Next:Properties of Conditional EntropiesUp:Entropy of Degree and
Previous:Conditional Entropies of Degree Go to:Table of Contents

Mutual Information of Degree s

We have
$\displaystyle ^\alpha{\ensuremath{\boldsymbol{\mathscr{F}}}}^s_s(X \wedge Y) = ......ha I^s_s(X \wedge Y), & s \neq 1 \\  I(X \wedge Y), & s=1\end{array}\right.$
where 
$\displaystyle \alpha I^s_s(X \wedge Y) = H(X) - \,\,^\alphaH_s^s(X\vert Y), \,\, (\alpha=1,2,3\,\,$   and$\displaystyle \,\, 4)$
and
$\displaystyle ^5I^s_s(X \wedge Y) = D_s^s(P_{XY}\vert\vert P_X \times P_Y) =\sum_{j=1}^m p(y_j) \,D_s^s(P_{X\vert Y=y_j}\vert\vert P_X),$
with
$\displaystyle D_s^s(P_{X\vert Y=y_j}\vert\vert P_X) = (2^{1-s}-1)^{-1} \left[\sum_{i=1}^np(x_i\vert y_j)^s\,p(x_i)^{1-s}-1\right], s \neq 1$
for every$ j=1,2,\cdots,m.$

We can also write 

$\displaystyle ^1I^s_s(X \wedge Y) =\sum_{j=1}^m p(y_j)^s \,D_s^s(P_{X\vert Y=y_j}\vert\vert P_X),$
We also have
$\displaystyle ^\alpha{\ensuremath{\boldsymbol{\mathscr{F}}}}_s^s(X \wedge Y\ver......\ensuremath{\boldsymbol{\mathscr{H}}}}H_s^s(X\vert Y,Z), \,\, (\alpha=1,2,3\,\,$   and$\displaystyle \,\, 4)$
and 
$\displaystyle ^6{\ensuremath{\boldsymbol{\mathscr{F}}}}_s^s(X \wedge Y\vert Z)=......l{\mathscr{F}}}}_s^s(P_{XY\vert Z}\vert\vert P_{x\vert Z} \times P_{Y\vert Z}).$

The properties studied before from 6.1 to 6.9 for the unified $ (r,s)-$measures include these particular cases, i.e., when $ r=s$. We shall now present some more properties for the measures of degree $ s$, i.e., only for the case $ \alpha=4$.

In view of the properties studied before, the measures $ ^\alpha{\ensuremath{\boldsymbol{\mathscr{F}}}}_s^s(X \wedge Y\vert Z)$($ \alpha =1,2,3$ and $ 4$) are nonnegative for $ s\geq 1$, when $ \alpha =1$ and $ s>0$ for $ \alpha=2,3$ and $ 6$.


21-06-2001
Inder Jeet Taneja
Departamento de Matemática - UFSC
88.040-900 Florianópolis, SC - Brazil