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Abstract

In this paper, we propose and study the iteration complexity of an inexact Douglas-Rachford
splitting (DRS) method and a Douglas-Rachford-Tseng’s forward-backward (F-B) splitting method
for solving two-operator and four-operator monotone inclusions, respectively. The former method
(although based on a slightly different mechanism of iteration) is motivated by the recent work
of J. Eckstein and W. Yao, in which an inexact DRS method is derived from a special instance
of the hybrid proximal extragradient (HPE) method of Solodov and Svaiter, while the latter one
combines the proposed inexact DRS method (used as an outer iteration) with a Tseng’s F-B
splitting type method (used as an inner iteration) for solving the corresponding subproblems. We
prove iteration complexity bounds for both algorithms in the pointwise (non-ergodic) as well as in
the ergodic sense by showing that they admit two different iterations: one that can be embedded
into the HPE method, for which the iteration complexity is known since the work of Monteiro
and Svaiter, and another one which demands a separate analysis. Finally, we perform simple
numerical experiments to show the performance of the proposed methods when compared with
other existing algorithms.
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1 Introduction

Let H be a real Hilbert space. In this paper, we consider the two-operator monotone inclusion
problem (MIP) of finding z such that

0 ∈ A(z) +B(z) (1)
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as well as the four-operator MIP

0 ∈ A(z) + C(z) + F1(z) + F2(z) (2)

where A, B and C are (set-valued) maximal monotone operators on H, F1 : D(F1) → H is (point-
to-point) Lipschitz continuous and F2 : H → H is (point-to-point) cocoercive (see Section 4 for
the precise statement). Problems (1) and (2) appear in different fields of applied mathematics
and optimization including convex optimization, signal processing, PDEs, inverse problems, among
others [2, 22]. Under mild conditions on the operators C, F1 and F2, problem (2) becomes a special
instance of (1) with B := C + F1 + F2. This fact will be important later on in this paper.

In this paper, we propose and study the iteration complexity of an inexact Douglas-Rachford
splitting method (Algorithm 3) and of a Douglas-Rachford-Tseng’s forward-backward (F-B) four-
operator splitting method (Algorithm 5) for solving (1) and (2), respectively. The former method is
inspired and motivated (although based on a slightly different mechanism of iteration) by the recent
work of J. Eckstein and W. Yao [21], while the latter one, which, in particular, will be shown to be a
special instance of the former one, is motivated by some variants of the standard Tseng’s F-B splitting
method [43] recently proposed in the current literature [1, 8, 32]. For more detailed information about
the contributions of this paper in the light of reference [21], we refer the reader to the first remark
after Algorithm 3. Moreover, we mention that Algorithm 5 is a purely primal splitting method for
solving the four-operator MIP (2), and this seems to be new. The main contributions of this paper
will be discussed in Subsection 1.5.

1.1 The Douglas-Rachford splitting (DRS) method

One of the most popular algorithms for finding approximate solutions of (1) is the Douglas-Rachford
splitting (DRS) method. It consists of an iterative procedure in which at each iteration the resolvents
JγA = (γA+ I)−1 and JγB = (γB + I)−1 of A and B, respectively, are employed separately instead
of the resolvent Jγ(A+B) of the full operator A+B, which may be expensive to compute numerically.
An iteration of the method can be described by

zk = JγA(2JγB(zk−1)− zk−1) + zk−1 − JγB(zk−1) ∀k ≥ 1, (3)

where γ > 0 is a scaling parameter and zk−1 is the current iterate. Originally proposed in [18] for
solving problems with linear operators, the DRS method was generalized in [26] for general nonlinear
maximal monotone operators, where the formulation (3) was first obtained. It was proved in [26] that
{zk} converges (weakly, in infinite dimensional Hilbert spaces) to some z∗ such that x∗ := JγB(z∗)
is a solution of (1). Recently, [41] solved the long standing open question of proving the weak
convergence of the sequence {JγB(zk)} to a solution of (1).

1.2 The Rockafellar’s proximal point (PP) method

The proximal point (PP) method is an iterative method for seeking approximate solutions of the
MIP

0 ∈ T (z) (4)

where T is a maximal monotone operator on H for which the solution set of (4) is nonempty. It
was first proposed by Martinet [28] for solving monotone variational inequalities (with point-to-point
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operators) and further studied and developed by Rockafellar. In its exact formulation, an iteration
of the PP method can be described by

zk = (λkT + I)−1zk−1 ∀k ≥ 1, (5)

where λk > 0 is a stepsize parameter and zk−1 is the current iterate. It is well-known that the
practical applicability of numerical schemes based on the exact computation of resolvents of monotone
operators strongly depends on strategies that allow for inexact computations. This is the case of the
PP method (5). In his pioneering work [36], Rockafellar proved that if, at each iteration k ≥ 1, zk is
computed satisfying

‖zk − (λkT + I)−1zk−1‖ ≤ ek,
∞∑
k=1

ek <∞, (6)

and {λk} is bounded away from zero, then {zk} converges (weakly, in infinite dimensions) to a
solution of (4). This result has found important applications in the design and analysis of many
practical algorithms for solving challenging problems in optimization and related fields.

1.3 The DRS method is an instance of the PP method (Eckstein and Bertsekas)

In [19], the DRS method (3) was shown to be a special instance of the PP method (5) with λk ≡ 1.
More precisely, it was observed in [19] (among other results) that the sequence {zk} in (3) satisfies

zk = (Sγ,A,B + I)−1zk−1 ∀k ≥ 1, (7)

where Sγ,A,B is the maximal monotone operator on H whose graph is

Sγ,A,B = {(y + γb, γa+ γb) ∈ H ×H | b ∈ B(x), a ∈ A(y), γa+ y = x− γb} . (8)

It can be easily checked that z∗ is a solution of (1) if and only if z∗ = JγB(x∗) for some x∗ such
that 0 ∈ Sγ,AB(x∗). The fact that (3) is equivalent to (7) clarifies the proximal nature of the DRS
method and allowed [19] to obtain inexact and relaxed versions of it by alternatively describing (7)
according to the following procedure:

compute (xk, bk) such that bk ∈ B(xk) and γbk + xk = zk−1; (9)

compute (yk, ak) such that ak ∈ A(yk) and γak + yk = xk − γbk;
set zk = yk + γbk. (10)

1.4 The hybrid proximal extragradient (HPE) method of Solodov and Svaiter

Many modern inexact versions of the PP method, as opposed to the summable error criterion (6),
use relative error tolerances for solving the associated subproblems. The first methods of this type
were proposed by Solodov and Svaiter in [38, 37] and subsequently studied in [39, 40, 32, 33, 34].
The key idea consists of decoupling (5) in an inclusion-equation system:

v ∈ T (z+), λv + z+ − z = 0, (11)

where (z, z+, λ) := (zk−1, zk, λk), and relaxing (11) within relative error tolerance criteria. Among
these new methods, the hybrid proximal extragradient (HPE) method [37], which we discuss in details
in Subsection 2.2, has been shown to be very effective as a framework for the design and analysis of
many concrete algorithms (see, e.g., [4, 11, 20, 24, 25, 27, 30, 31, 34, 37, 39, 40, 29]).
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1.5 The main contributions of this work

In [21], J. Eckstein and W. Yao proposed and studied the (asymptotic) convergence of an inexact
version of the DRS method (3) by applying a special instance of HPE method to the maximal
monotone operator given in (8). The resulting algorithm (see [21, Algorihm 3]) allows for inexact
computations in the equation in (9) and, in particular, resulted in an inexact version of the ADMM
which is suited for large-scale problems, in which fast inner solvers can be employed for solving the
corresponding subproblems (see [21, Section 6]).

In the present work, motivated by [21], we first propose in Section 3 an inexact version of the
DRS method (Algorithm 3) for solving (1) in which inexact computations are allowed in both the
inclusion and the equation in (9). At each iteration, instead of a point in the graph of B, Algorithm 3
computes a point in the graph of the ε-enlargement Bε of B (it has the property that Bε(z) ⊃ B(z)).
Moreover, contrary to the reference [21], we study the iteration complexity of the proposed method
for solving (1). We show that Algorithm 3 admits two type of iterations, one that can be embedded
into the HPE method and, on the other hand, another one which demands a separate analysis. We
emphasize again that, although motivated by the latter reference, the Douglas-Rachford type method
proposed in this paper is based on a slightly different mechanism of iteration, specially designed for
allowing its iteration complexity analysis (see Theorems 3.5 and 3.6).

Secondly, in Section 4, we consider the four-operator MIP (2) and propose and study the iteration
complexity of a Douglas-Rachford-Tseng’s F-B splitting type method (Algorithm 5) which combines
Algorithm 3 (as an outer iteration) and a Tseng’s F-B splitting type method (Algorithm 4) (as
an inner iteration) for solving the corresponding subproblems. The resulting algorithm, namely
Algorithm 5, has a splitting nature and solves (2) without introducing extra variables.

Finally, in Section 5, we perform simple numerical experiments to show the performance of the
proposed methods when compared with other existing algorithms.

