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Abstract

Relying on fixed point techniques, Mahey, Oualibouch and Tao introduced in [18] the scaled
proximal decomposition on the graph of a maximal monotone operator (SPDG) algorithm and
analyzed its performance on inclusions for strongly monotone and Lipschitz continuous operators.
The SPDG algorithm generalizes the Spingarn’s partial inverse method by allowing scaling factors,
a key strategy to speed up the convergence of numerical algorithms.

In this note, we show that the SPDG algorithm can alternatively be analyzed by means of
the original Spingarn’s partial inverse framework, tracing back to the 1983 Spingarn’s paper. We
simply show that under the assumptions considered in [18], the Spingarn’s partial inverse of the
underlying maximal monotone operator is strongly monotone, which allows one to employ recent
results on the convergence and iteration-complexity of proximal point type methods for strongly
monotone operators. By doing this, we additionally obtain a potentially faster convergence for
the SPDG algorithm and a more accurate upper bound on the number of iterations needed to
achieve prescribed tolerances, specially on ill-conditioned problems.
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Introduction

In his 1983 paper, J. E. Spingarn [29] posed the problem of finding x, u ∈ H such that

x ∈ V, u ∈ V ⊥ and u ∈ T (x) (1)

where T is a (point-to-set) maximal monotone operator on the Hilbert space H and V is a closed
vector subspace. Problem (1) encompasses different problems in applied mathematics and optimiza-
tion including minimization of convex functions over subspaces and decomposition problems for the
sum of finitely many maximal monotone operators (see, e.g., [1, 8, 23, 29]). Spingarn also proposed
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and studied in [29] a proximal point type method – the Spingarn’s partial inverse method – for
solving (1). This is an iterative scheme, which consists essentially of the Rockafellar’s proximal point
(PP) method [25] for solving the inclusion problem defined by the partial inverse of the underlying
maximal monotone operator. Since then, the Spingarn’s partial inverse method has been used by
many authors as a framework for the design and analysis of different practical algorithms in opti-
mization and related applications. Despite the fact the partial inverse algorithm actually reduces to
the Douglas-Rachford (DR) splitting method [15] applied to (1), as it was observed by Eckstein and
Bertsekas in [10, Section 5], its analysis via the partial inverse operator framework provides different
convergence results.

One of the problems that arises in Spingarn’s approach [29] is the difficulty of dealing with scaling,
a key strategy to speed up the convergence rate of numerical algorithms. In the particular case of
minimizing a convex function f over V , i.e., (1) with T = ∂f , Spingarn proposed in [30] a scaled
special version of his partial inverse algorithm. Later on, relying on fixed point techniques, Mahey,
Oualibouch and Tao [18] circumvented the problem of scaling, for the general setting of monotone
operators, by proposing and analyzing the scaled proximal decomposition on the graph of a maximal
monotone operator (SPDG) algorithm for solving (1). In contrast to the Spingarn’s partial inverse
method, the SPDG algorithm allows for a scaling of the problem, for which the impact on speeding up
its convergence rate was observed in [18] on ill-conditioned quadratic programming problems (see also
[14, 17]). The analysis of the SPDG algorithm presented in [18] consists of reformulating it as a fixed
point iteration for a certain nonlinear operator. This differs from the original Spingarn’s approach
in [29], which is supported on the partial inverse of monotone operators, a concept introduced and
coined by Spingarn himself. Moreover, one of the main contributions of Mahey, Oualibouch and Tao
is the convergence rate analysis of the SPDG algorithm under strong monotonicity. In [18, Theorem
4.2], they proved that if the maximal monotone operator T in (1) is strongly maximal monotone
and Lipschitz continuous, then the SPDG algorithm converges at a linear rate to the (unique, in this
case) solution of (1).

In this note, we show that the SPDG algorithm can alternatively be analyzed within the Sp-
ingarn’s partial inverse framework, tracing back to the original Spingarn’s approach. We simply
show that under the assumptions considered in [18], the Spingarn’s partial inverse of the underly-
ing maximal monotone operator is strongly monotone, which allows one to employ recent results
on the convergence and iteration-complexity of proximal point type methods for strongly monotone
operators. By doing this, we additionally obtain a potentially faster convergence for the SPDG al-
gorithm and a more accurate upper bound on the number of iterations needed to achieve prescribed
tolerances, specially on ill-conditioned problems.

