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1 Introduction

We consider two-block structured linearly constrained convex optimization problems. Problems of this

type appear in different branches of applied mathematics, including machine learning, imaging and in-

verse problems. One of the most popular methods in nowadays research for finding approximate solutions

of such problems is the alternating direction method of multipliers (ADMM) [1–3], for which many vari-

ants have been proposed and studied in the literature; see, e.g., [4–19].

In this paper, we obtain global ergodic and pointwise convergence rates for a variable metric proximal

ADMM, which encompasses several recently studied ADMM variants. This variable metric version of

the ADMM allows the use of variable metrics in both proximal and penalty terms, induced by self adjoint

semipositive and positive definite linear operators, respectively.

Our study is done by first establishing global ergodic and pointwise convergence rates for a variable

metric hybrid proximal extragradient (HPE) framework for finding zeroes of maximal monotone opera-

tors, and then by showing that the variable metric proximal ADMM can be seen as an instance of the latter

framework. To the best of our knowledge, this is the first time that global pointwise (resp. pointwise and

ergodic) convergence rates are obtained for the variable metric proximal ADMM (resp. variable metric

HPE framework). Besides, our analysis allows degenerate metrics (induced by positive semidefinite lin-

ear operators) which makes the variable metric proximal ADMM (and variable metric HPE framework)

more suitable for applications.

This paper is organized as follows. Section 2 contains four subsections. Subsection 2.1 contains our

notation and basic results. Subsection 2.2 presents the problem of interest in this paper as well as the vari-
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able metric proximal ADMM and discusses some related works. The third and fourth subsections are de-

voted to discuss the hybrid proximal extragradient frameworks and present the main contributions of this

paper, respectively. Section 3 introduces the variable metric HPE framework and presents its nonasymp-

totic pointwise and ergodic convergence rates, whose proofs are postponed to Appendix A. Section 4

contains two subsections. In Subsection 4.1, we formally state the variable metric proximal ADMM (5)–

(7) and present its nonasymptotic pointwise and ergodic convergence rates. In Subsection 4.2, we prove

the convergence rates of the variable metric proximal ADMM by viewing it as an instance of the variable

metric HPE framework.

2 Preliminaries and the Main Contributions of this Paper

This section contains four subsections. The first subsection contains our notation and basic results. The

second one presents the problem of interest in this paper as well as the variable metric proximal ADMM

and discusses some related works. The third and fourth subsections are devoted to discuss the hybrid

proximal extragradient frameworks and present the main contributions of this paper, respectively.

2.1 Basic Results and Notation

Let Z be a finite-dimensional real vector space endowed with inner product 〈·, ·〉Z and induced norm

‖ · ‖Z :=
√
〈·, ·〉Z . Denote by M Z

+ (resp. M Z
++) the space of selfadjoint positive semidefinite (resp.

definite) linear operators on Z . Each element M ∈M Z
+ induces a symmetric bilinear form 〈M(·), ·〉Z

on Z ×Z and a seminorm ‖ · ‖Z ,M :=
√
〈M(·), ·〉Z on Z . Since 〈M(·), ·〉Z is symmetric and bilinear,

the following hold, for all z,z′ ∈Z ,

〈z,Mz′〉 ≤ 1
2
‖z‖2

Z ,M +
1
2
‖z′‖2

Z ,M, (1)

‖z+ z′‖2
Z ,M ≤ 2

(
‖z‖2

Z ,M +‖z′‖2
Z ,M

)
. (2)
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On the other hand, each element M ∈M Z
++ induces an inner product 〈M(·), ·〉Z and a associated norm

‖ · ‖Z ,M :=
√
〈M(·), ·〉Z on Z , etc. Let the partial order � on M Z

+ be defined by

M � N ⇐⇒ N−M ∈M Z
+ .

Next proposition, whose proof is omitted, will be useful in this paper.

Proposition 2.1 Let M,N ∈M Z
+ and c > 0. If M � cN, then

‖ · ‖Z ,M ≤
√

c‖ · ‖Z ,N and ‖M(·)‖Z ≤
√

c‖N‖‖ · ‖Z ,M. (3)

A set-valued mapping T : Z ⇒ Z is said to be monotone iff

〈v− v′,z− z′〉 ≥ 0 ∀ z,z′ ∈Z ,∀ v ∈ T (z),∀ v′ ∈ T (z′).

Moreover, T is maximal monotone iff it is monotone and, additionally, if S is a monotone operator such

that T (z) ⊂ S(z) for every z ∈ Z , then T = S. The inverse operator T−1 : Z ⇒ Z of T is given by

T−1(v) := {z ∈Z : v ∈ T (z)}. Given ε ≥ 0, the ε-enlargement T ε : Z ⇒ Z of a set-valued mapping

T : Z ⇒ Z is defined as

T ε(z) := {v ∈Z : 〈v− v′,z− z′〉 ≥ −ε, ∀z′ ∈Z ,∀ v′ ∈ T (z′)} ∀z ∈Z .

Recall that the ε-subdifferential of a convex function f : Z → R is defined by

∂ε f (z) := {v ∈Z : f (z′)≥ f (z)+ 〈v,z′− z〉− ε ∀z′ ∈Z }

for every z ∈Z . When ε = 0, then ∂0 f (z) is denoted by ∂ f (z) and is called the subdifferential of f at z.

If f is a proper, closed and convex function, then ∂ f is maximal monotone [37].

The following result is a particular case of the weak transportation formula in [38, Theorem 2.3]

combined with [39, Proposition 2(i)].
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Theorem 2.1 Suppose T : Z ⇒ Z is maximal monotone and let z̃i,ri ∈Z , for i = 1, . . . ,k, be such that

ri ∈ T (z̃i) and define

z̃a
k :=

1
k

k

∑
i=1

z̃i , ra
k :=

1
k

k

∑
i=1

ri , ε
a
k :=

1
k

k

∑
i=1
〈ri, z̃i− z̃a

k〉.

Then, the following hold:

(a) εa
k ≥ 0 and ra

k ∈ T εa
k (z̃a

k);

(b) if, in addition, T = ∂ f for some proper, closed and convex function f , then ra
k ∈ ∂εa

k
f (z̃a

k).

2.2 Variable Metric Proximal Alternating Direction Method of Multipliers and Related Works

Consider the linearly constrained convex optimization problem

min { f (x)+g(y) : Ax+By = b}, (4)

where f : X → R := R∪ {+∞} and g : Y → R are extended-real-valued proper, closed and convex

functions, X ,Y and Γ are finite-dimensional real vector spaces, A : X → Γ and B : Y → Γ are linear

operators, and b ∈ Γ .

In this paper, we obtain global ergodic and pointwise convergence rates for a variable metric proximal

ADMM which can be described as follows: given an initial point (x0,y0,γ0) ∈X ×Y ×Γ and a stepsize

θ > 0, compute a sequence {(xk,yk,γk)}, recursively, by

xk ∈ argmin
x∈X

{
f (x)−〈γk−1,Ax〉X +

1
2
‖Ax+Byk−1−b‖2

Γ ,Hk
+

1
2
‖x− xk−1‖2

X ,Rk

}
, (5)

yk ∈ argmin
y∈Y

{
g(y)−〈γk−1,By〉Y +

1
2
‖Axk +By−b‖2

Γ ,Hk
+

1
2
‖y− yk−1‖2

Y ,Sk

}
, (6)

γk = γk−1−θHk (Axk +Byk−b) , (7)

where Hk, Rk and Sk are selfadjoint linear operators such that Hk is positive definite and Rk and Sk are

positive semidefinite, and ‖ · ‖2
Γ ,Hk

:= 〈Hk(·), ·〉Γ , etc.
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Remark 2.1 (i) An usual choice for the linear operator Hk is βkI, where βk > 0 plays the role of a penalty

parameter.

(ii) The proximal terms in (5) and (6) defined by Rk and Sk, respectively, may have different roles.

Namely, they can be used to regularize the subproblems in (5) and (6), making them strongly convex

(when Rk and Sk are positive definite operators) and hence admitting unique solutions. Moreover, by a

careful choice of these operators, subproblems (5) and (6) may become much easier to solve or even have

closed-form solutions; for instance, similarly to [18], if Hk = βkI, then the choices Rk = αkI− βkA∗A

with αk ≥ βk‖A∗A‖ and Sk = skI−βkB∗B with sk ≥ βk‖B∗B‖ eliminate the presence of quadratic forms

associated to A∗A and B∗B in (5) and (6), respectively, and hence these subproblems become proximal

type.