1.6 Most related works

In [6], the relaxed forward-Douglas-Rachford splitting (rFDRS) method was proposed and studied
to solve three-operator MIPs consisting of (2) with C = NV , V closed vector subspace, and F1 = 0.
Subsequently, among other results, the iteration complexity of the latter method (specialized to
variational problems) was analyzed in [16]. Problem (2) with F1 = 0 was also considered in [17],
where a three-operator splitting (TOS) method was proposed and its iteration complexity studied.
On the other hand, problem (2) with C = NV and F2 = 0 was studied in [7], where the forward-
partial inverse-forward splitting method was proposed and analyzed. In [8], a Tseng’s F-B splitting
type method was proposed and analyzed to solve the special instance of (2) in which C = 0.

The iteration complexity of a relaxed Peaceman-Rachford splitting method for solving (1) was
recently studied in [35]. The method of [35] was shown to be a special instance of a non-Euclidean
HPE framework, for which the iteration complexity was also analyzed in the latter reference (see
also [23]). Moreover, as we mentioned earlier, an inexact version of the DRS method for solving (1)
was proposed and studied in [21].
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2 Preliminaries and background materials

2.1 General notation and ε-enlargements

We denote by H a real Hilbert space with inner product 〈·, ·〉 and induced norm ‖ · ‖ :=
√
〈·, ·〉 and

by H×H the product Cartesian endowed with usual inner product and norm.
A set-valued map T : H ⇒ H is said to be a monotone operator on H if 〈z − z′, v − v′〉 ≥ 0

for all v ∈ T (z) and v′ ∈ T (z′). Moreover, T is a maximal monotone operator if T is monotone
and T = S whenever S is monotone on H and T ⊂ S. Here, we identify any monotone operator
T with its graph, i.e., we set T = {(z, v) ∈ H × H | v ∈ T (z)}. The sum T + S of two set-valued
maps T, S is defined via the usual Minkowski sum and for λ ≥ 0 the operator λT is defined by
(λT )(z) = λT (z) := {λv | v ∈ T (z)}. The inverse of T : H ⇒ H is T−1 : H ⇒ H defined by
v ∈ T−1(z) if and only if z ∈ T (v). In particular, zer(T ) := T−1(0) = {z ∈ H | 0 ∈ T (z)}. The
resolvent of a maximal monotone operator T is JT := (T + I)−1, where I denotes the identity map
on H, and, in particular, the following holds: x = JλT (z) if and only if λ−1(z−x) ∈ T (x) if and only
if 0 ∈ λT (x) +x− z. We denote by ∂εf the usual ε-subdifferential of a proper closed convex function
f : H → (−∞,+∞] and by ∂f := ∂f0 the Fenchel-subdifferential of f as well. The normal cone of a
closed convex set X will be denoted by NX and by PX we denote the orthogonal projection onto X.

For T : H ⇒ H maximal monotone and ε ≥ 0, the ε-enlargement [9] of T is the operator
T ε : H⇒ H defined by

T ε(z) := {v ∈ H | 〈z − z′, v − v′〉 ≥ −ε ∀(z′, v′) ∈ T} ∀z ∈ H. (12)

Note that T (z) ⊂ T ε(z) for all z ∈ H.
The following summarizes some useful properties of T ε which will be useful in this paper (see

[33, Proposition 2.1]).

Proposition 2.1. Let T, S : H⇒ H be set-valued maps. Then,

(a) if ε ≤ ε′, then T ε(x) ⊆ T ε′(x) for every x ∈ H;

(b) T ε(x) + S ε′(x) ⊆ (T + S)ε+ε
′
(x) for every x ∈ H and ε, ε′ ≥ 0;

(c) T is monotone if, and only if, T ⊆ T 0;

(d) T is maximal monotone if, and only if, T = T 0;

Next we present the transportation formula for ε-enlargements.

Theorem 2.2. ([10, Theorem 2.3]) Suppose T : H ⇒ H is maximal monotone and let z`, v` ∈ H,
ε`, α` ∈ R+, for ` = 1, . . . , j, be such that

v` ∈ T ε`(z`), ` = 1, . . . , j,

j∑
`=1

α` = 1,

and define

zj :=

j∑
`=1

α` z` , vj :=

j∑
`=1

α` v` , εj :=

j∑
`=1

α` [ε` + 〈z` − zj , v` − vj〉] .

Then, the following hold:

5



(a) εj ≥ 0 and vj ∈ T εj (zj).

(b) If, in addition, T = ∂f for some proper, convex and closed function f and v` ∈ ∂ε`f(z`) for
` = 1, . . . , j, then vj ∈ ∂εjf(zj).

2.2 The hybrid proximal extragradient (HPE) method

Consider the monotone inclusion problem (MIP) (4), i.e.,

0 ∈ T (z) (13)

where T : H ⇒ H is a maximal monotone operator for which the solution set T−1(0) of (13) is
nonempty.

As we mentioned earlier, the proximal point (PP) method of Rockafellar [36] is one of the most
popular algorithms for finding approximate solutions of (13) and, among the modern inexact versions
of the PP method, the hybrid proximal extragradient (HPE) method of [37], which we present in
what follows, has been shown to be very effective as a framework for the design and analysis of many
concrete algorithms (see e.g. [4, 11, 20, 24, 25, 27, 30, 31, 34, 37, 39, 40, 29]).

Algorithm 1. Hybrid proximal extragradient (HPE) method for (13)

(0) Let z0 ∈ H and σ ∈ [0, 1) be given and set j ← 1.

(1) Compute (z̃j , vj , εj) ∈ H ×H× R+ and λj > 0 such that

vj ∈ T εj (z̃j), ‖λjvj + z̃j − zj−1‖2 + 2λjεj ≤ σ2‖z̃j − zj−1‖2. (14)

(2) Define

zj = zj−1 − λjvj , (15)

set j ← j + 1 and go to step 1.

Remarks.

1. If σ = 0 in (14), then it follows from Proposition 2.1(d) and (15) that (z+, v) := (zj , vj) and
λ := λj > 0 satisfy (11), which means that the HPE method generalizes the exact Rockafellar’s
PP method.

2. Condition (14) clearly relaxes both the inclusion and the equation in (11) within a relative
error criterion. Recall that T ε(·) denotes the ε-enlargement of T and has the property that
T ε(z) ⊃ T (z) (see Subsection 2.1 for details). Moreover, in (15) an extragradient step from the
current iterate zj−1 gives the next iterate zj .

3. We emphasize that specific strategies for computing the triple (z̃j , vj , εj) as well as the step-
size λj > 0 satisfying (14) will depend on the particular instance of the problem (13) under
consideration. On the other hand, as mentioned before, the HPE method can also be used as
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a framework for the design and analysis of concrete algorithms for solving specific instances of
(13) (see, e.g., [20, 30, 31, 32, 33, 34]). We also refer the reader to Sections 3 and 4, in this
work, for applications of the HPE method in the context of decomposition/splitting algorithms
for monotone inclusions.

Since the appearance of the paper [33], we have seen an increasing interest in studding the
iteration complexity of the HPE method and its special instances (e.g., Tseng’s forward-backward
splitting method, Korpelevich extragradient method and ADMM [32, 33, 34]). This depends on the
following termination criterion [33]: given tolerances ρ, ε > 0, find z, v ∈ H and ε > 0 such that

v ∈ T ε(z), ‖v‖ ≤ ρ, ε ≤ ε. (16)

Note that, by Proposition 2.1(d), if ρ = ε = 0 in (16) then 0 ∈ T (z), i.e., z ∈ T−1(0).
We now summarize the main results on pointwise (non ergodic) and ergodic iteration complex-

ity [33] of the HPE method that will be used in this paper. The aggregate stepsize sequence {Λj} and
the ergodic sequences {z̃j}, {vj}, {εj} associated to {λj} and {z̃j}, {vj}, and {εj} are, respectively,

Λj :=

j∑
`=1

λ` , (17)

z̃j :=
1

Λj

j∑
`=1

λ` z̃`, vj :=
1

Λj

j∑
`=1

λ` v`, (18)

εj :=
1

Λj

j∑
`=1

λ`

[
ε` + 〈z̃` − z̃j , v` − vj〉

]
=

1

Λj

j∑
`=1

λ`

[
ε` + 〈z̃` − z̃j , v`〉

]
. (19)

Theorem 2.3 ([33, Theorem 4.4(a) and 4.7]). Let {z̃j}, {vj}, etc, be generated by the HPE method
(Algorithm 1) and let {z̃j}, {vj}, etc, be given in (17)–(19). Let also d0 denote the distance from z0

to T−1(0) 6= ∅ and assume that λj ≥ λ > 0 for all j ≥ 1. Then, the following hold:

(a) For any j ≥ 1, there exists i ∈ {1, . . . , j} such that

vi ∈ T εi(z̃i), ‖vi‖ ≤
d0

λ
√
j

√
1 + σ

1− σ
, εi ≤

σ2d2
0

2(1− σ2)λ j
.