This work is organized as follows. Section 1 presents the basic notation to be used in this note and
some preliminaries results. In Section 2, we present our main contributions, namely the convergence
rate analysis of the SPDG algorithm within the Spingarn’s partial inverse framework. Section 3 is
devoted to some concluding remarks.

1 Notation and basic results

Let H be a real Hilbert space with inner product 〈·, ·〉 and induced norm ‖ · ‖ =
√
〈·, ·〉. A set-valued

map T : H ⇒ H is said to be a monotone operator if 〈z − z′, v − v′〉 ≥ 0 for all v ∈ T (z) and
v′ ∈ T (z′). On the other hand, T : H ⇒ H is maximal monotone if T is monotone and its graph
G(T ) := {(z, v) ∈ H ×H | v ∈ T (z)} is not properly contained in the graph of any other monotone
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operator on H. The inverse of T : H ⇒ H is T−1 : H ⇒ H, defined at any z ∈ H by v ∈ T−1(z) if
and only if z ∈ T (v). The resolvent of a maximal monotone operator T : H ⇒ H is (T + I)−1 and
z = (T + I)−1x if and only if x − z ∈ T (z). The operator γT : H ⇒ H, where γ > 0, is defined
by (γT )z := γT (z) := {γv | v ∈ T (z)}. A maximal monotone operator T : H ⇒ H is said to be
µ-strongly monotone if µ > 0 and 〈z − z′, v − v′〉 ≥ µ‖z − z′‖2 for all v ∈ T (z) and v′ ∈ T (z′).

The Spingarn’s partial inverse [29] of a maximal monotone operator T : H⇒ H with respect to
a closed subspace V of H is the (maximal monotone) operator TV : H⇒ H whose graph is

G(TV ) := {(z, v) ∈ H ×H | PV (v) + PV ⊥(z) ∈ T (PV (z) + PV ⊥(v))}, (2)

where PV and PV ⊥ stand for the orthogonal projection onto V and V ⊥, respectively.
In the next subsection, we present the convergence rate of the proximal point algorithm for finding

zeroes of strongly monotone inclusions.

1.1 On the proximal point method for strongly monotone operators

In this subsection, we consider the problem

0 ∈ A(z) (3)

where A : H ⇒ H is a µ-strongly maximal monotone operator, for some µ > 0, i.e., A is maximal
monotone and there exists µ > 0 such that

〈z − z′, v − v′〉 ≥ µ‖z − z′‖2 ∀v ∈ A(z), v′ ∈ A(z′). (4)

The proximal point (PP) method is an iterative scheme for finding approximate solutions of (3)
(under the assumption of maximal monotonicity of A). The method traces back to the work of
Martinet and was popularized by Rockafellar, who formulated and studied some of its inexact variants
along with important applications in convex programming [24, 25].

Among the many inexact variants of the PP method, the hybrid proximal extragradient (HPE)
method of Solodov and Svaiter [26] has been the object of intense study by many authors (see,
e.g., [3, 5, 9, 11, 12, 13, 16, 19, 20, 22, 26, 27, 28]). One of its distinctive features is that it allows for
inexact solution of the corresponding subproblems within relative errors tolerances. Contrary to the
(asymptotic) convergence analysis of the HPE method, which was originally established in [26], its
iteration-complexity was studied only recently by Monteiro and Svaiter in [21]. Motivated by the main
results on pointwise and ergodic iteration-complexity which were obtained in the latter reference,
nonasymptotic convergence rates of the HPE method for solving strongly monotone inclusions were
analyzed in [3].

In this subsection, we specialize the main result in latter reference, regarding the iteration-
complexity of the HPE method for solving strongly monotone inclusions, to the exact PP method for
solving (3). This is motivated by the fact that under certain conditions on the maximal monotone
operator T , its partial inverse TV – with respect to a closed subspace V – is strongly maximal
monotone (see Proposition 2.2).

Next, we present the version of the PP method that we need in this work.
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Algorithm 1. Proximal point (PP) method for solving (3)

(0) Let z0 ∈ H and λ > 0 be given and set k = 1.

(1) Compute
zk = (λA+ I)−1zk−1. (5)

(2) Let k ← k + 1 and go to step 1.

The PP method consists in successively applying the resolvent (λA + I)−1 of the operator A
(which is well defined due to the Minty theorem). As we mentioned earlier, there are more general
versions of Algorithm 1 in which, in particular, the stepsize parameter λ > 0 is allowed to vary along
the iterations and zk is computed only inexactly in (5).