(iii) The variable metric proximal ADMM (5)–(7) can be seen as a class of ADMM variants, depend-

ing on the choices of the linear operators Hk, Rk and Sk. Namely,

(1) by taking Hk = β I with β > 0, Rk = 0, Sk = 0 and θ = 1, it reduces to the standard ADMM, whose

ergodic convergence rate was established in [20] by showing that it is a special instance of the HPE

framework [21];

(2) the ADMM in [15] (related to the Uzawa method [22]) consists of taking Hk = β I with β > 0, Rk

constant, Sk = 0 and θ = 1. Pointwise and ergodic convergence rates for this variant were obtained

in [15, 23];

(3) the AD-PMM proposed in [18] for solving (4) with B =−I and b = 0 corresponds to taking Hk = β I

with β > 0, Rk and Sk constant, and θ = 1. Pointwise and ergodic convergence rates for the AD-PMM

were established in [18]. It is worth pointing out that the well-known Chambolle-Pock primal-dual

algorithm proposed in [6] is a special case of AD-PMM (see [18, Proposition 3.1]);

(4) the proximal ADMM consists of choosing Hk = β I with β > 0, Rk and Sk constant. This method has

been studied by many authors; see, for instance [8, 24–26], where convergence rates are analyzed;
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(5) by choosing Hk = βkI, Rk = 0 and Sk = 0, it corresponds to a variable penalty parameter ADMM, for

which an asymptotic convergence analysis was considered in [27–29];

(6) the variable metric proximal ADMM (5)–(7) with Rk and Sk positive definite is closely related to the

method studied in [14,30] for solving (point-to-point) continuous and monotone variational inequali-

ties (in the setting of problem (4), it demands f and g to be continuously differentiable). We mention

that, contrary to our analysis, the latter references consider the stepsize θ = 1 and do not present

nonasymptotic convergence rates;

(7) by letting Hk = β I, β > 0, and θ = 1, the resulting method becomes similar to Algorithm 7 in [31] with

h = 0, where a composite structure of f is considered and ergodic convergence rates were obtained

under the additional conditions that B = I in (4) and the dual solution set of (4) be bounded;

(8) the instance of the variable metric proximal ADMM for solving (4) with B =−I and b = 0 consisting

of choosing θ = 1, Hk = βkI, Rk = τ
−1
k I− βkA∗A with τkβk‖A∗A‖ ≤ 1, and Sk = 0 can be seen as

a variant of the Chambolle-Pock primal-dual algorithm [6, Algorithm 1] in which the parameters τk

and βk can vary along the iterations. The proof of this fact is similar to [18, Proposition 3.1], where it

is proved that [6, Algorithm 1] is an instance of the AD-PMM (see the third comment above). Other

variants of the Chambolle-Pock algorithm in which the parameters can vary along the iterations can

be found, for instance, in [6, 19], where the authors showed that, under some additional assumptions,

careful choices of these parameters lead to accelerated versions of the method. However, the assump-

tion on the variable metrics considered here (see (10)) seems to be quite restrictive in order to include

the aforementioned accelerated schemes in our setting.

2.3 Variable Metric Hybrid Proximal Extragradient Frameworks

The variable metric HPE framework proposed in this work is a generalization of a special instance of

the HPE framework [21] allowing variations in the metric (induced by positive semidefinite linear opera-
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tors) along the iterations. The iteration complexity of the HPE framework was first analyzed in [32] and

subsequently applied to the study of several methods; see, for example, [20, 33–35]. An inexact variable

metric proximal point type method was proposed in [36] but, contrary to our variable metric HPE frame-

work, it demands the metrics to be nondegenerate (induced by invertible linear operators). Moreover, the

convergence analysis presented in [36] does not include nonasymptotic convergence rates.

2.4 The Main Contributions of this Paper

We obtain an O(1/k) global convergence rate for an ergodic sequence associated to the variable metric

proximal ADMM (5)–(7) with θ ∈]0,(
√

5+1)/2[, which provides, for given tolerances ρ,ε > 0, triples

(x,y, γ̃), (rx,ry,rγ) and scalars εx,εy ≥ 0 such that

rx ∈ ∂εx f (x)−A∗γ̃, ry ∈ ∂εyg(y)−B∗γ̃, rγ = Ax+By−b,√
‖rx‖2

X +‖ry‖2
Y +‖rγ‖2

Γ
} ≤ ρ, εx + εy ≤ ε,

(8)

in at most O
(
max

{
dd0/ρ e ,

⌈
d2

0/ε
⌉})

iterations, where d0 is a scalar measuring the quality of the initial

point. Moreover, we establish an O(1/
√

k) pointwise convergence rate in which the inclusions in (8)

are strengthened, in the sense that εx = εy = 0, and the bound on the number of iterations becomes

O
(⌈

d2
0/ρ2

⌉)
.

3 A Variable Metric HPE Framework

Consider the monotone inclusion problem

0 ∈ T (z), (9)

where Z is a finite-dimensional inner product real vector space and T : Z ⇒ Z is maximal monotone.

Assume that the solution set T−1(0) of (9) is nonempty.

In this section, we propose a variable metric hybrid proximal extragradient (HPE) framework for

solving (9) and analyze its nonasymptotic convergence rates. The proposed framework finds its roots
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in the hybrid proximal extragradient (HPE) framework of [21], for which the iteration complexity was

recently obtained in [32]. Our main results on pointwise and ergodic convergence rates for the variable

metric HPE framework are presented in Theorems 3.1 and 3.2, respectively. In Section 4, we will show

how the variable metric HPE framework can be used to analyze the nonasymptotic convergence of a

variable metric proximal ADMM for solving linearly constrained convex optimization problems. This

technique was first considered in [20] and subsequently in [12, 25].

The metrics used in the variable metric HPE are defined by a nonnull sequence {Mk}k≥0 ⊂M Z
+

satisfying the following condition:

(C1) there exist 0≤CS < ∞ and {ck} ⊂ [0,∞[ such that

k

∑
i=0

ci ≤CS,
1

1+ ck
Mk �Mk+1 � (1+ ck)Mk ∀ k ≥ 0. (10)

Remark 3.1 The above assumption (which is similar to condition (1.4) in [36]) is satisfied, for instance,

if the sequence {Mk}k≥0 is taken to be constant and ck ≡ 0, in which case one can choose CS = 0.

It is easy to check that condition C1 implies the existence of a constant CP > 0 such that {ck}k≥0 and

{Mk}k≥0 satisfy

k

∏
i=0

(1+ ci)≤CP and M j �CPMk, ∀ j,k ≥ 0. (11)

We now state the variable metric HPE framework.

Variable metric HPE framework

(0) Let z0 ∈Z , η0 ∈ R+, and σ ∈ [0,1[ be given. Let {Mk}k≥0 ⊂M Z
+ be a nonnull sequence satisfying

condition C1, and set k = 1.

(1) Find (zk, z̃k,ηk) ∈Z ×Z ×R+ such that

rk := Mk(zk−1− zk) ∈ T (z̃k), (12)

‖zk− z̃k‖2
Z ,Mk

+ηk ≤ σ‖zk−1− z̃k‖2
Z ,Mk

+ηk−1. (13)
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(2) Set k← k+1 and go to step 1.

Remark 3.2 (i) Letting Mk ≡ I and ηk ≡ 0 in (12) and (13), respectively, we find that the sequences {zk},

{z̃k} and {rk} satisfy

rk ∈ T (z̃k), ‖rk + z̃k− zk−1‖2
Z ≤ σ‖z̃k− zk−1‖2

Z ,

zk = zk−1− rk,

which is to say that in this case the variable metric HPE framework reduces to a special case of the HPE

framework (see pp. 2763 in [32]) with λk ≡ 1 (in the notation of [32]) or, in other words, the variable

metric HPE framework is a generalization of a special case of the HPE framework in which variations in

the metric are allowed along the iterations.

(ii) If the sequence {Mk}k≥0 is taken to be constant, then the variable metric HPE framework reduces

to a special case of the NE-HPE framework studied in [25].

(iii) We also mention that a variable metric inexact proximal point method with relative error tol-

erance was proposed in [36] but, contrary to our framework, the method of [36] demands that every

operator Mk must be positive definite. Moreover, the convergence analysis presented in [36] does not in-

clude nonasymptotic convergence rates. The fact that the variable metric HPE framework allows positive

semidefinite operators Mk will be crucial for viewing the variable metric proximal ADMM of Section 4

as a special instance of it.