(b) For any j ≥ 1,

vj ∈ T εj (z̃j), ‖vj‖ ≤
2d0

λ j
, εj ≤

2(1 + σ/
√

1− σ2)d2
0

λ j
.

Remark.

The (pointwise and ergodic) bounds given in (a) and (b) of Theorem 2.3 guarantee, respectively,
that for given tolerances ρ, ε > 0, the termination criterion (16) is satisfied in at most

O
(

max

{
d2

0

λ2ρ2
,
d2

0

λε

})
and O

(
max

{
d0

λρ
,
d2

0

λε

})
iterations, respectively. We refer the reader to [33] for a complete study of the iteration
complexity of the HPE method and its special instances.
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The proposition below will be useful in the next sections.

Proposition 2.4 ([33, Lemma 4.2 and Eq. (34)]). Let {zj} be generated by the HPE method (Algo-
rithm 1). Then, for any z∗ ∈ T−1(0), the sequence {‖z∗ − zj‖} is nonincreasing. As a consequence,
for every j ≥ 1, we have

‖zj − z0‖ ≤ 2d0,

where d0 denotes the distance of z0 to T−1(0).

2.2.1 A HPE variant for strongly monotone sums

We now consider the MIP

0 ∈ S(z) +B(z) =: T (z) (20)

where the following is assumed to hold:

(C1) S and B are maximal monotone operators on H;

(C2) S is (additionally) µ–strongly monotone for some µ > 0, i.e., there exists µ > 0 such that

〈z − z′, v − v′〉 ≥ µ‖z − z′‖2 ∀v ∈ S(z), v′ ∈ S(z′);

(C3) the solution set (S +B)−1(0) of (20) is nonempty.

The main motivation to consider the above setting is Subsection 4.1, in which the monotone
inclusion (70) is clearly a special instance of (20) with S(·) := (1/γ)(· − z̊), which is obviously
(1/γ)-strongly maximal monotone on H.

The algorithm below was proposed and studied (with a different notation) in [1, Algorithm 1].

Algorithm 2. A specialized HPE method for solving strongly monotone inclusions

(0) Let z0 ∈ H and σ ∈ [0, 1) be given and set j ← 1.

(1) Compute (z̃j , vj , εj) ∈ H ×H× R+ and λj > 0 such that

vj ∈ S(z̃j) +Bεj (z̃j), ‖λjvj + z̃j − zj−1‖2 + 2λjεj ≤ σ2‖z̃j − zj−1‖2. (21)

(2) Define

zj = zj−1 − λjvj , (22)

set j ← j + 1 and go to step 1.

Next proposition will be useful in Subsection 4.1.
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Proposition 2.5 ([1, Proposition 2.2]). Let {z̃j}, {vj} and {εj} be generated by Algorithm 2, let
z∗ := (S +B)−1(0) and d0 := ‖z0 − z∗‖. Assume that λj ≥ λ > 0 for all j ≥ 1 and define

α :=

(
1

2λµ
+

1

1− σ2

)−1

∈ (0, 1).

Then, for all j ≥ 1,

vj ∈ S(z̃j) +Bεj (z̃j),

‖vj‖ ≤
√

1 + σ

1− σ

(
(1− α)(j−1)/2

λ

)
d0,

εj ≤
σ2

2(1− σ2)

(
(1− α)j−1

λ

)
d 2

0 .

Next section presents one of the main contributions of this paper, namely an inexact Douglas-
Rachford type method for solving (1) and its iteration complexity analysis.

3 An inexact Douglas-Rachford splitting (DRS) method and its
iteration complexity

Consider problem (1), i.e., the problem of finding z ∈ H such that

0 ∈ A(z) +B(z) (23)

where the following hold:

(D1) A and B are maximal monotone operators on H;

(D2) the solution set (A+B)−1(0) of (23) is nonempty.

In this section, we propose and analyze the iteration complexity of an inexact version of the
Douglas-Rachford splitting (DRS) method [26] for finding approximate solutions of (23) according to
the following termination criterion: given tolerances ρ, ε > 0, find a, b, x, y ∈ H and εa, εb ≥ 0 such
that

a ∈ Aεa(y), b ∈ Bεb(x), γ‖a+ b‖ = ‖x− y‖ ≤ ρ, εa + εb ≤ ε, (24)

where γ > 0 is a scaling parameter. Note that if ρ = ε = 0 in (24), then z∗ := x = y is a solution of
(23).

As we mentioned earlier, the algorithm below is motivated by (9)–(10) as well as by the recent
work of Eckstein and Yao [21].

9



Algorithm 3. An inexact Douglas-Rachford splitting method for (23)

(0) Let z0 ∈ H, γ > 0, τ0 > 0 and 0 < σ, θ < 1 be given and set k ← 1.

(1) Compute (xk, bk, εb, k) ∈ H ×H× R+ such that

bk ∈ Bεb, k(xk), ‖γbk + xk − zk−1‖2 + 2γεb, k ≤ τk−1. (25)

(2) Compute (yk, ak) ∈ H ×H such that

ak ∈ A(yk), γak + yk = xk − γbk. (26)

(3) (3.a) If

‖γbk + xk − zk−1‖2 + 2γεb,k ≤ σ2‖γbk + yk − zk−1‖2, (27)

then

zk = zk−1 − γ(ak + bk), τk = τk−1 [extragradient step]. (28)

(3.b) Else

zk = zk−1, τk = θ τk−1 [null step]. (29)

(4) Set k ← k + 1 and go to step 1.

Remarks.

1. We emphasize that although it has been motivated by [21, Algorithm 3], Algorithm 3 is based
on a slightly different mechanism of iteration. Moreover, it also allows for the computation
of (xk, bk) in (25) in the εb,k– enlargement of B (it has the property that Bεb,k(x) ⊃ B(x)
for all x ∈ H); this will be crucial for the design and iteration complexity analysis of the
four-operator splitting method of Section 4. We also mention that, contrary to this work, no
iteration complexity analysis is performed in [21].

2. Computation of (xk, bk, εb, k) satisfying (25) will depend on the particular instance of the prob-
lem (23) under consideration. In Section 4, we will use Algorithm 3 for solving a four-operator
splitting monotone inclusion. In this setting, at every iteration k ≥ 1 of Algorithm 3, called an
outer iteration, a Tseng’s forward-backward (F-B) splitting type method will be used, as an
inner iteration, to solve the (prox) subproblem (25).

3. Whenever the resolvent JγB = (γB + I)−1 is computable, then it follows that (xk, bk) :=
(JγB(zk−1), (zk−1 − xk)/γ) and εb, k := 0 clearly solve (25). In this case, the left hand side of
the inequality in (25) is zero and, as a consequence, the inequality (27) is always satisfied. In
particular, (9)–(10) hold, i.e., in this case Algorithm 3 reduces to the (exact) DRS method.

4. In this paper, we assume that the resolvent JγA = (γA + I)−1 is computable, which implies
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that (yk, ak) := (JγA(xk−γbk), (xk−γbk−yk)/γ) is the demanded pair in (26). An interesting
topic for future investigation would be to relax (26) to allow inexact computations of (yk, ak)
similarly to (25).

5. Algorithm 3 potentially performs extragradient steps and null steps, depending on the condition
(27). It will be shown in Proposition 3.2 that iterations corresponding to extragradient steps
reduce to a special instance of the HPE method, in which case pointwise and ergodic iteration
complexity results are available in the current literature (see Proposition 3.3). On the other
hand, iterations corresponding to the null steps will demand a separate analysis (see Proposition
3.4).

As we mentioned in the latter remark, each iteration of Algorithm 3 is either an extragradient step
or a null step (see (28) and (29)). This will be formally specified by considering the sets:

A := indexes k ≥ 1 for which an extragradient step is executed at the iteration k.

B := indexes k ≥ 1 for which a null step is executed at the iteration k.
(30)

That said, we let

A = {kj}j∈J , J := {j ≥ 1 | j ≤ #A} (31)

where k0 := 0 and k0 < kj < kj+1 for all j ∈ J , and let β0 := 0 and

βk := the number of indexes for which a null step is executed until the iteration k. (32)

Note that direct use of the above definition and (29) yield

τk = θβkτ0 ∀k ≥ 0. (33)

In order to study the ergodic iteration complexity of Algorithm 3 we also define the ergodic
sequences associated to the sequences {xkj}j∈J , {ykj}j∈J , {akj}j∈J , {bkj}j∈J , and {εb, kj}j∈J , for all
j ∈ J , as follows:

xkj :=
1

j

j∑
`=1

xk` , ykj :=
1

j

j∑
`=1

yk` , (34)

akj :=
1

j

j∑
`=1

ak` , bkj :=
1

j

j∑
`=1

bk` , (35)

εa, kj :=
1

j

j∑
`=1

〈yk` − ykj , ak` − akj 〉 =
1

j

j∑
`=1

〈yk` − ykj , ak`〉, (36)

εb, kj :=
1

j

j∑
`=1

[
εb, k` + 〈xk` − xkj , bk` − bkj 〉

]
=

1

j

j∑
`=1

[
εb, k` + 〈xk` − xkj , bk`〉

]
. (37)

Moreover, the results on iteration complexity of Algorithm 3 (pointwise and ergodic) obtained in
this paper will depend on the following quantity:

d0, γ := dist (z0, zer(Sγ,A,B)) = min {‖z0 − z‖ | z ∈ zer(Sγ,A,B)} (38)
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which measures the quality of the initial guess z0 in Algorithm 3 with respect to zer(Sγ,A,B), where
the operator Sγ,A,B is such that JγB(zer(Sγ,A,B)) = (A+B)−1(0) (see (8)).

