Next:Information Measures for DiscreteUp:Shannon's Entropy
Previous:Multivariate Entropies Go to:Table of Contents

Mutual Information


Let us consider the following differences

$\displaystyle I(X\wedgeY)=H(X)-H(X\vert Y)=\sum_{i=1}^n{\sum_{j=1}^m{p(x_i,y_j)\log\Big({p(x_i,y_j)\over p(x_i)}\Big)}}, $
$\displaystyle I(X\wedgeY\vert Z)=H(X\vert Z)-H(X\vert Y,Z)=\sum_{i=1}^n{\su......l{p(x_i,y_j,z_k)\log\Big({p(x_i,y_j\vert z_k)\over p(x_i\vert z_k)}\Big)}}}, $
and
$\displaystyle I\big((X,Y)\wedge Z \big)=H(X,Y)-H(X,Y\vert Z)=\sum_{i=1}^n{\su......k=1}^l{p(x_i,y_j,z_k)\log\Big({p(x_i,y_j\vert z_k)\over p(x_i,y_j)}\Big)}}}. $

In view of the property 1.40, the following property holds.

Property 1.47. We have

(i) $ I(X\wedge Y) \geq 0$ with equality iff $ X$ and $ Y$ are independent.
(ii) $ I(X\wedge Y\vert Z) \geq 0$ with equality iff $ X$ and $ Y$ are conditionally independent given $ Z$.
(iii) $ I\big((X,Y)\wedge Z \big) \geq 0$ with equality iff $ (X,Y)$ and $ Z$ are independent.
The above measures are famous in the literature as

$ I(X\wedge Y)$ : mutual information among the random variables $ X$ and $ Y$;

$ I(X\wedge Y\vert Z)$ : mutual information among the random variables $ X$ and $ Y$ given $ Z$;

$ I\big((X,Y)\wedge Z \big)$ : mutual information among the random variables $ (X,Y)$ and $ Z$.

We can write 

$\displaystyle I(X\wedge Y)=E_Y \big[I(X\wedge Y=y_j)\big] = E_{XY} \big[ I(X=x_i \wedge Y=y_j) \big],$
where
$\displaystyle I(X\wedge Y=y_j)=\sum_{i=1}^n{p(x_i\vert y_j)\log\Big({p(x_i\vert y_j)\over p(x_i)} \Big)}, \ \forall \ j $
and
$\displaystyle I(X=x_i \wedge Y=y_j) = \log \Big({p(x_i,y_j)\over p(x_i)p(y_j)}\Big), \ \forall \ i,j$
In view of the above representation, $ I(X\wedge Y)$ sometimes understood as the average or the conditional mutual information of $ I(X \wedge Y=y_j)$ or of$ I(X=x_i \wedge Y=y_j)$. The expression $ I(X=x_i \wedge Y=y_j)$ is known as per-letter information, and it may be negative. It is nonnegative iff $ p(x_i,y_j) \geq p(x_i)p(y_j), \ \forall \i,j.$ Similarly, we can write expressions for $ I(X\wedge Y\vert Z)$ and$ I\big((X,Y)\wedge Z \big)$. In fact, the following properties hold.

Property 1.48. We have

(i) $ E_X \big[ I(X=x_i\wedge Y)\big] = E_Y\big[ I(X\wedge Y=y_j)\big] .$
(ii) $ E_{YZ} \big[ I(X\wedge Y=y_j\vert Z=z_k)\big] = E_{XZ}\big[I(X=x_i\wedge Y\vert Z=z_k)\big] .$
(iii) $ E_Z \big[ I\big((X,Y)\wedge Z=z_k\big)\big] = E_{XY}\big[ I\big((X=x_i,Y=y_j)\wedge Z\big) \big] .$
Property 1.49. We have
(i) $ H(X)+H(Y)-H(X,Y)=I(X\wedge Y).$
(ii) $ H(X)+H(Y)+H(X,Y\vert Z)=I(X\wedge Y)+I\big((X,Y)\wedge Z \big).$
(iii) $ I(X\wedge Z)+I(X\wedge Y\vert Z)=I(X\wedge Y)+I(X\wedge Z\vert Y)=I\big((X,Y)\wedge Z \big).$
Property 1.50. We have
(i) $ I(X\wedge Y)$ is a convex $ \cap$ function of the probability distribution $ \{p(x_i)\}\ \in\ \Delta_n$.
(ii) $ I(X\wedge Y)$ is a convex $ \cup$ function of the probability distribution $ \{p(y_j\vert x_i)\}\ \in\ \Delta_m$.
Property 1.51. We have
(i) $ I\big((X,Y)\wedge Z\big) \geq I(Y\wedge Z)\ \big({\rm or}\I(X\wedge Z)\big)$, with equality iff $ X$ (or resp. $ Y$) and $ Z$ are conditionally independent given Y.
(ii) $ I\big((X,Y)\wedge Z\big) \geq I(X\wedge Z\vert Y)\ \big({\rm or}\I(Y\wedge Z\vert X)\big)$, with equality iff $ Y$ (or resp. $ X$) and $ Z$ are independent.
Property 1.52. If $ X$ and $ Y$ are conditionally independent given $ Z$, then
(i) $ I(X\wedge Z) \geq I(X\wedge Y)\ ({\rm or}\ I(Y\wedge Z)).$
(ii) $ I(X\wedge Z) \geq I(X\wedge Z\vert Y).$
Property 1.53. We have
(i) $ I\big((X_1,X_2)\wedge X_3\vert X_4\big)=I(X_1\wedge X_3\vert X_4)+I\big(X_2\wedge X_3\vert(X_1,X_4)\big).$
(ii) $ I\big((X_1,X_2)\wedge X_3\vert X_4\big)+I(X_1\wedge X_2\vert X_4)=I\big(X_2\wedge (X_1,X_3)\vert X_4)\big)+I(X_1\wedge X_3\vert X_4).$
(iii) $ I\big(X_1\wedge (X_2,X_3)\big)+I\big(X_1\wedge X_4\vert(X_2,X_3)\big)=I\big(X_1\wedge (X_2,X_3,X_4)\big).$
(iv) $ I\big((X_1,X_2)\wedge (X_3,X_4,X_5)\big)=I\big((X_1,X_2)\wedge X_3\vert(X_4,X_5)\big)$
$ +I\big((X_1,X_2)\wedgeX_4\vert X_5)\big)+I\big((X_1,X_2)\wedge X_5\big).$

21-06-2001
Inder Jeet Taneja
Departamento de Matemática - UFSC
88.040-900 Florianópolis, SC - Brazil