The following result establishes the linear convergence of the PP method under strong mono-
tonicity assumption on the operator A. Although it is a direct consequence of a more general result
(see [3, Proposition 2.2]), here we present a short proof for the convenience of the reader.

Proposition 1.1. Assume that the operator A is µ-strongly maximal monotone, for some µ > 0. Let
{zk} be generated by Algorithm 1 and let z∗ ∈ H is the (unique) solution of (3), i.e., z∗ = A−1(0).
Then, for all k ≥ 1,

‖zk−1 − zk‖2 ≤
(

1− 2λµ

1 + 2λµ

)k−1
‖z∗ − z0‖2, (6)

‖z∗ − zk‖2 ≤
(

1− 2λµ

1 + 2λµ

)k

‖z∗ − z0‖2. (7)

Proof. The desired results follow from the following

‖z∗ − zk−1‖2 − ‖z∗ − zk‖2 = ‖zk−1 − zk‖2 + 2λ〈λ−1(zk−1 − zk), zk − z∗〉
≥ ‖zk−1 − zk‖2 + 2λµ‖zk − z∗‖2

≥ 2λµ

1 + 2λµ
‖z∗ − zk−1‖2,

where we have used that λ−1(zk−1− zk) ∈ A(zk), from (5), 0 ∈ A(z∗), A is µ-strongly monotone and
min{r2 + as2 | r, s ≥ 0, r + s ≥ b ≥ 0} = a(a+ 1)−1b2.

We mention that Proposition 1.1 can alternatively be proved by combining the fact that the
µ-strong monotonicity of A implies that (A + I)−1 is a contraction, with constant 1/(1 + µ) (see,
e.g., [4, Proposition 23.11]), and the classical Banach fixed point theorem.

As we mentioned earlier, in the next section we analyze the global (nonasymptotic) convergence
rate of the SPDG algorithm under the assumptions that the operator T in (1) is strongly monotone
and Lipschitz continuous [18]. We will prove, in particular, that under such conditions on T , the
partial inverse TV is strongly monotone as well, in which case the results in (6) and (7) can be
applied.
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2 On the convergence rate of the SPDG algorithm

In this section, we consider problem (1), i.e., the problem of finding x, u ∈ H such that

x ∈ V, u ∈ V ⊥ and u ∈ T (x), (8)

where the following hold:

A1) V is a closed vector subspace of H.

A2) T : H ⇒ H is (maximal) η-strongly monotone, i.e., T is maximal monotone and there exists
η > 0 such that

〈z − z′, v − v′〉 ≥ η‖z − z′‖2 ∀v ∈ T (z), v′ ∈ T (z′). (9)

A3) T : H⇒ H is L-Lipschitz continuous, i.e., there exists L > 0 such that

‖v − v′‖ ≤ L‖z − z′‖ ∀v ∈ T (z), v′ ∈ T (z′). (10)

The convergence rate of the SPDG algorithm under the assumptions A2) and A3) was previously
analyzed in [18, Theorem 4.2]. Note that (9) and (10) imply, in particular, that the operator T is
at most single-valued and L ≥ η. The number L/η ≥ 1 is known in the literature as the condition
number of the problem (8). The influence of L/η as well as of scaling factors in the convergence
speed of the SPDG algorithm, specially for solving ill-conditioned problems, was discussed in [18,
Section 4] for the special case of quadratic programming.

In this section, analogously to the latter reference, we analyze the convergence rate of the SPDG
algorithm (Algorithm 2) under assumptions A2) and A3) on the maximal monotone operator T .
We show that the SPDG algorithm falls in the framework of the PP method (Algorithm 1) for
the (scaled) partial inverse of T , which, under assumptions A2) and A3), is shown to be strongly
monotone. This contrasts to the approach adopted in [18], which relies on fixed point techniques. By
showing that the (scaled) partial inverse of T – with respect to V – is strongly monotone, we obtain
a potentially faster convergence for the SPDG algorithm, when compared to the one proved in [18].
Moreover, the convergence rates obtained in this note allows one to measure the convergence speed
of the SPDG algorithm on three different measures of approximate solution to the problem (8) (see
Theorem 2.4 and the remarks right below it).

