Next:Dimensional Unified Arithmetic andUp:Dimensional Unified Divergence Measures
Previous:Dimensional Unified Information RadiiGo to:Table of Contents

M-Dimensional Unified (r,s)-J-Divergences

The three different ways of defining $ M-$dimensional unified $ (r,s)-J-$divergence measures are given by
$\displaystyle ^\alpha{\ensuremath{\boldsymbol{\mathscr{J}}}}^s_r(P_1,P_2,...,P_......P_M), & r\neq 1,\ \ s=1 \\ J(P_1,P_2,...,P_M), &r=1,\ \ s=1\end{array}\right.$
    (5.18)

$ \alpha=1,2$ and 3, where for $ \alpha =1$, we have

$ ^1J^s_r(P_1,P_2,...,P_M)$

$\displaystyle =(1-2^{1-s})^{-1}\Big\{\Big[ \sum_{i=1}^n{\Big(\sum_{{j,k=1}_......}}^M{\lambda_j\lambda_k}}\Big)\Big]^{s-1\over r-1}-1\Big\},\r\neq 1,\ s\neq 1$
$\displaystyle ^1J^s_1(P_1,P_2,...,P_M)=(1-2^{1-s})^{-1}\Big\{2^{(s-1)J(P_1,P_2,...,P_M)}-1\Big\},\ s\neq 1$
and 
$\displaystyle ^1 J^1_r(P_1,P_2,...,P_M)=(r-1)^{-1} log_2\Big[\sum_{i=1}^n{ \B......_{ji}p^{1-r}_{ki}}/ \sum_{{j,k=1}_{j\neqk}}^M{\lambda_j \lambda_k}\Big)}\Big]$
For $ \alpha=2$, we have
$\displaystyle ^2 {\ensuremath{\boldsymbol{\mathscr{J}}}}^s_r(P_1,P_2,...,P_M)= ......da_j \lambda_k} {\ensuremath{\boldsymbol{\mathscr{D}}}}^s_r(P_j\vert\vert P_k).$
    (5.19)

For $ \alpha =3$, we have

$ ^3 J^s_r(P_1,P_2,...,P_M)$

$\displaystyle = (1-2^{1-s})^{-1}\Big\{ \Big[\sum_{i=1}^n{\Big(\sum_{j=1}^M{\l......^{\lambda_k}_{ki}}\Big)^{1-r}} \Big]^{s-1\overr-1}-1\Big\},\ r\neq 1, s\neq 1$
$\displaystyle ^3J^s_1(P_1,P_2,...,P_M)=(1-2^{1-s})^{-1}\Big\{2^{(s-1)J(P_1,P_2,...,P_M)}-1\Big\}, s\neq 1$
$\displaystyle ^3J^1_r(P_1,P_2,...,P_M)=(r-1)^{-1}\,\,log_2\Big\{\sum_{i=1}^......ji}}\Big)\Big(\prod_{k=1}^M{p^{\lambda_k}_{ki}}\Big)^{1-r}}\Big\}, \ r\neq1$
In particular, we have 
$\displaystyle ^1 {\ensuremath{\boldsymbol{\mathscr{J}}}}^s_s(P_1,P_2,...,P_M)=......P_1,P_2,...,P_M)}= {\ensuremath{\boldsymbol{\mathscr{J}}}}^s_s(P_1,P_2,...,P_M)$
where
$\displaystyle {\ensuremath{\boldsymbol{\mathscr{J}}}}^s_s(P_1,P_2,...,P_M)=\lef......P_1,P_2,...,P_M), & s\neq 1 \\  J(P_1,P_2,...,P_M), & s=1\end{array}\right.$
with

$ J^s_s(P_1,P_2,...,P_M)=$

$\displaystyle (1-2^{1-s})^{-1}\Big\{ \Big[\sum_{i=1}^n{\Big(\sum_{{j,k=1}_{j\....../ \sum_{{j,k=1}_{j\neq k}}^M{\lambda_j\lambda_k}\Big)}\Big]-1\Big\},\ s\neq 1$

For two dimensional case, i.e., when M=2,$ \lambda_1=\lambda_2={1\over 2}$$ P_1=P$ and $ P_2=Q$, we have

$ 2\, ^1J^s_r(P_1,P_2)=\ ^1J^s_r(P\vert\vert Q)$

$\displaystyle = 2(1-2^{1-s})^{-1}\Big\{\Big[\sum_{i=1}^n{\Big({p^r_iq^{1-r}_i+p^{1-r}_iq^r_i\over2}\Big)} \Big]^{s-1\over r-1}-1\Big\},$
    (5.20)

$ 4\, ^2J^s_r(P_1,P_2)=\, ^2J^s_r(P\vert\vert Q)$

$\displaystyle = (1-2^{1-s})^{-1}\Big\{\Big(\sum_{i=1}^n{p^r_iq^{1-r}_i}\Big)^{s-1\over r-1}+\Big(\sum_{i=1}^n{q^r_ip^{1-r}_i}\Big)^{s-1\over r-1}-2\Big\},$
    (5.21)
and

$ ^3J^s_r(P_1,P_2)=\ ^3I^s_r(P\vert\vert Q)$

$\displaystyle = (1-2^{1-s})^{-1}\Big\{ \Big[ \sum_{i=1}^n{ \Big( {p^{1+r\over2......+ p^{1+r\over 2}_i q^{1-r\over 2}_i\over 2}\Big)}\Big]^{s-1\over r-1}-1\Big\},$
    (5.22)
for all $ r\neq 1, \ s\neq 1$.
 
Note 5.3. The measures (5.20) and (5.21) is as given by (4.11) and (4.7). While the measure (5.22) is new.
21-06-2001
Inder Jeet Taneja
Departamento de Matemática - UFSC
88.040-900 Florianópolis, SC - Brazil