In the remaining part of this section, we present pointwise and ergodic convergence rates for the

variable metric HPE framework. These results will depend on the quantity:

d0 := inf{‖z∗− z0‖Z ,M0 : z∗ ∈ T−1(0)}, (14)

which measures the “quality” of the initial guess z0 ∈ Z in the variable metric HPE framework with

respect to the solution set T−1(0).
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For technical reasons and for the convenience of the reader, the proofs of the next two theorems will

be given in Appendix A. We mention that these proofs follow the same lines (although they are far from

being a direct consequence) of [25].

Theorem 3.1 (Pointwise convergence rate of the variable metric HPE framework) Let {z̃k} and {rk}

be generated by the variable metric HPE framework. Then, for every k ≥ 1, rk ∈ T (z̃k) and there exists

i≤ k such that

‖ri‖Z ≤

([
2(1+σ)CP(d2

0 +η0)+2(1−σ)η0
]
CP‖M0‖

(1−σ)k

)1/2

, (15)

where M0, CP and d0 are as in step 0 of the variable metric HPE framework, (11) and (14), respectively.

Remark 3.3 (i) If ck ≡ 0 in condition C1 (in which case Mk ≡ M0), then the upper bound in (15) with

CS = 0 and CP = 1 reduces essentially to a special case of [25, Theorem 3.3(a)] (with λk ≡ 1,εk ≡ 0 and

d(w)z(z′) = (1/2)‖z− z′‖2). Additionally, if M0 = I and η0 = 0, then the bound (15) becomes similar to

the corresponding one in [32, Theorem 4.4(a)].

(ii) For a given tolerance ρ > 0, Theorem 3.1 ensures that there exists an index

i = O

(⌈
C2

p‖M0‖(d2
0 +η0)

ρ2

⌉)
(16)

such that

ri ∈ T (z̃i) and ‖ri‖Z ≤ ρ. (17)

In this case, z̃i ∈ Z can be interpreted as a ρ-approximate solution of (9) with residual ri ∈ Z (see,

e.g., [32] for the definition of a related concept).

Before presenting the ergodic convergence of the variable metric HPE framework, let us define the

ergodic sequences {z̃a
k}, {ra

k} and {εa
k } associated to {z̃k} and {rk} as follows:

z̃a
k :=

1
k

k

∑
i=1

z̃i, ra
k :=

1
k

k

∑
i=1

ri, ε
a
k :=

1
k

k

∑
i=1
〈ri, z̃i− z̃a

k〉. (18)
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Theorem 3.2 (Ergodic convergence rate of the variable metric HPE framework) Let {z̃a
k}, {ra

k} and

{εa
k } be given as in (18). Let also M0, CS, CP and d0 be as in step 0 of the variable metric HPE framework,

(10), (11) and (14), respectively. Then, for every k ≥ 1, we have ra
k ∈ T εa

k (z̃a
k) and

‖ra
k‖Z ≤

E
√
(d2

0 +η0)‖M0‖
k

, (19)

0≤ ε
a
k ≤

Ê (d2
0 +η0)

k
, (20)

where E :=
(
(1+CS)(1+

√
CP)CP +CSC2

P
)

and Ê := 2CP(1+CS) [σCP/(1−σ)+2(1+CP)].

Remark 3.4 (i) Similarly to Remark 3.3(i), Theorem 3.2 is also related to [25, Theorem 3.4] and [32,

Theorem 4.7].

(ii) For given tolerances ρ,ε > 0, Theorem 3.2 ensures that in at most

O

(1+CS)C2
p max

‖M0‖
√

d2
0 +η0

ρ
,

d2
0 +η0

ε



 (21)

iterations there hold

ra
k ∈ T εa

k (z̃a
k), ‖ra

k‖Z ≤ ρ and ε
a
k ≤ ε. (22)

Note that (21), in terms of the dependence on ρ > 0, is better than the bound in (16) by a factor of O (ρ)

but, on the other hand, since εa
k can be strictly positive, the inclusion in (22) is potentially weaker than

the one in (17).

4 A Variable Metric Proximal Alternating Direction Method of Multipliers

This section contains two subsections. In Subsection 4.1, we formally state the variable metric proximal

ADMM (5)–(7) and present its nonasymptotic convergence rates. The main results are Theorems 4.1 and

4.2, in which pointwise and ergodic convergence rates are obtained, respectively. The proofs of the latter

theorems are discussed separately in Subsection 4.2 by viewing the method as an instance of the variable

metric HPE framework and by applying the results of Section 3.
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4.1 Variable metric proximal ADMM and its convergence rates

Let X , Y and Γ be finite-dimensional real inner product vector spaces. Consider the convex optimization

problem (4), i.e.,

min { f (x)+g(y) : Ax+By = b}, (23)

where the following assumptions are assumed to hold:

(O1) f : X → R and g : Y → R are proper, closed and convex functions;

(O2) A : X → Γ and B : Y → Γ are linear operators and b ∈ Γ ;

(O3) the solution set of (23) is nonempty.

Under the above assumptions and standard constraint qualifications (see, e.g., [40, Corollaries 28.2.2 and

28.3.1]), a vector (x∗,y∗) ∈X ×Y is a solution of (23) iff there exists a (Lagrange multiplier) γ∗ ∈ Γ

such that (x∗,y∗,γ∗) is a solution of

0 ∈ ∂ f (x)−A∗γ, 0 ∈ ∂g(y)−B∗γ, Ax+By−b = 0. (24)

Motivated by the above statement, we define

Ω
∗ := {(x∗,y∗,γ∗) ∈X ×Y ×Γ : (x∗,y∗,γ∗) is a solution of (24)} , (25)

which is assumed to be nonempty.

The convergence rates of the variable metric proximal ADMM (stated below) for solving (23) will be

obtained by viewing the optimization problem (23) as the monotone inclusion (24), which is associated

to a certain maximal monotone operator (see (46)) in X ×Y ×Γ , and by applying the results of the

previous section.

In order to state the variable metric proximal ADMM, we consider sequences {Rk}k≥0 ⊂M X
+ ,

{Sk}k≥0 ⊂M Y
+ and {Hk}k≥0 ⊂M Γ

++ satisfying the following condition:
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(C2) there exist 0≤CS < ∞ and {ck}k≥0 ⊂ [0,1] such that {ck}k≥0, {Qk,1 := Rk}k≥0, {Qk,2 := Sk}k≥0 and

{Qk,3 := Hk}k≥0 satisfy

k

∑
i=0

ci ≤CS,
1

1+ ck
Qk, j � Qk+1, j � (1+ ck)Qk, j ∀k ≥ 0, j = 1,2,3. (26)

Analogously to condition (11), condition C2 implies the existence of CP > 0 such that {ck}k≥0 satisfies

k

∏
i=0

(1+ ci)≤CP ∀k ≥ 0. (27)

We mention that condition C2 is similar to Condition C in [14] but, contrary to the latter reference, none

of the operators Rk and Sk is assumed to be positive definite.

Variable metric proximal ADMM

(0) Let (x0,y0,γ0) ∈X ×Y ×Γ and θ ∈]0,(
√

5+1)/2[ be given. Consider sequences {Rk}k≥0 ⊂M X
+ ,

{Sk}k≥0 ⊂M Y
+ , and {Hk}k≥0 ⊂M Γ

++ satisfying condition C2, and set k = 1.

(1) Compute an optimal solution xk ∈X of the subproblem

min
x∈X

{
f (x)−〈γk−1,Ax〉X +

1
2
‖Ax+Byk−1−b‖2

Γ ,Hk
+

1
2
‖x− xk−1‖2

X ,Rk

}
(28)

and compute an optimal solution yk ∈ Y of the subproblem

min
y∈Y

{
g(y)−〈γk−1,By〉Y +

1
2
‖Axk +By−b‖2

Γ ,Hk
+

1
2
‖y− yk−1‖2

Y ,Sk

}
. (29)

(2) Set

γk = γk−1−θHk (Axk +Byk−b) , (30)

k← k+1, and go to step (1).