Among the above mentioned measures of approximate solution, one of them allows for the study
of the iteration-complexity of the SPDG algorithm in the lines of recent results on the iteration-
complexity of the inexact Spingarn’s partial inverse method [2] (see (34)). In this regard, one can
compute SPDG algorithm’s iteration-complexity with respect to the following notion of approximate
solution of (8) (see [2]): for a given tolerance ρ > 0, find x, u ∈ H such that

u ∈ T (x), max {‖x− PV (x)‖, γ‖u− PV ⊥(u)‖} ≤ ρ, (11)

where γ > 0. For ρ = 0, criterion (11) gives x ∈ V , u ∈ V ⊥ and u ∈ T (x), i.e., in this case the pair
(x, u) is a solution of (8). We mention that criterion (11) naturally appears in different settings and
has not been considered in [18].

Next, we present the scaled proximal decomposition on the graph of a maximal monotone operator
(SPDG) algorithm.
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Algorithm 2. SPDG algorithm for solving (8) [18, Algorithm 3]

(0) Let x0 ∈ V , y0 ∈ V ⊥, γ > 0 be given and set k = 1.

(1) Compute

x̃k = (γT + I)−1 (xk−1 + γyk−1) , uk = γ−1 (xk−1 + γyk−1 − x̃k) . (12)

(2) If x̃k ∈ V and uk ∈ V ⊥, then stop. Otherwise, define

xk = PV (x̃k), yk = PV ⊥(uk), (13)

set k ← k + 1 and go to step 1.

Remarks.

(i) Algorithm 2 was originally proposed and studied in [18]. When γ = 1, it reduces to the
Spingarn’s partial inverse method for solving (8). The authors of the latter reference emphasize
the importance of introducing the scaling γ > 0 in order to speed up the convergence of the
SPDG algorithm, specially when solving ill-conditioned problems.

(ii) As we mentioned earlier, one of the contributions of this note is to show that similar results
(actually potentially better) to the one obtained in [18] regarding the convergence rate of
Algorithm 2 can be proved by means of the Spingarn’s partial inverse framework, instead of
fixed point techniques.

The following result appears (with a different notation) inside the proof of [18, Theorem 4.2]; see
also [15, inside the proof of Proposition 4] for an analogous result for the Douglas-Rachford splitting
method.

Theorem 2.1. (inside the proof of [18, Theorem 4.2]) If T is η–strongly monotone and Lipschitz
continuous with constant L, then the convergence of the sequence {(xk, γyk)} is linear, in the sense
that

‖x∗ − xk‖2 + γ2‖u∗ − yk‖2 ≤
(

1− 2γη

(1 + γL)2

)k

d 2
0 ∀k ≥ 1, (14)

where (x∗, u∗) is the (unique) solution of (8) and

d0 :=
√
‖x∗ − x0‖2 + γ2‖u∗ − y0‖2. (15)

Remarks.

(i) The optimal convergence speed is achieved by letting γ = 1/L in (14), in which case (see p.
461 in [18])

‖x∗ − xk‖2 + γ2‖u∗ − yk‖2 ≤
(

1− η

2L

)k
d 2
0 ∀k ≥ 1. (16)
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(ii) It follows from (16) that, for a given tolerance ρ > 0, Algorithm 2 finds x, y ∈ H such that
‖x∗ − x‖2 + γ2‖u∗ − y‖2 ≤ ρ after performing at most

2 + log

(
2L

2L− η

)−1
log

(
d 2
0

ρ

)
(17)

iterations. In the third remark after Theorem 2.4, we show that our approach provides a
potentially better upper bound on the number of iterations needed by the SPDG algorithm to
achieve prescribed tolerances, specially on ill-conditioned problems.

A direct consequence of the next proposition, in contrast to the reference [18], is that it is possible
to analyze the SPDG algorithm within the original Spingarn’s partial inverse framework. We show
that under assumptions A2) and A3), the partial inverse operator TV is strongly monotone.

Proposition 2.2. Under the assumptions A2) and A3) on the maximal monotone operator T , its
partial inverse TV with respect to V is µ-strongly (maximal) monotone with

µ =
η

1 + L2
> 0. (18)

Additionally, in this case, TV is also (1/µ)-Lipschitz continuous.