In the next proposition, we show that the procedure resulting by selecting the extragradient steps
in Algorithm 3 can be embedded into HPE method.

First, we need the following lemma.

Lemma 3.1. Let {zk} be generated by Algorithm 3 and let the set J be defined in (31). Then,

zkj−1
= zkj−1 ∀j ∈ J. (39)

Proof. Using (30) and (31) we have {k ≥ 1 | kj−1 < k < kj} ⊂ B, for all j ∈ J . Consequently, using
the definition of B in (30) and (29) we conclude that zk = zkj−1

whenever kj−1 ≤ k < kj . As a
consequence, we obtain that (39) follows from the fact that kj−1 ≤ kj − 1 < kj .

Proposition 3.2. Let {zk}, {(xk, bk)}, {εb,k} and {(yk, ak)} be generated by Algorithm 3 and let
the operator Sγ,A,B be defined in (8). Define, for all j ∈ J ,

z̃kj := ykj + γbkj , vkj := γ(akj + bkj ), εkj := γεb,kj . (40)

Then, for all j ∈ J ,

vkj ∈ (Sγ,A,B)
εkj (z̃kj ), ‖vkj + z̃kj − zkj−1

‖2 + 2εkj ≤ σ
2‖z̃kj − zkj−1

‖2,

zkj = zkj−1
− vkj .

(41)

As a consequence, the sequences {z̃kj}j∈J , {vkj}j∈J , {εkj}j∈J and {zkj}j∈J are generated by Algo-
rithm 1 with λj ≡ 1 for solving (13) with T := Sγ,A,B.

Proof. For any (z′, v′) := (y + γb, γa + γb) ∈ Sγ,A,B we have, in particular, b ∈ B(x) and a ∈ A(y)
(see (8)). Using these inclusions, the inclusions in (25) and (26), the monotonicity of the operator A
and (12) with T = B we obtain

〈xkj − x, bkj − b〉 ≥ −εb,kj , 〈ykj − y, akj − a〉 ≥ 0. (42)

Moreover, using the identity in (26) and the corresponding one in (8) we find

(ykj − y) + γ(bkj − b) = (xkj − x)− γ(akj − a). (43)

Using (40), (42) and (43) we have

〈z̃kj − z
′, vkj − v

′〉 = 〈(ykj + γbkj )− (y + γb), (γakj + γbkj )− (γa+ γb)〉
= 〈ykj − y + γ(bkj − b), γ(akj − a) + γ(bkj − b)〉
= γ〈ykj − y + γ(bkj − b), akj − a〉+ γ〈ykj − y + γ(bkj − b), bkj − b〉
= γ〈ykj − y + γ(bkj − b), akj − a〉+ γ〈xkj − x− γ(akj − a), bkj − b〉
= γ〈ykj − y, akj − a〉+ γ〈xkj − x, bkj − b〉
≥ γ〈xkj − x, bkj − b〉
≥ −εkj ,

12



which combined with definition (12) gives the inclusion in (41).
From (40), (39), the identity in (26) and (27) we also obtain

‖vkj + z̃kj − zkj−1
‖2 = ‖γ(akj + bkj ) + (ykj + γbkj )− zkj−1‖2

= ‖(xkj − ykj ) + (ykj + γbkj )− zkj−1‖2

= ‖γbkj + xkj − zkj−1‖2

≤ σ2‖γbkj + ykj − zkj−1‖2 − 2γεb,kj

= σ2‖z̃kj − zkj−1
‖2 − 2εkj ,

which gives the inequality in (41). To finish the proof of (41), note that the desired identity in
(41) follows from the first one in (28), the second one in (40) and (39). The last statement of the
proposition follows from (40), (41) and Algorithm 1’s definition.

Proposition 3.3. (rate of convergence for extragradient steps) Let {(xk, bk)}, {(yk, ak)} and
{εb, k} be generated by Algorithm 3 and consider the ergodic sequences defined in (34)–(37). Let d0,γ

and the set J be defined in (38) and (31), respectively. Then,

(a) For any j ∈ J , there exists i ∈ {1, . . . , j} such that

aki ∈ A(yki), bki ∈ B
εb, ki (xki), (44)

γ‖aki + bki‖ = ‖xki − yki‖ ≤
d0,γ√
j

√
1 + σ

1− σ
, (45)

εb, ki ≤
σ2d 2

0,γ

2γ(1− σ2)j
. (46)

(b) For any j ∈ J ,

akj ∈ A
εa,kj (ykj ), bkj ∈ B

εb, kj (xkj ), (47)

γ‖akj + bkj‖ = ‖xkj − ykj‖ ≤
2d0,γ

j
, (48)

εa, kj + εb, kj ≤
2(1 + σ/

√
1− σ2)d 2

0,γ

γj
. (49)

Proof. Note first that (44) follow from the inclusions in (25) and (26). Using the last statement in
Proposition 3.2, Theorem 2.3 (with λ = 1) and (38) we obtain that there exists i ∈ {1, . . . , j} such
that

‖vki‖ ≤
d0,γ√
j

√
1 + σ

1− σ
, εki ≤

σ2d2
0,γ

2(1− σ2)j
,

which, in turn, combined with the identity in (26) and the definitions of vki and εki in (40) gives the
desired inequalities in (45) and (46) (concluding the proof of (a)) and

‖vj‖ ≤
2d0,γ

j
, εj ≤

2(1 + σ/
√

1− σ2)d2
0,γ

j
, (50)
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where vj and εj are defined in (18) and (19), respectively, with Λj = j and

λ` := 1, v` := vk` , ε` := εk` , z̃` := z̃k` ∀` = 1, . . . , j. (51)

Since the inclusions in (47) are a direct consequence of the ones in (25) and (26), Proposition
2.1(d), (34)–(37) and Theorem 2.2, it follows from (48), (49) and (50) that to finish the proof of (b),
it suffices to prove that

vj = γ(akj + bkj ), γ(akj + bkj ) = xkj − ykj , εj = γ(εa, kj + εb, kj ). (52)

The first identity in (52) follows from (51), the second identities in (18) and (40), and (35). On the
other hand, from (26) we have γ(ak` + bk`) = xk` − yk` , for all ` = 1, . . . , j, which combined with
(34) and (35) gives the second identity in (52). Using the latter identity and the second one in (52)
we obtain

(yk` − ykj ) + γ(bk` − bkj ) = (xk` − xkj )− γ(ak` − akj ) ∀` = 1, . . . , j. (53)

Moreover, it follows from (18), (51), the first identity in (40), (34) and (35) that

z̃j = z̃kj =
1

j

j∑
`=1

(yk` + γbk`) = ykj + γbkj . (54)

Using (54), (51), (40) and (53) we obtain, for all ` = 1, . . . , j,

〈z̃` − z̃j , v`〉 = 〈(yk` + γbk`)− (ykj + γbkj ), γ(ak` + bk`)〉

= γ〈(yk` − ykj ) + γ(bk` − bkj ), ak`〉+ γ〈(yk` − ykj ) + γ(bk` − bkj ), bk`〉

= γ〈(yk` − ykj ) + γ(bk` − bkj ), ak`〉+ γ〈(xk` − xkj )− γ(ak` − akj ), bk`〉

= γ〈yk` − ykj , ak`〉+ γ2〈bk` − bkj , ak`〉+ γ〈xk` − xkj , bk`〉 − γ
2〈ak` − akj , bk`〉,

which combined with (19), (51), (36) and (37) yields

εj =
1

j

j∑
`=1

[
ε` + 〈z̃` − z̃j , v`〉

]
=

1

j

j∑
`=1

γ
[
εb, k` + 〈xk` − xkj , bk`〉+ 〈yk` − ykj , ak`〉

]
= γ(εa, kj + εb, kj ),

which is exactly the last identity in (52). This finishes the proof.

Proposition 3.4. (rate of convergence for null steps) Let {(xk, bk)}, {(yk, ak)} and {εb,k} be
generated by Algorithm 3. Let {βk} and the set B be defined in (32) and (30), respectively. Then,
for k ∈ B,

ak ∈ A(yk), bk ∈ Bεb, k(xk), (55)

γ‖ak + bk‖ = ‖xk − yk‖ ≤
2
√
τ0

σ
θ
βk−1

2 ,

γεb, k ≤
τ0

2
θβk−1 .
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Proof. Note first that (55) follows from (25) and (26). Using (30), (25) and Step 3.b’s definition (see
Algorithm 3) we obtain

τk−1 ≥ ‖γbk + xk − zk−1︸ ︷︷ ︸
pk

‖2 + 2γεb,k > σ2‖γbk + yk − zk−1︸ ︷︷ ︸
qk

‖2,

which, in particular, gives

γεb, k ≤
τk−1

2
, (56)

and combined with the identity in (26) yields,

γ‖ak + bk‖ = ‖xk − yk‖ = ‖pk − qk‖
≤ ‖pk‖+ ‖qk‖

≤
(

1 +
1

σ

)
√
τk−1. (57)

To finish the proof, use (56), (57) and (33).