In the remaining part of this section, we present pointwise and ergodic convergence rates for the

variable metric proximal ADMM. For this end, the following quantities will be needed:

m0 := max
{
‖R0‖,‖B∗H0B+S0‖, [1/θ ]‖H−1

0 ‖
}

(31)
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and

d0 := inf
{(
‖x0− x∗‖2

X ,R0
+‖y0− y∗‖2

Y ,(B∗H0B+S0)
+‖γ0− γ

∗‖2
Γ ,θ−1H−1

0

)1/2
: (x∗,y∗,γ∗) ∈Ω

∗
}
, (32)

where Ω ∗ is defined in (25).

Next we present the two main results of this paper, whose proofs are given in Subsection 4.2.

Theorem 4.1 (Pointwise convergence rate of the variable metric proximal ADMM) Let {Rk}, {Sk}

and {Hk} be as in Step 0 of the variable metric proximal ADMM. Let {(xk,yk,γk)} be generated by the

variable metric proximal ADMM and define

γ̃k := γk−1−Hk(Axk +Byk−1−b) ∀k ≥ 1. (33)

Then, for all k ≥ 1, 
rk,x

rk,y

rk,γ


:=


Rk(xk−1− xk)

(B∗HkB+Sk)(yk−1− yk)

θ−1H−1
k (γk−1− γk)


∈


∂ f (xk)−A∗γ̃k

∂g(yk)−B∗γ̃k

Axk +Byk−b

 (34)

and there exists a parameter σθ ∈]0,1[ such that, for some i≤ k,

√
‖ri,x‖2

X +‖ri,y‖2
Y +‖ri,γ‖2

Γ
≤ d0√

k

√
[2(1+σθ )CP(1+ τθ )+2(1−σθ )τθ ]CPm0

(1−σθ )
, (35)

where τθ := (8(σθ + θ − 1)max{1,θ/(2−θ)})/(θ
√

θ), and CP, m0, and d0 are as in (27), (31), and

(32), respectively.

Remark 4.1 For a given tolerance ρ > 0, Theorem 4.1 guarantees the existence of triples (x,y, γ̃) and

(rx,ry,rγ) generated by the variable metric proximal ADMM such that

rx ∈ ∂ f (x)−A∗γ̃, ry ∈ ∂g(y)−B∗γ̃, rγ = Ax+By−b,

√
‖rx‖2

X +‖ry‖2
Y +‖rγ‖2

Γ
≤ ρ,

(36)
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in at most

O

(⌈
C2

pm0 d2
0

ρ2

⌉)
(37)

iterations, where CP, m0 and d0 are as in (27), (31) and (32), respectively. The triple (x,y, γ̃) in (36) can

be seen as a ρ-approximate solution of the Lagrangian system (24) with residual (rx,ry,rγ).

Remark 4.2 (i) Theorem 4.1, in particular, establishes pointwise convergence rates (unknown so far, up

to our knowledge) for the ADMM variants described in comments 6 and 8 of Remark 2.1(iii).

(ii) As mentioned in the third comment of Remark 2.1(iii), Algorithm 2 in [18] is a special case of

the variable metric proximal ADMM. In this case, the pointwise iteration-complexity bound in (37) is the

same as the one that can be derived from [18, Section 5.3]. Moreover, although different termination cri-

teria and approaches are used in the literature to analyze the other ADMMs described in Remark 2.1(iii),

the pointwise iteration-complexity bounds obtained for them are, basically, as in (37); see, for exam-

ple, [23, 24].

Before presenting the ergodic convergence of the variable metric proximal ADMM we need to in-

troduce its associated ergodic sequences. Let {(xk,yk,γk)} be generated by the variable metric proximal

ADMM, let {γ̃k} and {(rk,x,rk,y,rk,γ)} be defined as in (33) and (34), respectively, and let the ergodic

sequences associated to them be defined by

(xa
k ,y

a
k) :=

1
k

k

∑
i=1

(xi,yi) , γ̃
a
k :=

1
k

k

∑
i=1

γ̃i, (38)

(ra
k,x,r

a
k,y,r

a
k,γ) :=

1
k

k

∑
i=1

(ri,x,ri,y,ri,γ), (39)

(εa
k,x,ε

a
k,y) :=

1
k

k

∑
i=1

(
〈ri,x +A∗γ̃i,xi− xa

k〉X , 〈ri,y +B∗γ̃i,yi− ya
k〉Y

)
. (40)

Theorem 4.2 (Ergodic convergence rate of the variable metric proximal ADMM) Let {(xa
k ,y

a
k)},

{γ̃a
k }, {(ra

k,x,r
a
k,y,r

a
k,γ)} and {(εa

k,x,ε
a
k,y)} be the ergodic sequences defined as in (38)–(40). Let also CS, CP,
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m0 and d0 be as in (26), (27), (31) and (32), respectively. Then, for all k ≥ 1, there hold εa
k,x, εa

k,y ≥ 0,
ra

k,x

ra
k,y

ra
k,γ


∈


∂ fεa

k,x
(xa

k)−A∗γ̃a
k

∂gεa
k,y
(ya

k)−B∗γ̃a
k

Axa
k +Bya

k−b

 (41)

and there exists a parameter σθ ∈]0,1[ such that

√
‖ra

k,x‖2
X +‖ra

k,y‖2
Y +‖ra

k,γ‖2
Γ
≤
√
(1+ τθ )m0E d0

k
, (42)

ε
a
k,x + ε

a
k,y ≤

(1+ τθ )Ê d2
0

k
, (43)

where E and Ê are as in Theorem 3.2 with σ = σθ and τθ is as in Theorem 4.1.

Remark 4.3 Given tolerances ρ,ε > 0, Theorem 4.2 guarantees that there exist scalars εx,εy ≥ 0 and

triples (x,y, γ̃), (rx,ry,rγ) generated by the variable metric proximal ADMM such that

rx ∈∂εx f (x)−A∗γ̃, ry ∈ ∂εy g(y)−B∗γ̃, rγ = Ax+By−b,√
‖rx‖2

X +‖ry‖2
Y +‖rγ‖2

Γ
≤ ρ, εx + εy ≤ ε,

(44)

in at most

O

(⌈
(1+CS)C2

p max
{

d0
√

m0

ρ
,

d2
0

ε

}⌉)
(45)

iterations, where CS,CP, m0 and d0 are as in condition C2, (27), (31) and (32), respectively. Note that

while the dependence on the tolerance ρ in (45) is better than the corresponding one in (37) by a factor

of O(ρ), the inclusions in (44) are potentially weaker than the corresponding ones in (36). The triple

(x,y, γ̃) in (44) can be seen as a (ρ,ε)-approximate solution of the Lagrangian system (24) with residual

(rx,ry,rγ).

Remark 4.4 (i) Theorem 4.2, in particular, establishes ergodic convergence rates (unknown so far, up to

our knowledge) for the ADMM variants described in comments 6 and 7 of Remark 2.1(iii).
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(ii) It can be easily seen that Algorithm 7 in [31] with h = 0 is an instance of the variable metric

proximal ADMM (see the seventh comment of Remark 2.1(iii)). For this variant, it can be derived from

[31, Theorem 12] an ergodic iteration-complexity bound O(1/ρ) to obtain a ρ-approximate saddle point

for the Lagrangian function associated to (23) (see also [18, Theorem 5.3] for a similar result when Hk, Rk

and Sk are constant). Finally, we refer the reader to [15,20,25], where similar ergodic iteration-complexity

bounds were obtained for other ADMM variants.

4.2 Proof of Theorems 4.1 and 4.2

The main goal of this subsection is to prove Theorems 4.1 and 4.2 by viewing the variable metric proximal

ADMM as an instance of the variable metric HPE framework of Section 3 for solving (9) with T : Z ⇒Z

defined by

T (z) :=


∂ f (x)−A∗γ

∂g(y)−B∗γ

Ax+By−b

 , ∀z := (x,y,γ) ∈Z (46)

where Z := X ×Y ×Γ is endowed with the inner product of vectors z = (x,y,γ) and z′ = (x′,y′,γ ′):

〈z,z′〉Z := 〈x,x′〉X + 〈y,y′〉Y + 〈γ,γ ′〉Γ . (47)

The desired results will then follow essentially from Theorems 3.1 and 3.2, and from the identity

T−1(0) = Ω
∗, (48)

where T−1(0) and Ω ∗ are the solution sets defined in (9) and (25), respectively. The following linear

operators will be needed in our analysis:

Mk :=


Rk 0 0

0 B∗HkB+Sk 0

0 0 θ−1Hk
−1

 : Z →Z ∀k ≥ 0, (49)
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where {Rk}k≥0, {Sk}k≥0 and {Hk}k≥0 are given in step 0 of the variable metric proximal ADMM.

