Next:Generalized Information and DivergenceUp:Important Observations
Previous:List of Generalized Entropies Go to:Table of Contents

Generalized Distance Measures

The quantity $ \Big(\sum_{i-1}^n{p^r_i}\Big)^{s-1\overr-1}$$ r>0$ appearing in the unified expression (3.8) or in the entropy of order $ r$ and degree $ s$, i.e., in the expression (3.7) plays an important role. Let us write it in the simplified form:
$\displaystyle G^{\rho}_r(P)=\Big(\sum_{i=1}^n{p^r_i}\Big)^{\rho},\ r>0,\\rho\neq 0$
    (3.22)

for all $ P=(p_1,p_2,...,p_n)\ \in\ \Delta_n$. The quantity (3.49) is famous as generalized distance measure (Boekee and Van der Lubbe, 1979 [15]; Capocelli et al., 1985 [24]) or the generalized certainty measure (Van der Lubbe et al., 1984 [116]).

Another distance measure arising from the entropy of order $ (r,s)$ is given by

$\displaystyle T^{\rho}_r(P)=\Big(\sum_{i=1}^n{p^r_i}\Big/\sum_{i=1}^n{p^{\rho}_i}\Big)^{1\overr-\rho}, \ r\neq \rho,\ r\geq 0,\ \rho \geq 0$
    (3.23)

for all $ P=(p_1,p_2,...,p_n)\ \in\ \Delta_n$. This measure has been considered by Capocelli et al. (1985) [24].

The quantities (3.49) and (3.50) contain as a particular case the measures studied by Trouborst et al., (1974) [112], Györfi and Nemetz (1975) [42], Devijver (1974) [34], Vajda (1968) [113] etc..

The measures (3.22) and (3.23) satisfy some properties. These are given as follows:

Property 3.25. For all $ P=(p_1,p_2,...,p_n)\ \in\ \Delta_n$, we have

(i) $ G^{\rho}_r(P)$ is a convex function of P for $ r>1, \ r\rho\geq 1$ or $ 0<r<1$,$ \rho >0,\ r\rho\leq 1$.
(ii) $ G^{\rho}_r(P)$ is a concave function of P for $ 0<r<1$,$ \rho >0,\ r\rho\leq 1$.
(iii) $ G^{\rho}_r(P)$ is a pseudoconvex/quasiconvex/Schur-convex function of P for $ r>1$$ \rho >0$, or $ 0<r<1$$ \rho <0$.
(iv) $ G^{\rho}_r(P)$ is a pseudoconcave/quasiconcave/Schur-concave function of P for $ 0<r<1$$ \rho >0$ or $ r>1$$ \rho <0$.
Property 3.26. For all $ P=(p_1,p_2,...,p_n)\ \in\ \Delta_n$, we have
(i) $ G^{\rho}_r(P)$ is a decreasing function of r ($ \rho$ fixed and $ \rho >0$).
(ii) $ G^{\rho}_r(P)$ is an increasing function of r ($ \rho$ fixed and $ \rho <0$).
(iii) $ G^{\rho}_r(P)$ is a decreasing function of $ \rho$ (r fixed and $ r>1$).
(iv) $ G^{\rho}_r(P)$ is an increasing function of $ \rho$ (r fixed and $ 0<r<1$).
Property 3.27. For all $ P=(p_1,p_2,...,p_n)\ \in\ \Delta_n$,$ p_{max}=max\{p_1,p_2,...,p_n\}$ and $ 1\leq\sigma \leq n$, we have
(i) ($ a_1$$ G^{\rho}_r\Big(1-\sum_{i=1}^\sigma{p_i},\ \sum_{i=1}^\sigma{p_i}\Big)\leqG^{......gma{p_i}}_{\sigma- \mbox{times}}, 1-{1\over\sigma}\sum_{i=1}^\sigma{p_i}\Big)$

($ a_2$$ G^{\rho}_r(1-p_{max},\ p_{max})\leqG^{\rho}_r(P) \leq G^{\rho}_r\Big(\underb......_{max}\overn-1},...,{1-p_{max}\over n-1}}_{(n-1)-\mbox{times}},p_{max}\Big)$
$ (0<r<1,\ \rho > 0)$ or $ (r>1,\\rho < 0)$.
(ii) ($ a_1$$ G^{\rho}_r\Big(1-\sum_{i=1}^\sigma{p_i},\ \sum_{i=1}^\sigma{p_i}\Big)\geqG^{......igma{p_i}}_{\sigma-\mbox{times}}, 1-{1\over\sigma}\sum_{i=1}^\sigma{p_i}\Big)$

($ a_2$$ G^{\rho}_r(1-p_{max},\ p_{max})\geqG^{\rho}_r(P) \geq G^{\rho}_r\Big(\underb......_{max}\overn-1},...,{1-p_{max}\over n-1}}_{(n-1)-\mbox{times}},p_{max}\Big)$
$ (r>1,\ \rho > 0)$ or $ (0<r<1,\\rho < 0)$.
Property 3.28. For all $ P=(p_1,p_2,...,p_n)\ \in\ \Delta_n$, we have
(i)($ a_1$$ T^{\rho}_r(P)$ is an increasing function of r ($ \rho$ fixed).
($ a_2$$ T^{\rho}_r(P)$ is an increasing function of $ \rho$ (r fixed).
(ii) ($ a_1$$ T^{\rho}_r(P)\leq p_{max}$.
($ a_2$$ T^{\rho}_r(P)\geq\Big(p^\rho_{max}/\sum_{i=1}^n{p^\rho_i}\Big) ^{1\over r-\rho}p_{max},\ r>\rho$.
($ a_3$$ T^{\rho}_r(P)\geq\Big(p^r_{max}/\sum_{i=1}^n{p^r_i}\Big) ^{1\over \rho -r}p_{max},\ \rho>r$.

21-06-2001
Inder Jeet Taneja
Departamento de Matemática - UFSC
88.040-900 Florianópolis, SC - Brazil