*, Y* are the topological duals of X and Y, respectively. The next proposition
is a particular case of Theorem 3 of [10]. For the sake of completeness, we give the
proof in the Appendix A.

*

Proposition 2.2. Let X, Y Banach spaces and A € L(Y, X). Forh € RV , proper

—yxYy*
convex and l.s.c., define f € R .

fly,y") = inf h(Ay, ") +d0y(y" — A"2").

TxEX*

If
J A Prx D(n) — R(A)], (11)

A>0

1s a closed subspace of X, then

[7(2",2) = min h*(u*, Az) + 0g0 (2" — A™u").

ureX*

Martinez-Legaz and Svaiter [7] defined, for h € R and (w0, 75) € X XX, Ragap) €
— XxX*

R

Pag ) (T, 2%) = h(x + 20, 7" + 20) — [(, 70) + (W0, ") + (W0, 70)]
= h(x + xg, 2" + x3) — (x + xo, 2" + ) + (x, 7). (12)

The operation h + Ny, .x) preserves many properties of 1, as convexity and lower
semicontinuity. Moreover, one can easily prove the following Proposition:

Proposition 2.3. Let h € R Then it holds that

1. h>nm «— h(xo’xa)z’ﬂ, V(a:o,xg)EXxX*;
2 Thaews) = (Th)woas), Y(z0,75) € X x X*.
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3. Main results

In the next theorem we generalize Theorem 1.2 to non-reflexive Banach spaces under
condition (5) instead of condition (6) used in Theorem 1.3. To obtain this generaliza-
tion, we add a regularity assumption (14) on the domain of h.

Theorem 3.1. Let h € RN pe proper, convexr and

h(x,xz*) > (x,z*), h"(x*,x) > (x,2*), V(r,z")e X x X" (13)
If
|J APrx D(h), (14)

s a closed subspace of X, then
T:={(z,2%) € X x X* | h*(2",2) = (x,2")}
1s mazximal monotone and Jh € Fr.

Proof. First, define h := clh and note that h is proper, convex, l.s.c., satisfies (13),
(14) and Jh = Jh. So, it suffices to prove the theorem for the case where h is Ls.c.,
and we assume it from now on in this proof. Monotonicity of T" follows from Theorem
5 of [7]. Note that for any z € X

T(x)={z" € X" | h*(z", x) — (x,2") < 0}.

Therefore, T'(z) is convex and w*-closed.

To prove maximality of T', take (zg,z5) € X x X* such that
(x —xg, 2" —a5) >0, V(r,2")eT (15)

and suppose x & T'(xg). As T'(xp) is convex and w*-closed, using the geometric version
of the Hahn-Banach theorem in X* endowed with the w* topology we conclude that
(even if T'(zg) is empty) there exists zy € X such that

(z0,25) < (20,2%), Va* e T(xg). (16)

Let Y := span{zg, 20}. Define A € L(Y, X), Ay :=y, Vy € Y and the convex function
fe gV

Fly’) = inf h(Ay.s*) + oy - A's). a7)

Using Proposition 2.2 we obtain

fily"y) = min 22", Ay) + o (y” — A7) (18)

€I*x

Using (13), (17) and (18) it is easy to see that

fw,v") >y, ) >y, Y(y,y)eY xY™ (19)
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Define g := Jf. As Y is reflexive we have Jg = cl f. Therefore, using (19) we also
have

9y, ") = (v, Wy >y, Yy,y)eY xY" (20)
Now, using (20) and item 1. of Proposition 2.3 we obtain
Y(wo, %) (Y, YT) + §HZ/H2 + §Hy &
> (y,y7) + 5l + 51y 1° = 0, V(y,y) €Y xY (21)
and
* 1 2 1 * |12
(T0) e sy (:8) + 5ol + 17

2y, y7) +5lyl” + 5y 1?>0, Y(y,y") €Y x Y™ (22)

Using Theorem 2.1 and item 2. of Proposition 2.3 we conclude that there exists (Z, Z*) €
Y x Y* such that