Next we present the main results regarding the pointwise and ergodic iteration complexity of Al-
gorithm 3 for finding approximate solutions of (23) satisfying the termination criterion (24). While
Theorem 3.5 is a consequence of Proposition 3.3(a) and Proposition 3.4, the ergodic iteration com-
plexity of Algorithm 3, namely Theorem 3.6, follows by combining the latter proposition and Propo-
sition 3.3(b). Since the proof of Theorem 3.6 follows the same outline of Theorem 3.5’s proof, it will
be omitted.

Theorem 3.5. (pointwise iteration complexity of Algorithm 3) Assume that max{(1 −
σ)−1, σ−1} = O(1) and let d0,γ be as in (38). Then, for given tolerances ρ, ε > 0, Algorithm 3
finds a, b, x, y ∈ H and εb ≥ 0 such that

a ∈ A(y), b ∈ Bεb(x), γ‖a+ b‖ = ‖x− y‖ ≤ ρ, εb ≤ ε (58)

after performing at most

O

(
1 + max

{
d 2

0,γ

ρ2
,
d 2

0,γ

γε

})
(59)

extragradient steps and

O
(

1 + max

{
log+

(√
τ0

ρ

)
, log+

(
τ0

γε

)})
(60)

null steps. As a consequence, under the above assumptions, Algorithm 3 terminates with a, b, x, y ∈ H
and εb ≥ 0 satisfying (58) in at most

O

(
1 + max

{
d 2

0,γ

ρ2
,
d 2

0,γ

γε

}
+ max

{
log+

(√
τ0

ρ

)
, log+

(
τ0

γε

)})
(61)

iterations.

15



Proof. Let A be as in (30) and consider the cases:

#A ≥Mext :=

⌈
max

{
2 d 2

0,γ

(1− σ)ρ2
,

σ2d 2
0,γ

2γ(1− σ2)ε

}⌉
and #A < Mext. (62)

In the first case, the desired bound (59) on the number of extragradient steps to find a, b, x, y ∈ H
and εb ≥ 0 satisfying (58) follows from the definition of J in (31) and Proposition 3.3(a).

On the other hand, in the second case, i.e., #A < Mext, the desired bound (60) is a direct
consequence of Proposition 3.4. The last statement of the theorem follows from (59) and (60).

Next is the main result on the ergodic iteration complexity of Algorithm 3. As mentioned before,
its proof follows the same outline of Theorem 3.5’s proof, now applying Proposition 3.3(b) instead
of the item (a) of the latter proposition.

Theorem 3.6. (ergodic iteration complexity of Algorithm 3) For given tolerances ρ, ε > 0,
under the same assumptions of Theorem 3.5, Algorithm 3 provides a, b, x, y ∈ H and εa, εb ≥ 0 such
that

a ∈ Aεa(y), b ∈ Bεb(x), γ‖a+ b‖ = ‖x− y‖ ≤ ρ, εa + εb ≤ ε. (63)

after performing at most

O

(
1 + max

{
d0,γ

ρ
,
d 2

0,γ

γε

})
extragradient steps and

O
(

1 + max

{
log+

(√
τ0

ρ

)
, log+

(
τ0

γε

)})
null steps. As a consequence, under the above assumptions, Algorithm 3 terminates with a, b, x, y ∈ H
and εa, εb ≥ 0 satisfying (63) in at most

O

(
1 + max

{
d0,γ

ρ
,
d 2

0,γ

γε

}
+ max

{
log+

(√
τ0

ρ

)
, log+

(
τ0

γε

)})
(64)

iterations.

Proof. The proof follows the same outline of Theorem 3.5’s proof, now applying Proposition 3.3(b)
instead of Proposition 3.3(a).

Remarks.

1. Theorem 3.6 ensures that for given tolerances ρ, ε > 0, up to an additive logarithmic factor,
Algorithm 3 requires no more than

O

(
1 + max

{
d0,γ

ρ
,
d 2

0,γ

γε

})
iterations to find an approximate solution of the monotone inclusion problem (23) according
to the termination criterion (24).
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2. While the (ergodic) upper bound on the number of iterations provided in (64) is better than
the corresponding one in (61) (in terms of the dependence on the tolerance ρ > 0) by a factor
of O(1/ρ), the inclusion in (63) is potentially weaker than the corresponding one in (58), since
one may have εa > 0 in (63), and the set Aεa(y) is in general larger than A(y).

3. Iteration complexity results similar to the ones in Proposition 3.3 were recently obtained for
a relaxed Peaceman-Rachford method in [35] . We emphasize that, in contrast to this work,
the latter reference considers only the case where the resolvents JγA and JγB of A and B,
respectively, are both computable.

The proposition below will be important in the next section.

Proposition 3.7. Let {zk} be generated by Algorithm 3 and d0,γ be as in (38). Then,

‖zk − z0‖ ≤ 2d0,γ ∀k ≥ 1. (65)

Proof. Note that (i) if k = kj ∈ A, for some j ∈ J , see (31), then (65) follows from the last statement
in Proposition 3.2 and Proposition 2.4; (ii) if k ∈ B, from the first identity in (29), see (30), we find
that either zk = z0, in which case (65) holds trivially, or zk = zkj for some j ∈ J , in which case the
results follows from (i).

4 A Douglas-Rachford-Tseng’s forward-backward (F-B) four-operator
splitting method

In this section, we consider problem (2), i.e., the problem of finding z ∈ H such that

0 ∈ A(z) + C(z) + F1(z) + F2(z) (66)

where the following hold:

(E1) A and C are (set-valued) maximal monotone operators on H.

(E2) F1 : D(F1) ⊂ H → H is monotone and L-Lipschitz continuous on a (nonempty) closed convex
set Ω such that D(C) ⊂ Ω ⊂ D(F1), i.e., F1 is monotone on Ω and there exists L ≥ 0 such that

‖F1(z)− F1(z′)‖ ≤ L‖z − z′‖ ∀z, z′ ∈ Ω. (67)

(E3) F2 : H → H is η−cocoercivo, i.e., there exists η > 0 such that

〈F2(z)− F2(z′), z − z′〉 ≥ η‖F2(z)− F2(z′)‖2 ∀z, z′ ∈ H.

(E4) B−1(0) is nonempty, where

B := C + F1 + F2. (68)

(E5) The solution set of (66) is nonempty.
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Aiming at solving the monotone inclusion (66), we present and study the iteration complexity of
a (four-operator) splitting method which combines Algorithm 3 (used as an outer iteration) and a
Tseng’s forward-backward (F-B) splitting type method (used as an inner iteration for solving, for each
outer iteration, the prox subproblems in (25)). We prove results on pointwise and ergodic iteration
complexity of the proposed four-operator splitting algorithm by analyzing it in the framework of
Algorithm 3 for solving (23) with B as in (68) and under assumptions (E1)–(E5). The (outer)
iteration complexities will follow from results on pointwise and ergodic iteration complexities of
Algorithm 3, obtained in Section 3, while the computation of an upper bound on the overall number
of inner iterations required to achieve prescribed tolerances will require a separate analysis. Still
regarding the results on iteration complexity, we mention that we consider the following notion of
approximate solution for (66): given tolerances ρ, ε > 0, find a, b, x, y ∈ H and εa, εb ≥ 0 such that

a ∈ Aεa(y),

either b ∈ C(x) + F1(x) + F εb2 (x) or b ∈ (C + F1 + F2)εb (x), (69)

γ‖a+ b‖ = ‖x− y‖ ≤ ρ, εa + εb ≤ ε,

where γ > 0. Note that (i) for ρ = ε = 0, the above conditions imply that z∗ := x = y is a solution
of the monotone inclusion (66); (ii) the second inclusion in (69), which will appear in the ergodic
iteration complexity, is potentially weaker than the first one (see Proposition 2.1(b)), which will
appear in the corresponding pointwise iteration complexity of the proposed method.

We also mention that problem (66) falls in the framework of the monotone inclusion (23) due to
the facts that, in view of assumptions (E1), (E2) and (E3), the operator A is maximal monotone,
and the operator F1 + F2 is monotone and (L+ 1/η)–Lipschitz continuous on the closed convex set
Ω ⊃ D(C), which combined with the assumption on the operator C in (E1) and with [32, Proposition
A.1] implies that the operator B defined in (68) is maximal monotone as well. These facts combined
with assumption (E5) give that conditions (D1) and (D2) of Section 3 hold for A and B as in (E1) and
(68), respectively. In particular, it gives that Algorithm 3 may be applied to solve the four-operator
monotone inclusion (66).