We begin by presenting a preliminary technical result.

Proposition 4.1 Let {(xk,yk,γk)} be generated by the variable metric proximal ADMM and let {γ̃k} be

defined as in (33). Let also {Mk} be defined as in (49). Then,

Mk


xk−1− xk

yk−1− yk

γk−1− γk

 ∈


∂ f (xk)−A∗γ̃k

∂g(yk)−B∗γ̃k

Axk +Byk−b

 ∀k ≥ 1. (50)

Proof From the first order optimality conditions for (28) and (29), we obtain, respectively,

0 ∈ ∂ f (xk)−A∗ (γk−1−Hk(Axk +Byk−1−b))+Rk(xk− xk−1),

0 ∈ ∂g(yk)−B∗(γk−1−Hk(Axk +Byk−b))+Sk(yk− yk−1),

which, combined with (33), yields

Rk(xk−1− xk) ∈ ∂ f (xk)−A∗γ̃k, (B∗HkB+Sk)(yk−1− yk) ∈ ∂g(yk)−B∗γ̃k. (51)

On the other hand, (30) (with the assumption Hk ∈M Γ
++) gives

θ
−1H−1

k (γk−1− γk) = Axk +Byk−b. (52)

Using (49), (51) and (52) we obtain (50). ut

The next lemma will allow us to use the main results of Section 3 for analyzing the nonasymptotic

convergence of the variable metric proximal ADMM.

Lemma 4.1 The sequence {Mk}k≥0 defined in (49), the scalar CS and the sequence {ck} given in condi-

tion C2, satisfy condition C1.

Proof Note that the first condition in (26) is identical to the first one in (10). Now, note that the second

condition in (26) combined with the (block) diagonal structure of Mk implies the second condition in (10).

ut
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The following two technical results will be used to prove that the variable metric proximal ADMM is

an instance of the variable metric HPE framework.

Lemma 4.2 Let {(xk,yk,γk)} be generated by the variable metric proximal ADMM. Let d0 and {γ̃k} be

as in (32) and (33), respectively. Let also {Sk} and {Hk} be as in Step 0 of the variable metric proximal

ADMM. Then, the following hold:

(a) for any k ≥ 1, we have

γ̃k− γk =
1−θ

θ
(γk− γk−1)+HkB(yk− yk−1), γ̃k− γk−1 =

1
θ
(γk− γk−1)+HkB(yk− yk−1);

(b) we have

1
2
‖y1− y0‖2

Y ,S1
− 1√

θ
〈B(y1− y0),γ1− γ0〉Γ ≤ 4max

{
1,

θ

2−θ

}
d2

0 ;

(c) for any t > 0 and k ≥ 2, we have

2
θ
〈γk− γk−1− (1−θ)(γk−1− γk−2),B(yk− yk−1)〉Γ ≥

2t−1− ck−1

t
‖yk− yk−1‖2

Y ,Sk

− t‖yk−1− yk−2‖2
Y ,Sk−1

.

Proof (a) This item follows trivially from (30) and (33).

(b) First note that

0≤ 1
2

∥∥∥∥ 1√
θ
(γ1− γ0)+H1B(y1− y0)

∥∥∥∥2

Γ ,H−1
1

=
1
2
‖γ1− γ0‖2

Γ ,θ−1H−1
1

+
1√
θ
〈B(y1− y0),γ1− γ0〉Γ +

1
2
‖B(y1− y0)‖2

Γ ,H1
,

which, combined with the property (2), yields, for all z∗ := (x∗,y∗,γ∗) ∈Ω ∗,

1
2
‖y1− y0‖2

Y ,S1
− 1√

θ
〈B(y1− y0),γ1− γ0〉Γ

≤ 1
2

(
‖y1− y0‖2

Y ,S1
+‖γ1− γ0‖2

Γ ,θ−1H−1
1

+‖B(y1− y0)‖2
Γ ,H1

)
≤ ‖y1− y∗‖2

Y ,S1
+‖y0− y∗‖2

Y ,S1
+‖γ1− γ

∗‖2
Γ ,θ−1H−1

1

+‖γ0− γ
∗‖2

Γ ,θ−1H−1
1

+‖B(y1− y∗)‖2
Γ ,H1

+‖B(y0− y∗)‖2
Γ ,H1

.
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Direct use of the above inequality and (49) yields

1
2
‖y1− y0‖2

Y ,S1
− 1√

θ
〈B(y1− y0),γ1− γ0〉Γ ≤ ‖z1− z∗‖2

Z ,M1
+‖z0− z∗‖2

Z ,M1
, (53)

where z0 := (x0,y0,γ0) and z1 := (x1,y1,γ1). On the other hand, from Proposition 4.1 and (49) with k = 1,

we have r1 := M1(z0−z1)∈ T (z̃1), where T is given in (46). Using this fact, (48) and the monotonicity of

T , we obtain 〈z̃1− z∗,r1〉 ≥ 0 for all z∗ = (x∗,y∗,z∗) ∈Ω ∗. Hence, from the latter inequality, Lemma A.1

with (z,z+, z̃) = (z0,z1, z̃1) and M = M1, we have, for all z∗ = (x∗,y∗,z∗) ∈Ω ∗,

‖z∗− z0‖2
Z ,M1

≥ ‖z∗− z1‖2
Z ,M1

+‖z0− z̃1‖2
Z ,M1

−‖z1− z̃1‖2
Z ,M1

. (54)

Note now that letting z̃1 := (x1,y1, γ̃1), it follows from (49), item (a) and some direct calculations that

‖z1− z̃1‖2
Z ,M1

= ‖γ1− γ̃1‖2
Γ ,θ−1H−1

1
=

∥∥∥∥1−θ

θ
(γ1− γ0)+H1B(y1− y0)

∥∥∥∥2

Γ ,θ−1H−1
1

=
(1−θ)2

θ 2 ‖γ1− γ0‖2
Γ ,θ−1H−1

1
+

2(1−θ)

θ 2 〈B(y1− y0),γ1− γ0〉Γ +
1
θ
‖B(y1− y0)‖2

Γ ,H1
. (55)

Moreover, using (49) with k = 1 and item (a), we find

‖z0− z̃1‖2
Z ,M1

= ‖x0− x1‖2
X ,R1

+‖y0− y1‖2
Y ,(B∗H1B+S1)

+‖γ0− γ̃1‖2
Γ ,θ−1H−1

1

≥ ‖B(y1− y0)‖2
Γ ,H1

+

∥∥∥∥ 1
θ
(γ1− γ0)+HkB(y1− y0)

∥∥∥∥2

Γ ,θ−1H−1
1

≥ 1+θ

θ
‖B(y1− y0)‖2

Γ ,H1
+

1
θ 2 ‖γ1− γ0‖2

Γ ,θ−1H−1
1

+
2

θ 2 〈B(y1− y0),γ1− γ0〉Γ . (56)

Combining the previous two estimates, we obtain

‖z0− z̃1‖2
Z ,M1

−‖z1− z̃1‖2
Z ,M1

≥ 2−θ

θ
‖γ1− γ0‖2

Γ ,θ−1H−1
1

+
2
θ
〈B(y1− y0),γ1− γ0〉Γ +‖B(y1− y0)‖2

Γ ,H1

=
1−θ

θ
‖γ1− γ0‖2

Γ ,θ−1H−1
1

+

∥∥∥∥∥H−1/2
1 (γ1− γ0)

θ
+H1/2

1 B(y1− y0)

∥∥∥∥∥
2

Γ

≥ 1−θ

θ
‖γ1− γ0‖2

Γ ,θ−1H−1
1
.
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If θ ∈]0,1], then the last inequality implies that

‖z1− z̃1‖2
Z ,M1

≤ ‖z0− z̃1‖2
Z ,M1

. (57)

Now, if θ ∈]1,(
√

5+1)/2[, we have

‖z1− z̃1‖2
Z ,M1

−‖z0− z̃1‖2
Z ,M1

≤ θ −1
θ
‖γ1− γ0‖2

Γ ,θ−1H−1
1

≤ 2(θ −1)
θ

(
‖γ1− γ

∗‖2
Γ ,θ−1H−1

1
+‖γ0− γ

∗‖2
Γ ,θ−1H−1

1

)
≤ 2(θ −1)

θ

[
‖z0− z∗‖2

Z ,M1
+‖z1− z∗‖2

Z ,M1

]
where the second inequality is due to property (2), and the last inequality is due to (49) and the definitions

of z0,z1 and z∗. Hence, combining the last estimative with (54), we obtain

‖z1− z∗‖2
Z ,M1

≤ θ

2−θ

(
1+

2(θ −1)
θ

)
‖z0− z∗‖2

Z ,M1
=

3θ −2
2−θ

‖z0− z∗‖2
Z ,M1

.