, o1 1, . T 1, .,
inf gag, -3 (4 4") + 5 YI°+ 519717+ (T 9) o, v (2, 2) + 51217 + 5127117 = 0. (23)

From (21), (22) and (23) we have

1 1
inf zo,A*z * = 2 —ly*II? = 0. 24

As Y is reflexive, from (12), (24) we conclude that there exists (7,9*) € Y x Y* such
that

900+ 70,5 + A5 — 5+ 70,9" + A') + (5,9%) + 32+ S IF =0 (25
Using (25) and the first inequality of (20) (and the definition of g) we have
PG+ A, g+ wo) = (§ + 20, + A'irg) (26)
and
(59%) + 519 + 519" = 0. 27)
Using (18) we have that there exists wj € X* such that
"+ Atag, g+ xo) = 17 (wg, A(§ + 20)), 47 + A"wg = A"wy. (28)
So, combining (26) and (28) we have
h* (wg, A(§ + x0)) = (§ + w0, A"wg) = (A(G + o), w)-

In particular, wi € T(A(y + x¢)). As xy € Y, we can use (15) and the second equality
of (28) to conclude that

(A + m0) — mo, w — 25) = (9§, A™(wg — x5)) = (9, 97) = 0. (29)
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Using (27) and (29) we conclude that § = 0 and y* = 0. Therefore,
wy € T(xg), A'xg= A wy.
As zp € Y, we have zg = A 2y and so
(20, 75) = (A 20, 75) = (20, A"x5) = (20, A"wp) = (A2, w5) = (20, w;),

that is,

(20, 5) = (20, w5), wy € T'(o)
which contradicts (16). Therefore, (xg,z}) € T and so T is maximal monotone and
Jh e Fr. ]

Observe that if h is convex, proper and l.s.c. in the strong x weak-star topology, then
J?*h = h. Therefore, using this observation we have the following corollary of Theo-
rem 3.1:

Corollary 3.2. Let h € RV pe proper, convex, l.s.c. in the strong x weak-star
topology and

h(z,z*) > (x,z*), h*(z",2) > (z,2"), V(z,z*)e X x X~

If
J APrxD(n),

A>0

18 a closed subspace of X, then
T :={(x,2%) € X x X* | h(z,2") = (x,2")}
18 maximal monotone and h, Jh € Fr.
Proof. Using Theorem 3.1 we conclude that the set
S:={(zr,z") € X x X* | h*(2",z) = (z,2")}

is maximal monotone. Take (z,2*) € S. As 7 is Gateaux differentiable, h > 7 and
7(z,2*) = h(x,x*), we have (see Lemma 4.1 of [5])

Dr(x,2") € 0 Th(x,x"),

where D7 stands for the Gateaux derivative of . As Dn(z, 2*) = (z*, z), we conclude
that

Th(z,2*) + T*h(z,z*) = ((z,2%), (2%, 1)).

Substituting Jh(zx,z*) by (x,z*) in the above equation we conclude that J2h(z, z*) =
(x,z*). Therefore, as J2h(x,x*) = h(x, x*),

ScT.

To end the proof use the maximal monotonicity of S (Theorem 3.1) and the mono-
tonicity of T' (see Theorem 5 of [7]) to conclude that S = T. O
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It is natural to ask whether we can drop lower semicontinuity assumptions. In the con-
text of non-reflexive Banach spaces, we should use the 1.s.c. closure in the strong x weak-
star topology. Unfortunately, as the duality product is not continuous in this topology;,
it is not clear whether the below implication holds:

”
h>m=clyg+h > .

Corollary 3.3. Let h € R be proper, convexr and
h(z,z*) > (x,z*), h*(z",2) > (z,2"), V(z,z*)e X x X*.

If
J APrxD(h)

A>0
15 a closed subspace of X, then

Clsz* h c FT,

where clgy,« denotes the l.s.c. closure in the strong x weak-star topology and T is the
mazimal monotone operator defined as in Theorem 3.1:

T:={(x,z") € X x X* | h*(z",z) = (z,2")}.
In particular, clgg,« h > .