Proof. Take v ∈ TV (z), v′ ∈ TV (z′) and note that, from (2), we have

PV (v) + PV ⊥(z) ∈ T (PV (z) + PV ⊥(v)), PV (v′) + PV ⊥(z′) ∈ T (PV (z′) + PV ⊥(v′)), (19)

which, in turn, combined with the assumption A2) and after some direct calculations yields

〈z − z′, v − v′〉 = 〈PV (z − z′) + PV ⊥(z − z′), PV (v − v′) + PV ⊥(v − v′)〉
= 〈PV (z − z′) + PV ⊥(v − v′), PV (v − v′) + PV ⊥(z − z′)〉
≥ η‖PV (z − z′) + PV ⊥(v − v′)‖2

= η
(
‖PV (z − z′)‖2 + ‖PV ⊥(v − v′)‖2

)
(20)

≥ η‖PV (z − z′)‖2. (21)

On the other hand, assumption A3) and (19) imply

‖[PV (v) + PV ⊥(z)]− [PV (v′) + PV ⊥(z′)]‖ ≤ L‖[PV (z) + PV ⊥(v)]− [PV (z′) + PV ⊥(v′)]‖,

which, in particular, gives

‖PV (z − z′)‖2 + ‖PV ⊥(v − v′)‖2 ≥ 1

L2

(
‖PV (v − v′)‖2 + ‖PV ⊥(z − z′)‖2

)
≥ 1

L2
‖PV ⊥(z − z′)‖2. (22)

Using (21) and combining (20) and (22) we find, respectively,

〈z − z′, v − v′〉 ≥ η‖PV (z − z′)‖2, L2〈z − z′, v − v′〉 ≥ η‖PV ⊥(z − z′)‖2.

Note that the strong monotonicity of TV now follows by adding the above inequalities and by using
the definition of µ > 0 in (18).

To finish the proof of the proposition, note that a similar argument gives

〈z − z′, v − v′〉 ≥ η‖PV ⊥(v − v′)‖2, L2〈z − z′, v − v′〉 ≥ η‖PV (v − v′)‖2, (23)

which shows that TV is also (1/µ)-Lipschitz continuous.
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In the next proposition, we prove that Algorithm 2 is a special instance of Algorithm 1. It can
be shown that this result is a direct consequence of [6, Eq. (61)] and, separately, of [7, Eq. (20)]
with B = 0 and δn ≡ 1 (in the notation of the latter references). For the convenience of the reader,
we present a short and direct proof.

Proposition 2.3. Let {xk} and {yk} be generated by Algorithm 2 and define

zk = xk + γyk ∀k ≥ 0. (24)

Then, for all k ≥ 1,

zk−1 − zk = PV (γuk) + PV ⊥(x̃k), (25)

zk = ((γT )V + I)−1 zk−1. (26)

As a consequence of (26), we have that Algorithm 2 is a special instance of Algorithm 1 with λ = 1
for solving (3) with A = (γT )V .

Proof. Using (12), we obtain γuk ∈ (γT )(x̃k) and, as a consequence, from (2), we have

PV (γuk) + PV ⊥(x̃k) ∈ (γT )V (PV (x̃k) + PV ⊥(γuk)). (27)

From the second identity in (12), we have γuk + x̃k = xk−1 + γyk−1, which combined with (13) gives

PV (γuk) = xk−1 − xk, PV ⊥(x̃k) = γ(yk−1 − yk),

which, in turn, is equivalent to (25). Using (27), (25), (24) and (13), we find zk−1 − zk ∈ (γT )V (zk),
which is clearly equivalent to (26). The last statement of the proposition follows directly from (26)
and Algorithm 1’s definition.

In the next theorem, we present the main contribution of this note, namely, convergence rates
for the SPDG algorithm obtained within the original Spingarn’s partial inverse framework.

Theorem 2.4. Let {xk}, {yk}, {x̃k} and {uk} be generated by Algorithm 2, let (x∗, u∗) be the
(unique) solution of (8) and let d0 be as in (15). Then, for all k ≥ 1,

‖xk−1 − xk‖2 + γ2‖yk−1 − yk‖2 ≤
(

1− 2γη

(1 + γL)2 − 2γ(L− η)

)k−1
d 2
0 , (28)

‖x̃k − PV (x̃k)‖2 + γ2‖uk − PV ⊥(uk)‖2 ≤
(

1− 2γη

(1 + γL)2 − 2γ(L− η)

)k−1
d 2
0 , (29)

‖x∗ − xk‖2 + γ2‖u∗ − yk‖2 ≤
(

1− 2γη

(1 + γL)2 − 2γ(L− η)