Thus, it follows from (54), (57) and the last inequality that

‖z1− z∗‖2
Z ,M1

≤max
{

1,
3θ −2
2−θ

}
‖z0− z∗‖2

Z ,M1
. (58)

Since, M1 � (1+ c0)M0 � 2M0 (see condition C2 and Lemma 4.1), the desired inequality follows from

(53), (58), and definition of d0 in (32).

(c) Using the first order optimality condition for (29), (33) and item (a), we find, for every k ≥ 1,

∂g(yk) 3 B∗(γ̃k−HkB(yk− yk−1))−Sk(yk− yk−1) =
1
θ

B∗(γk− (1−θ)γk−1)−Sk(yk− yk−1).

For any k ≥ 2, using the above inclusion with k ← k and k ← k− 1, the monotonicity of ∂g and the

property (1), we find

1
θ
〈B∗(γk− γk−1)− (1−θ)B∗(γk−1− γk−2),yk− yk−1〉Y

≥ 〈Sk(yk− yk−1),yk− yk−1〉Y −〈Sk−1(yk−1− yk−2),yk− yk−1〉Y

≥ ‖yk− yk−1‖2
Y ,Sk
− 1

2t
‖yk− yk−1‖2

Y ,Sk−1
− t

2
‖yk−1− yk−2‖2

Y ,Sk−1
,

≥
(

1− 1+ ck−1

2t

)
‖yk− yk−1‖2

Y ,Sk
− t

2
‖yk−1− yk−2‖2

Y ,Sk−1
,
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where the last inequality is due to Proposition 2.1 and condition C2, and so the proof of the lemma

follows. ut

Lemma 4.3 For every θ ∈]0,(
√

5+1)/2[, there exists a scalar σθ ∈]0,1[ such that, for any σ ∈ [σθ ,1),

the matrix

Mθ (σ) =


σ(1+θ)−1 (σ +θ −1)(1−θ)

(σ +θ −1)(1−θ) σ − (1−θ)2


is symmetric and positive definite, and

max{(1−θ)2,1−θ ,1/(1+θ)}< σ ,
(σ +θ −1)

(
4−2

√
2
)

√
2θ

< σ . (59)

Proof Since the matrix Mθ (σ) is symmetric, the proof is immediate by noting that for σ = 1 and for

every θ ∈]0,(
√

5+1)/2[, Mθ (σ) is definite positive and (59) trivially holds. ut

Next we show that the variable metric proximal ADMM can be regarded as an instance of the variable

metric HPE framework.

Proposition 4.2 Let {(xk,yk,γk)} be generated by the variable metric proximal ADMM and let {γ̃k} and

{Mk} be defined as in (33) and (49), respectively. Let also d0, T , σθ and τθ be as in (32), (46), Lemma 4.3,

and Theorem 4.1, respectively. Define z0 := (x0,y0,γ0), η0 := τθ d2
0 and, for all k ≥ 1,

zk := (xk,yk,γk), z̃k := (xk,yk, γ̃k), rk := Mk(zk−1− zk), (60)

ηk :=
σθ − (θ −1)2

θ 2 ‖γk− γk−1‖2
Γ ,θ−1H−1

k
+

√
2(σθ +θ −1)

θ
‖yk− yk−1‖2

Y ,Sk
. (61)

Then, for all k ≥ 1,

rk ∈ T (z̃k),

‖zk− z̃k‖2
Z ,Mk

+ηk ≤ σθ‖zk−1− z̃k‖2
Z ,Mk

+ηk−1.

(62)

As a consequence, the variable metric proximal ADMM falls within the variable metric HPE framework

(with input z0, η0 and σ = σθ ) for solving (9) with T as in (46).
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Proof First note that the inclusion in (62) follows from (46), (50) and the definitions of zk, z̃k and rk in

(60). Now, using (47), (49), (60) and some direct calculations, we obtain

‖zk−1− z̃k‖2
Z ,Mk

= ‖xk−1− xk‖2
X ,Rk

+‖B(yk−1− yk)‖2
Γ ,Hk

+‖yk−1− yk‖2
Y ,Sk

+‖γk−1− γ̃k‖2
Γ ,θ−1H−1

k
. (63)

Using the same reasoning and Lemma 4.2(a), we also find

‖zk− z̃k‖2
Z ,Mk

= ‖γk− γ̃k‖2
Γ ,θ−1H−1

k
=

∥∥∥∥1−θ

θ
(γk− γk−1)+HkB(yk− yk−1)

∥∥∥∥2

Γ ,θ−1H−1
k

. (64)

Hence, from Lemma 4.2(a) and some algebraic manipulations, we obtain

σθ‖γk−1− γ̃k‖2
Γ ,θ−1H−1

k
−‖γk− γ̃k‖2

Γ ,θ−1H−1
k

= σθ

∥∥∥∥ 1
θ
(γk− γk−1)+HkB(yk− yk−1)

∥∥∥∥2

Γ ,θ−1H−1
k

−
∥∥∥∥1−θ

θ
(γk− γk−1)+HkB(yk− yk−1)

∥∥∥∥2

Γ ,θ−1H−1
k

=
σθ − (1−θ)2

θ 2 ‖γk− γk−1‖2
Γ ,θ−1H−1

k
+

σθ −1
θ
‖B(yk− yk−1)‖2

Γ ,Hk

+
2(σθ +θ −1)

θ 2 〈γk− γk−1,B(yk− yk−1)〉Γ ,

which in turn, combined with (63) and (64), yields

σθ‖zk−1− z̃k‖2
Z ,Mk

−‖zk− z̃k‖2
Z ,Mk

= σθ‖xk− xk−1‖2
X ,Rk

+σθ‖yk− yk−1‖2
Y ,Sk

+
σθ − (1−θ)2

θ 2 ‖γk− γk−1‖2
Γ ,θ−1H−1

k
+

σθ (θ +1)−1
θ

‖B(yk− yk−1)‖2
Γ ,Hk

+
2(σθ +θ −1)

θ 2 〈γk− γk−1,B(yk− yk−1)〉Γ , (65)

We will now consider two cases: k = 1 and k > 1. In the first case, it follows from (65) with k = 1,

Lemma 4.2(b), the first inequality in (59) with σ = σθ , and the definitions of η0 and η1, that

σθ‖z0− z̃1‖2
Z ,M1

−‖z1− z̃1‖2
Z ,M1

+η0−η1 ≥

[
σθ −

√
2(σθ +θ −1)

θ
+

σθ +θ −1
θ 3/2

]
‖y1− y0‖2

Y ,S1
,

≥

σθ +
(σθ +θ −1)

(
2−3

√
2
)

3θ

‖y1− y0‖2
Y ,S1

,
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where the last inequality is due to
√

θ ≤ 3/2. Hence, since (2−3
√

2)/3≥ (2
√

2−4)/
√

2, inequality (62)

for k = 1 now follows from the second inequality in (59) with σ = σθ . On the other hand, assuming

k > 1, from inequality (65), Lemma 4.2(c) with t =
√

2, the first inequality in (59) with σ = σθ , and the

definition of {ηk} in (61), we have

σθ‖zk−1− z̃k‖2
Z ,Mk

−‖zk− z̃k‖2
Z ,Mk

+ηk−1−ηk ≥
σθ (θ +1)−1

θ
‖B(yk− yk−1)‖2

Γ ,Hk

+
σθ − (1−θ)2

θ 2 ‖γk−1− γk−2‖2
Γ ,θ−1H−1

k−1
+

2(σθ +θ −1)(1−θ)

θ 2 〈γk−1− γk−2,B(yk− yk−1)〉Γ

+

 (σθ +θ −1)
(

2
√

2−4+1− ck−1

)
√

2θ
+σθ

‖yk− yk−1‖2
Y ,Sk

.

Since ck−1 ≤ 1 (see condition C2), we obtain from (59) with σ = σθ that the term inside bracket is non-

negative. Hence, inequality (62) for k > 1 now follows from the first statement of Lemma 4.3. The last

statement of the proposition follows from (62) and variable metric HPE framework’s definition. ut

We are now ready to prove Theorems 4.1 and 4.2.