Proof. First use Theorem 3.1 to conclude that 7" is maximal monotone and Jh € Fr.
In particular,

Sr>JTh > pr.
Therefore,
Tor > T*h > JSr.
As JSr = or € Fr and Jpr € Fr, we conclude that clyy o« h = J%h € Fr. O

In the next corollary we give a partial answer for an open question proposed by
Martinez-Legaz and Svaiter in [8], in the context of non-reflexive Banach spaces.

Corollary 3.4. Let 'H be the family of convex functions on X x X* bounded below by
the duality product, as defined in (7). If g is a minimal element of H and

U APrx D(g)
A>0

1s a closed subspace of X, then there exists a maximal monotone operator T’ such that
g = o1, where o is the Fitzpatrick function of T.

Proof. Using item 3. of Theorem 1.4 and Theorem 3.1 we have that
T:={(z,2%) € X x X" |g* (2", 2) = (x,2")}

is maximal monotone, Jg € Fr and
T C{(z,2") € X x X" | g(x,z") = (x,z")}.

As g is convex and bounded below by the duality product, using Theorem 5 of [7],
we conclude that the rightmost set on the above inclusion is monotone. Since T is
maximal monotone, the above inclusion holds as an equality and, being l.s.c., g € Fr.
To end the proof, note that g > pr € H. m
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A. Proof of Proposition 2.2

Proof of Proposition 2.2. Using the Fenchel-Young inequality we have, for any
(y,y*), (2,2*) €Y x Y* and 2*,u* € X*,

h(Ay,x*) + 0oy (y* — A™x") + h* (u*, Az) + 00y (27 — A™u") > (Ay,u*) + (Az, 7).
Taking the infimum over z*, u* € X™* on the above inequality we get

Fly.y") + Inf 2(u", Az) + 002" — A7)
> <y’ Z*> + <Z7 y*> = <(Z*, Z), (y7 y*)>>

that is,

((z2), (9, 97)) = fly,y") < inf h*(u®, Az) + b0y (2" — A™u").

u*eX*

Now, taking the supremum over (y,y*) € Y x Y* on the left hand side of the above
inequality we obtain

[7(2%2) < inf h™(u", Az) + d0y (2" — A™u"). (30)

u*eX*

For a fixed (z,2*) € Y x Y* such that f*(z*,2) < oo, define ¢, ¢ € @YXXXY*XX*,

(P(%%Z/*ax*) = f*(Z*a’Z) - <Z/72*> - <271/* + A*SU*> + 5{0}(1/*) + h(.T,ZC*),
w(y7$ay*ax*) = 6{0}(1’ - Ay)

Direct calculations yields

L AD(p) = D)) = ¥ x | J A[PrxD(R)] - R(A)] x Y* x X. (31)

A>0 A>0

Using (11), (31) and Theorem 2.1 for ¢ and 1, we conclude that there exists (y*, z*,
yat) € Y x X*F x Y™ x X** such that

info 49 = —g*(y*, o, ™, o) — P (=g, —x*, —y*, —a™). (32)
Now, notice that
b+ )y, z,y"2") = [1(2%2) + fly, A2") —((2", 2), (y, A™z7)) 2 0. (33)
Using (32) and (33) we get
Oy, g, ) + Uy, —at, —y™, —a*) < 0. (34)
Direct calculations yields
W=y, —*, —y, —a™) = sup (y, —yt — A'T) + (2%, —y™) + (Wb, —z)

(y,2*,w*)

= 0oy (y" + A%2%) + 0g0y (™) + Oy (7). (35)
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Now, using (34) and (35) we conclude that
Y =0,2"=0 and y*=-—-A"z".
Therefore, from (34) we have
P (—A*x", 2", 0,0)
= sup ((y,z* — A"y + (z,2") + (Az,w") — h(x,w*)) — 72", 2)

(y?x7w*)

= h*(a", A2) + 6oy (2° — A%a%) — f*(2%,2) <0

— Y

that is, there exists x* € X* such that
[H(2% 2) > h*(x", Az) + 6oy (27 — A™2™).
Finally, using (30) we conclude the proof. O
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