In this regard, we emphasize that any implementation of Algorithm 3 will heavily depend on
specific strategies for solving each subproblem in (25), since (yk, ak) required in (26) can be computed
by using the resolvent operator of A, available in closed form in many important cases. In the next
subsection, we show how the specific structure (66) allows for an application of a Tseng’s F-B splitting
type method for solving each subproblem in (25).

4.1 Solving the subproblems in (25) for B as in (68)

In this subsection, we present and study a Tseng’s F-B splitting type method [2, 8, 32, 43] for solving
the corresponding proximal subproblem in (25) at each (outer) iteration of Algorithm 3, when used
to solve (66). To begin with, first consider the (strongly) monotone inclusion

0 ∈ B(z) +
1

γ
(z − z̊) (70)

where B is as in (68), γ > 0 and z̊ ∈ H, and note that the task of finding (xk, bk, εb,k) satisfying (25)
is related to the task of solving (70) with z̊ := zk−1.

In the remaining part of this subsection, we present and study a Tseng’s F-B splitting type
method for solving (70). As we have mentioned before, the resulting algorithm will be used as an
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inner procedure for solving the subproblems (25) at each iteration of Algorithm 3, when applied to
solve (66).

Algorithm 4. A Tseng’s F-B splitting type method for (70)

Input: C,F1,Ω, L, F2 and η as in conditions (E1)–(E5), z̊ ∈ H, τ̊ > 0, σ ∈ (0, 1) and γ such that

0 < γ ≤ 4ησ2

1 +
√

1 + 16L2η2σ2
. (71)

(0) Set z0 ← z̊ and j ← 1.

(1) Let z′j−1 ← PΩ(zj−1) and compute

z̃j =
(γ

2
C + I

)−1
(
z̊ + zj−1 − γ(F1 + F2)(z′j−1)

2

)
,

zj = z̃j − γ
(
F1(z̃j)− F1(z′j−1)

)
.

(72)

(2) If

‖zj−1 − zj‖2 +
γ‖z′j−1 − z̃j‖2

2η
≤ τ̊ , (73)

then terminate. Otherwise, set j ← j + 1 and go to step 1.

Output: (zj−1, z
′
j−1, zj , z̃j).

Remark.

Algorithm 4 combines ideas from the standard Tseng’s F-B splitting algorithm [43] as well
as from recent insights on the convergence and iteration complexity of some variants the lat-
ter method [1, 8, 32]. In this regard, evaluating the cocoercive component F2 just once per
iteration (see [8, Theorem 1]) is potentially important in many applications, where the evalu-
ation of cocoercive operators is in general computationally expensive (see [8] for a discussion).
Nevertheless, we emphasize that the results obtained in this paper regarding the analysis of
Algorithm 4 do not follow from any of the just mentioned references.

Next corollary ensures that Algorithm 4 always terminates with the desired output.

Corollary 4.1. Assume that (1− σ2)−1 = O(1) and let dz̊,b denote the distance of z̊ to B−1(0) 6= ∅.
Then, Algorithm 4 terminates with the desired output after performing no more than

O
(

1 + log+

(
dz̊, b√
τ̊

))
(74)

iterations.

Proof. See Subsection 4.3.
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4.2 A Douglas-Rachford-Tseng’s F-B four-operator splitting method

In this subsection, we present and study the iteration complexity of the main algorithm in this work,
for solving (66), namely Algorithm 5, which combines Algorithm 3, used as an outer iteration, and
Algorithm 4, used as an inner iteration, for solving the corresponding subproblem in (25). Algorithm
5 will be shown to be a special instance of Algorithm 3, for which pointwise and ergodic iteration
complexity results are available in Section 3. Corollary 4.1 will be specially important to compute
a bound on the total number of inner iterations performed by Algorithm 5 to achieve prescribed
tolerances.

Algorithm 5. A Douglas-Rachford-Tseng’s F-B splitting type method for (66)

(0) Let z0 ∈ H, τ0 > 0 and 0 < σ, θ < 1 be given, let C,F1,Ω, L, F2 and η as in conditions
(E1)–(E5) and γ satisfying condition (71), and set k ← 1.

(1) Call Algorithm 4 with inputs C,F1,Ω, L, F2 and η, (̊z, τ̊) := (zk−1, τk−1), σ and γ to obtain
as output (zj−1, z

′
j−1, zj , z̃j), and set

xk = z̃j , bk =
zk−1 + zj−1 − (zj + z̃j)

γ
, εb, k =

‖z′j−1 − z̃j‖2

4η
. (75)

(2) Compute (yk, ak) ∈ H ×H such that

ak ∈ A(yk), γak + yk = xk − γbk. (76)

(3) (3.a) If

‖γbk + xk − zk−1‖2 + 2γεb,k ≤ σ2‖γbk + yk − zk−1‖2,

then

zk = zk−1 − γ(ak + bk), τk = τk−1 [extragradient step]. (77)

(3.b) Else

zk = zk−1, τk = θ τk−1 [null step]. (78)

(4) Set k ← k + 1 and go to step 1.

In what follows we present the pointwise and ergodic iteration complexities of Algorithm 5 for
solving the four-operator monotone inclusion problem (66). The results will follow essentially from
the corresponding ones for Algorithm 3 previously obtained in Section 3. On the other hand, bounds
on the number of inner iterations executed before achieving prescribed tolerances will be proved by
using Corollary 4.1.

We start by showing that Algorithm 5 is a special instance of Algorithm 3.
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Proposition 4.2. The triple (xk, bk, εb, k) in (75) satisfies condition (25) in Step 1 of Algorithm 3,
i.e.,

bk ∈ C(xk) + F1(xk) + F
εb,k
2 (xk) ⊂ Bεb, k(xk), ‖γbk + xk − zk−1‖2 + 2γεb, k ≤ τk−1, (79)

where B is as in (68). As a consequence, Algorithm 5 is a special instance of Algorithm 3 for solving
(23) with B as in (68).

Proof. Using the first identity in (86), the definition of bk in (75) as well as the fact that z̊ := zk−1

in Step 1 of Algorithm 5 we find

bk = vj −
1

γ
(z̃j − zk−1) = vj −

1

γ
(z̃j − z̊). (80)

Combining the latter identity with the second inclusion in (87), the second identity in (86) and the
definitions of xk and εb, k in (75) we obtain the first inclusion in (79). The second desired inclusion
follows from (68) and Proposition 2.1(b). To finish the proof of (79), note that from the first identity
in (80), the definitions of xk and εb, k in (75), the definition of vj in (86) and (73) we have

‖γbk + xk − zk−1‖2 + 2γεb, k = ‖zj−1 − zj‖2 +
γ‖z′j−1 − z̃j‖2

2η
≤ τ̊ = τk−1,

which gives the inequality in (79). The last statement of the proposition follows from (79), (25)–(29)
and (76)–(78).

Theorem 4.3. (pointwise iteration complexity of Algorithm 5) Let the operator B and d0,γ

be as in (68) and (38), respectively, and assume that max{(1− σ)−1, σ−1} = O(1). Let also d0,b be
the distance of z0 to B−1(0) 6= ∅. Then, for given tolerances ρ, ε > 0, the following hold:

(a) Algorithm 5 finds a, b, x, y ∈ H and εb ≥ 0 such that

a ∈ A(y), b ∈ C(x) + F1(x) + F εb2 (x), γ‖a+ b‖ = ‖x− y‖ ≤ ρ, εb ≤ ε (81)

after performing no more than

kp; outer := O

(
1 + max

{
d 2

0,γ

ρ2
,
d 2

0,γ

γε

}
+ max

{
log+

(√
τ0

ρ

)
, log+

(
τ0

γε

)})

outer iterations.

(b) Before achieving the desired tolerance ρ, ε > 0, each iteration of Algorithm 5 performs at most

kinner := O
(

1 + log+

(
d0,γ + d0,b√

τ0

)
+ max

{
log+

(√
τ0

ρ

)
, log+

(
τ0

γε

)})
(82)

inner iterations; and hence evaluations of the η–cocoercive operator F2.

As a consequence, Algorithm 5 finds a, b, x, y ∈ H and εb ≥ 0 satisfying (81) after performing no
more than kp; outer × kinner inner iterations.
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Proof. (a) The desired result is a direct consequence of the last statements in Proposition 4.2 and
Theorem 3.5, and the inclusions in (79).

(b) Using Step 1’s definition and Corollary 4.1 we conclude that, at each iteration k ≥ 1 of
Algorithm 5, the number of inner iterations is bounded by

O
(

1 + log+

(
dzk−1, b√
τk−1

))
(83)

where dzk−1, b denotes the distance of zk−1 to B−1(0). Now, using the last statements in Propositions
4.2 and 3.2, Proposition 2.4 and a simple argument based on the triangle inequality we obtain

dzk−1,b ≤ 2d0,γ + d0,b ∀k ≥ 1. (84)

By combining (83) and (84) and using (33) we find that, at every iteration k ≥ 1, the number of
inner iterations is bounded by

O

(
1 + log+

(
d0,γ + d0,b√
θβk−1τ0

))
= O

(
1 + log+

(
d0,γ + d0,b√

τ0

)
+ βk−1

)
.