Proof of Theorem 4.1: Due to the definitions of {(ri,x,ri,y,ri,γ)} and {Mk} in (34) and (49), respectively,

it follows from Proposition 4.2 and Theorem 3.1 that, for every k ≥ 1, (34) holds and there exists i ≤ k

such that

√
‖ri,x‖2

X +‖ri,y‖2
Y +‖ri,γ‖2

Γ
≤ d0√

k

√
[2(1+σθ )CP(1+ τθ )+2(1−σθ )τθ ]CP‖M0‖

(1−σθ )
.

Therefore, the inequality in (35) now follows from the definitions of m0 and M0 in (31) and (49), respec-

tively, and properties of norms. ut

Proof of Theorem 4.2: First, using the definitions of m0 and M0 in (31) and (49), respectively, we

have ‖M0‖ ≤ m0. Hence, combining Proposition 4.2 and Theorem 3.2, and taking into account that

ra
k = (ra

k,x,r
a
k,y,r

a
k,γ), we conclude that, for every k ≥ 1,

√
‖ra

k,x‖2
X +‖ra

k,y‖2
Y +‖ra

k,γ‖2
Γ
≤
√
(1+ τθ )m0E d0

k
, (66)
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ε
a
k =

1
k

(
k

∑
i=1
〈ri,x,xi− xa

k〉X +
k

∑
i=1
〈ri,y,yi− ya

k〉Y +
k

∑
i=1
〈ri,γ , γ̃i− γ̃

a
k 〉Γ

)
≤

(1+ τθ )Ê d2
0

k
. (67)

On the other hand, (34), (38) and (39) yield

Axk +Byk = rk,γ +b, Axa
k +Bya

k = ra
k,γ +b.

Additionally, (38), (39) and some algebraic manipulations give

k

∑
i=1
〈γ̃i,ri,γ − ra

k,γ〉Γ =
k

∑
i=1
〈γ̃i− γ̃

a
k ,ri,γ − ra

k,γ〉Γ =
k

∑
i=1
〈γ̃i− γ̃

a
k ,ri,γ〉Γ .

Hence, combining the identity in (67) with the last two displayed equations, we also obtain

ε
a
k =

1
k

k

∑
i=1

(
〈ri,x,xi− xa

k〉X + 〈ri,y,yi− ya
k〉Y

)
+

1
k

k

∑
i=1
〈γ̃i,ri,γ − ra

k,γ〉Γ

=
1
k

k

∑
i=1

(
〈ri,x,xi− xa

k〉X + 〈ri,y,yi− ya
k〉Y + 〈γ̃i,Axi−Axa

k +Byi−Bya
k〉Γ
)

=
1
k

k

∑
i=1
〈ri,x +A∗γ̃i,xi− xa

k〉X +
1
k

k

∑
i=1
〈ri,y +B∗γ̃i,yi− ya

k〉Y = ε
a
k,x + ε

a
k,y,

where the last equality is due to the definitions of εa
k,x and εa

k,y in (40). Therefore, the inequalities in (42)

and (43) now follows from (66) and (67), respectively.

To finish the proof of the theorem, note that direct use of Theorem 2.1(b) (for f and g), (34) and

(38)–(40) give εa
k,x, εa

k,y ≥ 0 and (41). ut

5 Conclusions

We considered the linearly constrained convex optimization problem and studied a variable metric proxi-

mal alternating direction method of multipliers for solving it. We proved that this ADMM variant, which

allows the use of degenerate metrics (defined by noninvertible linear operators), has O(1/
√

k) pointwise

and O(1/k) ergodic convergence rates. These convergence rates were obtained essentially by showing

that this ADMM variant can be seen as a special case of a variable metric hybrid proximal extragradi-

ent framework for solving monotone inclusions. Convergence rates for the latter framework were also

provided in this work.
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Appendix A Proofs of Theorems 3.1 and 3.2

We start by presenting the following two Lemmas.

Lemma A.1 For any z∗,z,z+, z̃ ∈Z and M ∈M Z
+ , we have

‖z∗− z‖2
Z ,M−‖z∗− z+‖2

Z ,M = ‖z− z̃‖2
Z ,M−‖z+− z̃‖2

Z ,M +2〈z̃− z∗,M(z− z+)〉Z .

Proof Direct calculations yield

‖z∗− z‖2
Z ,M−‖z∗− z+‖2

Z ,M = 2〈z+− z∗,M(z− z+)〉Z +‖z+− z‖2
Z ,M

= 2〈z+− z̃,M(z− z+)〉Z +2〈z̃− z∗,M(z− z+)〉Z +‖z+− z‖2
Z ,M

= 2〈z̃− z∗,M(z− z+)〉Z +‖z̃− z‖2
Z ,M−‖z̃− z+‖2

Z ,M. ut

Lemma A.2 Let {zk}, {Mk}, {z̃k} and {ηk} be generated by the variable metric HPE framework. For

every k ≥ 1 and z∗ ∈ T−1(0) :

(a) we have

‖z∗− zk‖2
Z ,Mk

≤ ‖z∗− zk−1‖2
Z ,Mk

+ηk−1−ηk− (1−σ)‖zk−1− z̃k‖2
Z ,Mk

;

(b) we have

‖z∗− zk‖2
Z ,Mk

+ηk +(1−σ)
k

∑
i=1
‖zi−1− z̃i‖2

Z ,Mi
≤CP(‖z∗− z0‖2

Z ,M0
+η0) ,

where CP and M0 are as in (11) and condition C1, respectively.

Proof (a) From Lemma A.1 with (z,z+, z̃) = (zk−1,zk, z̃k) and M = Mk, (12) and (13), we obtain

‖z∗− zk−1‖2
Z ,Mk

−‖z∗− zk‖2
Z ,Mk

+ηk−1 ≥ (1−σ)‖zk−1− z̃k‖2
Z ,Mk

+ηk +2〈z̃k− z∗,rk〉.

Hence, (a) follows from the above inequality, the fact that 0 ∈ T (z∗) and rk ∈ T (z̃k) (see (12)), and the

monotonicity of T .

(b) Using (a), (3) and condition C1, we find

‖z∗− zk‖2
Z ,Mk

≤ (1+ ck−1)‖z∗− zk−1‖2
Z ,Mk−1

+ηk−1−ηk− (1−σ)‖zk−1− z̃k‖2
Z ,Mk

.
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Thus, the result follows by applying the above inequality recursively and by using (11). ut

We are now ready to prove Theorem 3.1.

Proof of Theorem 3.1: First, note that the desired inclusion holds due to (12). Now, using (2) and (13), we

obtain, respectively,

‖zk−1− zk‖2
Z ,Mk

≤ 2
(
‖zk−1− z̃k‖2

Z ,Mk
+‖z̃k− zk‖2

Z ,Mk

)
,

‖z̃k− zk‖2
Z ,Mk

≤ σ‖zk−1− z̃k‖2
Z ,Mk

+ηk−1−ηk.

Combining the above inequalities, we find

‖zk−1− zk‖2
Z ,Mk

≤ 2
[
(1+σ)‖zk−1− z̃k‖2

Z ,Mk
+ηk−1−ηk

]
,

which in turn, combined with Lemma A.2(b), yields

k

∑
i=1
‖zi−1− zi‖2

Z ,Mi
≤

2(1+σ)CP(‖z∗− z0‖2
Z ,M0

+η0)+2(1−σ)η0

(1−σ)
, (68)

for all z∗ ∈ T−1(0). Now, from (11), we obtain Mi �CPM0 for every i≥ 1. Thus, it follows from (12) and

Proposition 2.1 that

k

∑
i=1
‖ri‖2

Z =
k

∑
i=1
‖Mi(zi−1− zi)‖2

Z ≤CP‖M0‖
k

∑
i=1
‖zi−1− zi‖2

Z ,Mi
,

which, combined with the fact that ∑
k
i=1 ti ≥ k mini=1,...,k{ti} and the definition in (14), proves (15). ut

Before proceeding to the proof of the ergodic convergence of the variable metric HPE framework, let

us first present an auxiliary result.