)k

d 2
0 . (30)

Proof. First, note that, from (2), (x∗, u∗) is a solution of (8) if and only if x∗+γu∗ =: z∗ ∈ (γT )−1V (0).
Using the last statement in Proposition 2.3, Proposition 2.2 to the operator γT (which is (γη)-strongly
monotone and (γL)-Lipschitz continuous) and Proposition 1.1, we conclude that the inequalities (6)
and (7) hold with z∗ as above, λ = 1, zk as in (24) and

µ =
γη

1 + (γL)2
.
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Direct calculations yield (recall that λ = 1)

2µ

1 + 2µ
=

2γη

(1 + γL)2 − 2γ(L− η)
.

Hence, (28) and (30) follow from (6) and (7), respectively. To finish the proof, it remains to prove
(29). To this end, note that it follows from (24), (25), (28) and the facts that PV ⊥ = I − PV and
PV = I − PV ⊥ .

Remarks.

(i) Analogously to first remark after Theorem 2.1, one can easily verify that γ = 1/L provides the
best convergence speed in (28)–(30), in which case we find, respectively,

‖xk−1 − xk‖2 + γ2‖yk−1 − yk‖2 ≤
(

1− η

η + L

)k−1
d 2
0 , (31)

‖x̃k − PV (x̃k)‖2 + γ2‖uk − PV ⊥(uk)‖2 ≤
(

1− η

η + L

)k−1
d 2
0 , (32)

‖x∗ − xk‖2 + γ2‖u∗ − yk‖2 ≤
(

1− η

η + L

)k

d 2
0 . (33)

(ii) Since L ≥ η, it follows that the convergence speed obtained in (31)–(33) is potentially better
(specially on ill-conditioned problems) than the optimal one obtained for the SPDG algorithm
in [18] via fixed point techniques, namely (16). More precisely, we have

1

2

(
1− η

2L

)
< 1− η

η + L
≤ 1− η

2L
.

The same remark applies to the rates in (28)–(30), when compared to the corresponding one
in (14). See Figure 1.

(iii) Note that (32) (resp. (33)) imply that, for a given tolerance ρ > 0, the SPDG algorithm
finds a pair (x, u) (resp. (x, γy)) satisfying the termination criterion (11) (resp. ‖x∗ − x‖2 +
γ2‖u∗ − y‖2 ≤ ρ) after performing no more than

2 + log

(
η + L

L

)−1
log

(
d 2
0

ρ

)
(34)

iterations.

(iv) By taking L = 57 and η = 9 (see p. 462 in [18]), we find log

(
2L

2L− η

)−1
≈ 13 and

log

(
η + L

L

)−1
≈ 7 in (17) and (34), respectively. This shows that the upper bound (34),

obtained in this note, is more accurate than the corresponding one (17), obtained in [18].

9



1 2 3 4 5 6 7 8 9 10

L/

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1- /2L
1- /( +L)

Figure 1: Solid line: optimal factor of linear convergence obtained in this paper for Algorithm 2; see
(31)–(33) and Theorem 2.4. Dotted line: optimal factor of linear convergence of Algorithm 2 proved
in [18]; see (16).

3 Concluding remarks

In this note, we proved that the SPDG algorithm of Mahey, Oualibouch and Tao introduced in
[18], can alternatively be analyzed within the Spingarn’s partial inverse framework, instead of the
fixed point approach proposed in the latter reference. This traces back to the 1983 Spingarn’s paper,
where, among other contributions, he introduced and analyzed the partial inverse method. We simply
proved that under the assumptions of [18], namely strong monotonicity and Lipschitz continuity, the
Spingarn’s partial inverse of the underlying maximal monotone operator is strongly monotone as well.
This allowed us to employ recent developments in the convergence analysis and iteration-complexity
of proximal point type methods for strongly monotone operators. By doing this, we additionally
obtained a potentially better convergence speed for the SPDG algorithm as well as a better upper
bound on the number of iterations needed to achieve prescribed tolerances. We emphasize that these
bounds are purely theoretical and that efficient algorithms should rely on adaptive adjustments of
the corresponding scaling parameters during the iterative process (see, e.g., [14, 17]). Last but not
least, we mention that a topic for future investigation would be to study the linear convergence of
the related partial-inverse and Douglas-Rachford type methods proposed and studied in [6, 7].
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