Using the latter bound, the last statement in Proposition 4.2, the bound on the number of null steps
of Algorithm 3 given in Theorem 3.5, and (32) we conclude that, before achieving the prescribed
tolerance ρ, ε > 0, each iteration Algorithm 5 performs at most the number of iterations given in
(82). This concludes the proof of (b).

To finish the proof, note that the last statement of the theorem follows directly from (a) and
(b).

Theorem 4.4. (ergodic iteration complexity of Algorithm 5) For given tolerances ρ, ε > 0,
under the same assumptions of Theorem 4.3 the following hold:

(a) Algorithm 5 provides a, b, x, y ∈ H and εa, εb ≥ 0 such that

a ∈ Aεa(y), b ∈ (C + F1 + F2)εb (x), γ‖a+ b‖ = ‖x− y‖ ≤ ρ, εa + εb ≤ ε (85)

after performing no more than

ke; outer := O

(
1 + max

{
d0,γ

ρ
,
d 2

0,γ

γε

}
+ max

{
log+

(√
τ0

ρ

)
, log+

(
τ0

γε

)})
outer iterations.

(b) Before achieving the desired tolerance ρ, ε > 0, each iteration of Algorithm 5 performs at most

kinner := O
(

1 + log+

(
d0,γ + d0,b√

τ0

)
+ max

{
log+

(√
τ0

ρ

)
, log+

(
τ0

γε

)})
inner iterations; and hence evaluations of the η–cocoercive operator F2.

As a consequence, Algorithm 5 provides a, b, x, y ∈ H and εb ≥ 0 satisfying (85) after performing no
more than ke; outer × kinner inner iterations.

Proof. The proof follows the same outline of Theorem 4.3’s proof.
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4.3 Proof of Corollary 4.1

We start this subsection by showing that Algorithm 4 is a special instance of Algorithm 2 for solving
the strongly monotone inclusion (70).

Proposition 4.5. Let {zj}, {z′j} and {z̃j} be generated by Algorithm 4 and let the operator B be as
in (68). Define,

vj :=
zj−1 − zj

γ
, εj :=

‖z′j−1 − z̃j‖2

4η
, ∀j ≥ 1. (86)

Then, for all j ≥ 1,

vj ∈ (1/γ)(z̃j − z̊) + C(z̃j) + F1(z̃j) + F
εj

2 (z̃j) ⊂ (1/γ)(z̃j − z̊) +B εj (z̃j), (87)

‖γvj + z̃j − zj−1‖2 + 2γεj ≤ σ2‖z̃j − zj−1‖2, (88)

zj = zj−1 − γvj . (89)

As a consequence, Algorithm 4 is a special instance of Algorithm 2 with λj ≡ γ for solving (20) with
S(·) := (1/γ)(· − z̊).

Proof. Note that the first identity in (72) gives

zj−1 − z̃j
γ

− F1(z′j−1) ∈ (1/γ)(z̃j − z̊) + C(z̃j) + F2(z′j−1).

Adding F1(z̃j) in both sides of the above identity and using the second and first identities in (72)
and (86), respectively, we find

vj =
zj−1 − zj

γ
∈ (1/γ)(z̃j − z̊) + C(z̃j) + F1(z̃j) + F2(z′j−1),

which, in turn, combined with Lemma A.2 and the definition of εj in (86) proves the first inclusion
in (87). Note now that the second inclusion in (87) is a direct consequence of (68) and Proposition
2.1(b). Moreover, (89) is a direct consequence of the first identity in (86).

To prove (88), note that from (86), the second identity in (72), (71) and (67) we have

‖γvj + z̃j − zj−1‖2 + 2γεj = γ2‖F1(z̃j)− F1(z′j−1)‖2 +
γ‖z′j−1 − z̃j‖2

2η

≤
(
γ2L2 +

γ

2η

)
‖z′j−1 − z̃j‖2

≤ σ2‖zj−1 − z̃j‖2,

which is exactly the desired inequality, where we also used the facts that z′j−1 = PΩ(zj−1), z̃j ∈
D(C) ⊂ Ω and that PΩ is nonexpansive. The last statement of the proposition follows from (87)–
(89), (70), (21) and (22).

Proof of Corollary 4.1. Let, for all j ≥ 1, {vj} and {εj} be defined in (86). Using the last
statement in Proposition 4.5 and Proposition 2.5 with µ := 1/γ and λ := γ we find

‖γvj‖2 + 2γεj ≤
((1 + σ)2 + σ2)(1− α)j−1‖z̊ − z∗γ‖2

1− σ2
, (90)
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where z∗γ := (S +B)−1(0) with S(·) := (1/γ)(· − z̊), i.e., z∗γ = (γB + I)−1(̊z). Now, using (90), (86)
and Lemma A.1 we obtain

‖zj−1 − zj‖2 +
γ‖z′j−1 − z̃j‖2

2η
≤

((1 + σ)2 + σ2)(1− α)j−1d 2
z̊, b

1− σ2
,

which in turn combined with (73), after some direct calculations, gives (74).

5 Numerical experiments

In this section, we perform simple numerical experiments on the family of (convex) constrained
quadratic programming problems

minimize
1

2
〈Qz, z〉+ 〈e, z〉

subject to Kz = 0, z ∈ X,
(91)

whereQ ∈ Rn×n is symmetric and either positive definite or positive semidefinite, e = (1, . . . , 1) ∈ Rn,
K = (kj) ∈ R1×n, with kj ∈ {−1,+1} for all j = 1, . . . , n, and X = [0, 10]n is a box in Rn. Problem
(91) appears, for instance, in support vector machine classifiers (see, e.g., [13, 16]). Here, 〈·, ·〉 denotes
the usual inner product in Rn. A vector z∗ ∈ Rn is a solution of (91), if and only if it solves the MIP

0 ∈ NM(z) +NX(z) +Qz + e, (92)

whereM := N (K) := {z ∈ Rn |Kz = 0}. Problem (92) is clearly a special instance of (66), in which

A(·) := NM(·), C(·) := NX(·), F1(·) := 0 and F2(·) := Q(·) + e. (93)

Moreover, in this case, JγA = PM and JγC = PX .
In what follows, we analyze the numerical performance of the following three algorithms for

solving the MIP (92):

• The Douglas-Rachford-Tseng’s F-B splitting method (Algorithm 5 (ALGO 5)) proposed in
Section 4. We set σ = 0.99, θ = 0.01, the operators A, C, F1 and F2 as in (93), and Ω = Rn,
L = 0 and η = 1/(sup‖z‖≤1 ‖Qz‖) (which clearly satisfy the conditions (E1)–(E5) of Section

4). We also have set γ = 2ησ2 (see (71)) and τ0 = ‖z0 − PX(z0) +Qz0‖3 + 1.

• The relaxed forward-Douglas-Rachford splitting (rFDRS) from [16, Algorithm 1] (originally
proposed in [6]). We set (in the notation of [16]) βV = 1/(sup‖z‖≤1 ‖(PM ◦Q ◦ PM)z‖), γ =
1.99βV and λk ≡ 1.

• The three-operator splitting scheme (TOS) from [17, Algorithm 1]. We set (in the notation of
[17]) β = 1/(sup‖z‖≤1 ‖Qz‖), γ = 1.99β and λk ≡ 1.

For each dimension n ∈ {100, 500, 1000, 2000, 6000}, we analyzed the performance of each the above
mentioned algorithms on a set of 100 randomly generated instances of (91) with Q = UDUT , where
U is a (randomly) generated orthogonal matrix U = orth(randn(n)) and D = diag(d1, . . . , dn) is a
diagonal matrix and the real numbers d1, . . . , dn are randomly generated (di > 0 for all i = 1, . . . , n
when Q is positive definite and 0 < #{i ∈ {1, . . . , n} | di = 0} < n when Q is positive semidefinite).
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All the experiments were performed in MATLAB R2011a on a laptop equipped with an Intel
i7 7500U CPU, 8 GB DDR4 RAM and a nVidia GeForce 940MX. In order to allow performance
comparison of ALGO 5, rFDRS and TOS, we adopted the stopping criterion

‖zk − zk−1‖ ≤ 10−6, (94)

for which we considered only extragradient steps when analyzing the performance of
ALGO 5. The corresponding experiments are displayed in Tables 1 (Q positive definite), 2 (Table
1 continued), 3 (Q positive semidefinite) and 4 (Table 3 continued).

Now note that by using (76) and (77), we conclude that (94) is equivalent to

γ‖ak + bk‖ = ‖xk − yk‖ ≤ 10−6. (95)

Motivated by the above observation, we analyzed the performance of ALGO 5 on solving (91) while
using the stopping criterion (95), for which both extragradient and null steps are considered. The
corresponding results are displayed on Tables 5 and 6.