Proposition A.1 Let {zk}, {Mk} and {ηk} be generated by the variable metric HPE framework and

consider {z̃a
k} and {εa

k } as in (18). Then, for every k ≥ 1,

ε
a
k ≤

1
2k

(
η0 +‖z̃a

k− z0‖2
Z ,M0

+
k

∑
i=1

ci−1‖z̃a
k− zi−1‖2

Z ,Mi−1

)
, (69)

where {ck} is given in condition C1.
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Proof Using Lemma A.1 with (z∗,z,z+, z̃) = (z̃a
k ,zi−1,zi, z̃i) and M = Mi, (12) and (13), we find, for every

i = 1, . . . ,k,

‖z̃a
k− zi−1‖2

Z ,Mi
−‖z̃a

k− zi‖2
Z ,Mi

+ηi−1 ≥ (1−σ)‖z̃i− zi−1‖2
Z ,Mi

+ηi +2〈ri, z̃i− z̃a
k〉

≥ ηi +2〈ri, z̃i− z̃a
k〉,

where the second inequality is due to the fact that 1−σ ≥ 0. Hence, using condition C1 and simple

calculations, we obtain

‖z̃a
k− zi‖2

Z ,Mi
≤ (1+ ci−1)‖z̃a

k− zi−1‖2
Z ,Mi−1

+ηi−1−ηi−2〈ri, z̃i− z̃a
k〉 ∀i = 1, . . . ,k.

Summing up the last inequality from i = 1 to i = k and using the definition of εa
k in (18), we have

0≤ ‖z̃a
k− zk‖2

Z ,Mk
≤

k

∑
i=1

ci−1‖z̃a
k− zi−1‖2

Z ,Mi−1
+‖z̃a

k− z0‖2
Z ,M0

+η0−2k ε
a
k ,

which clearly gives (69). ut

Proof of Theorem 3.2: Note first that the desired inclusion and the first inequality in (20) follow from

(12), (18) and Theorem 2.1(a). Take z∗ ∈ T−1(0). Now, let us prove the second inequality in (20), which

will follow by bounding the term in the right-hand side of (69). Note that, using the convexity of ‖ ·‖2
Mi−1

,

inequality (2) and (18), we find

‖z̃a
k− zi−1‖2

Z ,Mi−1
≤ 1

k

k

∑
j=1
‖z̃ j− zi−1‖2

Z ,Mi−1
≤ 2

k

k

∑
j=1

(
‖z̃ j− z j‖2

Z ,Mi−1
+‖z j− zi−1‖2

Z ,Mi−1

)
. (70)

From (11), we have Mi−1 � CPM j for all j = 1, . . . ,k. Hence, using Proposition 2.1, inequality (13),

Lemma A.2(b) and (14), we find

k

∑
j=1
‖z̃ j− z j‖2

Z ,Mi−1
≤CP

k

∑
j=1
‖z̃ j− z j‖2

Z ,M j

≤CP

k

∑
j=1

(
σ‖z̃ j− z j−1‖2

Z ,M j
+η j−1−η j

)
≤ σ

1−σ
C2

p(d
2
0 +η0)+CPη0. (71)
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On the other hand, using (2), Mi−1 �CPM j for all j = 1, . . . ,k, Proposition 2.1, Lemma A.2(b) and (14),

we obtain

k

∑
j=1
‖z j− zi−1‖2

Z ,Mi−1
≤ 2

k

∑
j=1

(
‖z j− z∗‖2

Z ,Mi−1
+‖z∗− zi−1‖2

Z ,Mi−1

)
≤ 2

k

∑
j=1

(
CP‖z j− z∗‖2

Z ,M j
+‖z∗− zi−1‖2

Z ,Mi−1

)
≤ 2(1+CP)CP(d2

0 +η0)k. (72)

It follows from inequalities (70)–(72) and the fact that k ≥ 1 that

‖z̃a
k− zi−1‖2

Z ,Mi−1
≤
(

σCP

1−σ
+2(1+CP)

)
2CP(d2

0 +η0)+2CPη0,

which, combined with Proposition A.1 and the first condition in (10), yields

ε
a
k ≤

1
2k

[
2CP(1+CS)

(
σCP

1−σ
+2(1+CP)

)
(d2

0 +η0)+(1+2(1+CS)CP)η0

]
.

Therefore, the second inequality in (20) now follows from definition of Ê and simple calculations.

To finish the proof of the theorem, it remains to prove (19). Assume first that k ≥ 2. Using (18) and

simple calculations, we have

k ra
k =

k

∑
i=1

ri = M1(z0− z∗)−Mk(zk− z∗)+
k−1

∑
i=1

(Mi+1−Mi)(zi− z∗). (73)

Since Mk �CPM0 and M1 �CPM0 (see (11)), we obtain from Proposition 2.1 that

‖Mk(zk− z∗)‖Z ≤
√

CP‖M0‖‖zk− z∗‖Z ,Mk , (74)

‖M1(z0− z∗)‖Z ≤
√

CP‖M0‖‖z0− z∗‖Z ,M1 ≤Cp
√
‖M0‖‖z0− z∗‖Z ,M0 . (75)

Next step is to estimate the general term in the summation in (73). To do this, first note that using condition

C1, we find

0� Li := Mi+1−Mi + ciMi+1 � ci(2+ ci)Mi , ∀ i = 1, . . . ,k−1, (76)
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and so

‖(Mi+1−Mi)(zi− z∗)‖Z = ‖(Li− ciMi+1)(zi− z∗)‖Z ≤ ‖Li(zi− z∗)‖Z + ci‖Mi+1(zi− z∗)‖Z . (77)

It follows from the last inequality in (76) and (11) that Li � ci(2+ci)Mi and Mi �CPM0. Hence, we have

‖Li(zi− z∗)‖2
Z = 〈Li(L

1/2
i (zi− z∗)),L1/2

i (zi− z∗)〉 ≤ ci(2+ ci)〈Mi(L
1/2
i (zi− z∗)),L1/2

i (zi− z∗)〉

≤ ci(2+ ci)CP〈M0(L
1/2
i (zi− z∗)),L1/2

i (zi− z∗)〉

≤ ci(2+ ci)CP‖M0‖‖zi− z∗‖2
Z ,Li

≤ c2
i (2+ ci)

2CP‖M0‖‖zi− z∗‖2
Z ,Mi

. (78)

Again, using the facts that Mi+1 �CPM0 and Mi+1 � (1+ci)Mi (see (11)), and Proposition 2.1, we obtain

‖Mi+1(zi− z∗)‖Z ≤
√

Cp‖M0‖‖zi− z∗‖Z ,Mi+1 ≤
√

CP‖M0‖(1+ ci)‖zi− z∗‖Z ,Mi . (79)

Hence, using (11) and (77)–(79), we find

‖(Mi+1−Mi)(zi− z∗)‖Z ,Mk ≤ ci

√
Cp‖M0‖

(
1+(1+ ci)+

√
1+ ci

)
‖zi− z∗‖Z ,Mi

≤ ci
√

CP‖M0‖
(

1+CP +
√

CP

)
‖zi− z∗‖Z ,Mi . (80)

Finally, using the definition of d0 in (14), (73)–(75), (80) and Lemma A.2(b), we conclude that

k‖ra
k‖Z ≤ ‖M1(z0− z∗)‖Z +‖Mk(zk− z∗)‖Z +

k−1

∑
i=1
‖(Mi+1−Mi)(zi− z∗)‖Z

≤
(

CP +
√

CP +CS
√

CP

(
1+CP +

√
CP

))√
‖M0‖ max

i=0,...,k
‖zi− z∗‖Z ,Mi

≤
√

CP‖M0‖
(

CP +
√

CP +CS
√

CP

(
1+CP +

√
CP

))√
d2

0 +η0

≤
(
(1+CS)(1+

√
CP)CP +CSC2

P

)√
‖M0‖

√
d2

0 +η0
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which gives (19) for the case k≥ 2. Note now that by (11), we have M1 �CPM0 and so, using the second

identity in (18) with k = 1, Proposition 2.1, Lemma A.2(b) and (14), we find

‖ra
1‖Z = ‖M1(z0− z1)‖Z ≤

√
CP‖M0‖‖z0− z1‖Z ,M1

≤
√

CP‖M0‖(‖z0− z∗‖Z ,M1 +‖z1− z∗‖Z ,M1)

≤
√

CP‖M0‖(
√

CP‖z0− z∗‖Z ,M0 +‖z1− z∗‖Z ,M1)

≤ (CP +
√

CP)
√
‖M0‖max

i=0,1
‖zi− z∗‖Z ,Mi

≤ (CP +
√

CP)
√

CP‖M0‖
√

d2
0 +η0 ,

which, in turn, gives (19) for k = 1. ut
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