Next:Unified InaccuraciesUp:Generalized Information Measures
Previous:Unified Relative Information Go to:Table of Contents

Properties of Unified (r,s)-Relative Information

The unified $ (r,s)-$relative information$ {\ensuremath{\boldsymbol{\mathscr{D}}}}^s_r(P\vert\vert Q)$ given by (4.1) satisfies the following properties;

Property 4.1. (Continuity).$ {\ensuremath{\boldsymbol{\mathscr{D}}}}^s_r(P\vert\vert Q)$ is a continuous function of the pair $ (P,Q)$ and is also continuous with respect to the parameters $ r$ and $ s$.

Property 4.2. (Symmetry).$ {\ensuremath{\boldsymbol{\mathscr{D}}}}^s_r(P\vert\vert Q)$ is a symmetric function of their arguments in the pair $ (P,Q)$, i.e., 

$\displaystyle {\ensuremath{\boldsymbol{\mathscr{D}}}}^s_r(p_1,...,p_n\vert\vert......}}^s_r(p_{\tau (1)},...,p_{\tau (n)}\vert\vert q_{\tau(1)},...,q_{\tau (n)}),$

where $ \tau$ is an arbitrary permutation of $ 1$ to $ n$.

Property 4.3. (Expansibility). We can write 

$\displaystyle {\ensuremath{\boldsymbol{\mathscr{D}}}}^s_r(p_1,...,p_n,0\vert\ve......{\ensuremath{\boldsymbol{\mathscr{D}}}}^s_r(p_1,...,p_n\vert\vert q_1,...,q_n).$

Property 4.4.(Nonadditivity). We have

$\displaystyle {\ensuremath{\boldsymbol{\mathscr{D}}}}^s_r(P_1*P_2\vert\vert Q_1......vert\vert Q_1)\,{\ensuremath{\boldsymbol{\mathscr{D}}}}^s_r(P_2\vert\vert Q_2),$

for all $ P_1,\ Q_{1}\in \Delta_n$$ P_2,\Q_{2} \in \Delta_m$ and $ P_1*P_2$$ Q_1*Q_{2} \in \Delta_{nm}$.

Property 4.5. (Nonnegativity).$ {\ensuremath{\boldsymbol{\mathscr{D}}}}^s_r(P\vert\vert Q)\geq 0$ with equality iff $ P=Q$.

Property 4.6. (Monotonicity).$ {\ensuremath{\boldsymbol{\mathscr{D}}}}^s_r(P\vert\vert Q)$ is an increasing function of $ r$ ($ s$ fixed) and of$ s$ ($ r$ fixed). In particular, when $ r=s$, the result still holds.

Property 4.7. (Inequalities among the measures). We have

(i) $ {\ensuremath{\boldsymbol{\mathscr{D}}}}^s_r(P\vert\vert Q) \left\{ \begin{arra......{\boldsymbol{\mathscr{D}}}}^1_r(P\vert\vert Q), & r\geq 1\end{array}\right.$
(ii) $ {\ensuremath{\boldsymbol{\mathscr{D}}}}^s_r(P\vert\vert Q) \left\{ \begin{arra......\boldsymbol{\mathscr{D}}}}^s_1(P\vert\vert Q), &s\geq 1\end{array}\right.$
Property 4.8. (Convexity).$ D^s_r(P\vert\vert Q)$ is a convex function of the pair of probability distributions $ (P,Q) \in\Delta_n\times\Delta_n$ for $ s\geq r> 0$.

Property 4.9. (Generalized data processing inequality). We have 

$\displaystyle {\ensuremath{\boldsymbol{\mathscr{D}}}}^s_r\big( P(B)\vert\vert Q(B)\big)\leq{\ensuremath{\boldsymbol{\mathscr{D}}}}^s_r(P\vert\vert Q),$

where $ P(B)$ and $ Q(B)$ are the probability distributions given by

$\displaystyle P(B)=\Big(\sum_{i=1}^n{p_ib_{i1}},...,\sum_{i=1}^n{p_ib_{im}}\Big)\\in\ \Delta_m,$
and
$\displaystyle Q(B)=\Big(\sum_{i=1}^n{q_ib_{i1}},...,\sum_{i=1}^n{q_ib_{im}}\Big)\\in\ \Delta_m,$
where $ B=\{b_{ij}\}$$ b_{ij}\geq 0$$ \forall \ i=1,2,...,n$$ j=1,2,...,m$ is a stochastic matrix such that$ \sum_{j=1}^n{b_{ij}}=1$$ \forall \ i=1,2,...,n$.

Property 4.10. (Schur-convexity)$ {\ensuremath{\boldsymbol{\mathscr{D}}}}^s_r(P\vert\vert Q)$ is a Schur-convex function in the pair $ (P,Q) \in\Delta_n\times\Delta_n$.

Property 4.11. For $ 1\leq\sigma \leq n$, we have 

$\displaystyle {\ensuremath{\boldsymbol{\mathscr{D}}}}^s_r\Big({1\over\sigma}\......},...,q_n\Big)\leq{\ensuremath{\boldsymbol{\mathscr{D}}}}^s_r(P\vert\vert Q).$

Property 4.12. (Order preserving) We have

(i) If $ D(P_1\vert\vert Q_1)\geq D(P_2\vert\vert Q_2)$, then


$\displaystyle {\ensuremath{\boldsymbol{\mathscr{D}}}}^s_r(P_1\vert\vert Q_1)\geq {\ensuremath{\boldsymbol{\mathscr{D}}}}^s_r(P_2\vert\vert Q_2),$

for all $ r\ \in\ (r_1,r_2)$, where $ r_1$ and $ r_2$ are determined by the equations: 

$\displaystyle D^1_{r_1}(P_1\vert\vert Q_1)=D(P_2\vert\vert Q_2),$

and
$\displaystyle D^1_{r_2}(P_2\vert\vert Q_2)=D(P_1\vert\vert Q_1).$
(ii) If $ D(P_1\vert\vert Q_1)\geq \log \big({p\over q}\big)_{2max}$, then


$\displaystyle {\ensuremath{\boldsymbol{\mathscr{D}}}}^s_r(P_1\vert\vert Q_1)\ge......nsuremath{\boldsymbol{\mathscr{D}}}}^s_r(P_2\vert\vert Q_2),\ 1\leq r <\infty$

where 
$\displaystyle \big({p\over q}\big)_{2max} = \,\mathrel{\mathop{max}\limits_{i}}\big\{{p_{2i}\over q_{2i}}\big\}.$

21-06-2001
Inder Jeet Taneja
Departamento de Matemática - UFSC
88.040-900 Florianópolis, SC - Brazil