Finally, we mention that (92) consists of a three-operator MIP. For future research, we intend
to study the numerical performance of Algorithm 5 in (true) four-operator MIPs. One possibility
would be to consider structured minimization problems of the form

min
x∈H

{
f(x) + g(x) + ϕ(K̃x) + h(x)

}
(96)

where f, g, ϕ : H → (−∞,+∞] are proper closed convex functions, h : H → R is convex and
differentiable and K̃ : H → H is a bounded linear operator. Under certain qualification conditions,
(96) is equivalent to the MIP

0 ∈ ∂f(x) + ∂g(x) + K̃∗∂ϕ(K̃x) +∇h(x)

which, in turn, is clearly equivalent to

0 ∈ ∂f(x) + ∂g(x) + K̃∗y +∇h(x)

0 ∈ ∂ϕ∗(y)− K̃x,
(97)

where ϕ∗ denotes the Fenchel-conjugate of ϕ. We now note that (97) is a special instance of (66)
where, by letting z = (x, y),

A(z) := ∂f(x)× ∂ϕ∗(y), C(z) := ∂g(x)× {0},

F1(z) := (K̃∗y,−K̃x), F2(z) := (∇h(x), 0).
(98)

Hence, under mild conditions on (96) (specially regarding conditions (E1)–(E5) on Section 4), Algo-
rithm 5 is potentially applicable to solve (97) (i.e., (96)).

We also mention that while the variational problem (96) appears in different applications in
Imaging and related fields, the primal-dual formulation (97) has been widely used in nowadays
research in designing efficient primal-dual methods for, in particular, solving (96) (see, e.g., [3, 5, 12,
14, 15]).
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Table 1: Running time (in seconds) and number of iterations performed by ALGO 5, rFDRS and
TOS to reach the stopping criterion (94) on a set of 100 randomly generated instances of (91) with
the matrix Q positive definite, with n ∈ {100, 500, 1000, 2000, 6000}. We can see that either ALGO
5 or TOS outperform the rFDRS in terms of (mean) running time, while ALGO 5 shows a slightly
superior performance on large dimensions. Moreover, – see Table 2 – when compared to TOS, ALGO
5 provides a much more accurate approximate solution to the (unique) solution of (91).

Time Iterations

n Algorithm Min Max Mean Min Max Mean

ALGO 5 0.0014 0.0132 0.0017 12 21 15.21
100 rFDRS 0.0014 0.0170 0.0018 6 15 8.31

TOS 0.0010 0.0097 0.0012 7 16 9.37

ALGO 5 0.0302 0.0451 0.0334 15 22 17.24
500 rFDRS 0.0517 0.0843 0.0626 8 15 10.26

TOS 0.0288 0.0434 0.0340 9 16 11.28

ALGO 5 0.3177 0.4190 0.3540 14 20 17.14
1000 rFDRS 0.4768 0.7304 0.5771 9 14 10.84

TOS 0.3103 0.4504 0.3760 10 15 11.86

ALGO 5 3.6411 3.9397 3.7648 19 21 19.80
2000 rFDRS 5.0062 5.5711 5.2795 11 12 11.70

TOS 3.6632 4.0798 3.7703 12 13 12.70

ALGO 5 94.7551 121.1123 101.6311 18 20 18.81
6000 rFDRS 107.3812 125.9018 115.0631 11 13 12.20

TOS 94.7152 123.6527 104.0517 12 15 13.18
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Table 2: Table 1 continued. Here (1) we show the number of extragradient and null steps performed
by ALGO 5 while reaching the stopping criterion (94); (2) we evaluate the absolute error between
the provided iterate zk and the unique solution z∗ of (91). We can see that, when compared to TOS,
both ALGO 5 and rFDRS provide a much more accurate approximate solution.

Extragradient steps Null steps ||zk − z∗||

n Algorithm Min Max Mean Min Max Mean Min Max Mean

ALGO 5 8 13 10.24 3 4 3.58 0.0033 0.7829 0.2714
100 rFDRS 0.0014 2.0768 0.3401

TOS 2.8702 5.7959 4.2820

ALGO 5 9 14 11.64 3 5 4.30 0.0009 1.0619 0.2004
500 rFDRS 0.0029 1.0275 0.3336

TOS 5.7643 10.0704 7.8648

ALGO 5 10 16 12.55 4 5 4.53 0.0036 0.5649 0.1798
1000 rFDRS 0.0008 0.9373 0.2763

TOS 7.9120 13.3011 10.5356

ALGO 5 11 19 13.30 4 6 4.70 0.0766 0.5499 0.2795
2000 rFDRS 0.1004 0.3433 0.2278

TOS 13.3085 16.2610 14.4403

ALGO 5 13 18 15.20 4 7 5.20 0.0437 0.6245 0.2333
6000 rFDRS 0.1626 1.0021 0.4523

TOS 19.9698 24.4657 22.9383
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Table 3: Running time (in seconds) and number of iterations performed by ALGO 5, rFDRS and
TOS to reach the stopping criterion (94) on a set of 100 randomly generated instances of (91) with
the matrix Q positive semidefinite, with n ∈ {100, 500, 1000, 2000, 6000}. Similarly to the case of
Q positive semidefinite, we can see that either ALGO 5 or TOS outperform the rFDRS in terms of
(mean) running time, while ALGO 5 shows a slightly superior performance on large dimensions.

Time Iterations

n Algorithm Min Max Mean Min Max Mean

ALGO 5 0.0013 0.0130 0.0018 11 20 15.31
100 rFDRS 0.0013 0.0119 0.0017 6 18 10.16

TOS 0.0008 0.0056 0.0011 7 19 11.19

ALGO 5 0.0249 0.0409 0.0283 15 24 17.99
500 rFDRS 0.0466 0.0895 0.0563 9 18 12.13

TOS 0.0236 0.0432 0.0291 10 19 13.13

ALGO 5 0.3013 0.4061 0.3229 17 24 19.88
1000 rFDRS 0.4604 0.6780 0.5443 10 16 13.18

TOS 0.2910 0.4354 0.3348 11 17 14.18

ALGO 5 3.6649 4.0284 3.7989 18 25 21.75
2000 rFDRS 5.0060 5.3364 5.1248 13 15 14.20

TOS 3.6933 4.0949 3.8607 14 16 15.27

ALGO 5 101.0412 111.8105 107.9423 20 23 21.80
6000 rFDRS 115.9101 146.0409 130.2121 13 16 15.01

TOS 105.1307 116.9615 110.3801 14 17 16.05

Table 4: Table 3 continued. Here we provide the number of extragradient and null steps performed
by ALGO 5 while reaching the stopping criterion (94).

Extragradient steps Null steps

n Algorithm Min Max Mean Min Max Mean

100 ALGO 5 8 19 12.23 3 5 3.77
500 ALGO 5 11 21 14.14 4 5 4.31
1000 ALGO 5 12 20 15.42 4 5 4.54
2000 ALGO 5 14 20 15.95 4 6 4.70
6000 ALGO 5 14 21 16.55 4 7 5.35
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Table 5: Running time (in seconds) and number of iterations performed by ALGO 5 to reach the
stopping criterion (95) on a set of 100 randomly generated instances of (91) with the matrix Q
positive definite, with n ∈ {100, 500, 1000, 2000, 6000}. We can see a slight improvement when
compared to the results obtained via the stopping criterion (94) – cf. Table 1.

Time Iterations

n Min Max Mean Min Max Mean

100 0.0012 0.0121 0.0016 11 17 13.66
500 0.0251 0.0492 0.0314 14 19 16.10
1000 0.3000 0.3539 0.3201 15 20 17.32
2000 3.5538 3.7583 3.5914 16 20 17.72
6000 98.8411 102.9118 99.7147 18 21 19.20

Table 6: Table 5 continued. Here, we show the number of extragradient and null steps performed
by ALGO 5 while reaching the stopping criterion (95) and evaluate the absolute error between the
provided iterate zk and the unique solution z∗ of (91) – cf. Table 2.

Extragradient steps Null steps Absolute Error

n Min Max Mean Min Max Mean Min Max Mean

100 8 16 10.49 3 4 3.48 0.0007 0.6949 0.2354
500 9 15 11.82 3 5 4.22 0.0007 0.7109 0.2134
1000 10 16 12.61 4 5 4.42 0.0011 0.6628 0.1989
2000 12 16 13.46 4 6 4.64 0.0061 0.4537 0.1596
6000 13 17 14.50 4 6 4.80 0.0557 0.3666 0.2236

A Auxiliary results

Lemma A.1. ([1, Lemma 3.1]) Let z∗γ := (γB + I)−1(̊z) be the (unique) solution of (70). Then,

‖z̊ − z∗γ‖ ≤ ‖z̊ − x∗‖ ∀x∗ ∈ B−1(0). (99)

Lemma A.2. ([42, Lemma 2.2]) Let F : H → H be η–cocoercive, for some η > 0, and let z′, z̃ ∈ H.
Then,

F (z′) ∈ F ε(z̃) where ε :=
‖z′ − z̃‖2

4η
.
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